1.21 Use the procedure described in Lemma 1.60 to convert the following finite automata to regular expressions.

![Diagrams of finite automata](a) ![Diagrams of finite automata](b)

1.47 Let $\Sigma = \{1, \#\}$ and let

$$Y = \{ w | w = x_1\#x_2\#\cdots\#x_k \text{ for } k \geq 0, \text{ each } x_i \in 1^*, \text{ and } x_i \neq x_j \text{ for } i \neq j \}.$$

Prove that Y is not regular.

In Either 1.47 (above) or 1.53 (below), AT YOUR CHOOSING, YOU MUST USE THE MYHILL-NERODE THEOREM TO PROVE NON-REGULARITY, while in the other you must use the pumping lemma.

1.53 Let $\Sigma = \{0, 1, +, =\}$ and

$$ADD = \{ x=y+z | x, y, z \text{ are binary integers, and } x \text{ is the sum of } y \text{ and } z \}.$$

Show that ADD is not regular.

1.54 Consider the language $F = \{ a^i b^j c^k | i, j, k \geq 0 \text{ and if } i = 1 \text{ then } j = k \}$.

a. Show that F is not regular.

b. Show that F acts like a regular language in the pumping lemma. In other words, give a pumping length p and demonstrate that F satisfies the three conditions of the pumping lemma for this value of p.
1.60 Let \(\Sigma = \{a, b\} \). For each \(k \geq 1 \), let \(C_k \) be the language consisting of all strings that contain an \(a \) exactly \(k \) places from the right-hand end. Thus \(C_k = \Sigma^* a \Sigma^{k-1} \). Describe an NFA with \(k + 1 \) states that recognizes \(C_k \), both in terms of a state diagram and a formal description.

1.61 Consider the languages \(C_k \) defined in Problem 1.60. Prove that for each \(k \), no DFA can recognize \(C_k \) with fewer than \(2^k \) states.

1.64 Let \(N \) be an NFA with \(k \) states that recognizes some language \(A \).

a. Show that, if \(A \) is nonempty, \(A \) contains some string of length at most \(k \).

b. Show that, by giving an example, that part (a) is not necessarily true if you replace both \(A \)'s by \(\overline{A} \).

c. Show that, if \(\overline{A} \) is nonempty, \(\overline{A} \) contains some string of length at most \(2^k \).

d. Show that the bound given in part (b) is nearly tight; that is, for each \(k \), demonstrate an NFA recognizing a language \(A_k \) where \(A_k \) is nonempty and where \(A_k \)'s shortest member strings are of length exponential in \(k \). Come as close to the bound in (b) as you can.

1.998 Consider the (decimal) languages defined below. For each one, either give a regular expression for its elements or prove the language is non-regular:

In all examples, a number cannot start with a 0 (unless it is 0 itself) and the empty string is NOT a number:

a) \(L_a = \{ w \mid \text{as an integer } w \text{ is a multiple of 50} \} \).

b) \(L_b = \{ w \mid \text{as an integer } w \text{ is a multiple of 40} \} \).

c) \(L_c = \{ w \mid \text{as an integer } w \text{ is a power of 10} \} \).

d) \(L_d = \{ w \mid \text{as an integer } w \text{ is a multiple of 6} \} \).

e) \(L_e = \{ w \mid \text{as an integer } w \text{ is s. t. the sum of its digits is a multiple of 10} \} \).

f) \(L_f = \{ w \mid \text{as an integer } w \text{ is a power of 2} \} \).

g) \(L_g = \{ w \mid w \text{ is a rational number} \} \).

(with \(\Sigma = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -, / \} \))

 Examples of such strings are -76403/3300, or 100/100 but not 1/0 or -0/0.

h) \(L_h = \{ w \mid w \text{ is a relatively prime rational number} \} \).

(with \(\Sigma = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -, / \} \))

 Examples of such strings are -76403/1117, or 100/101 but not 5/10 or 2/4.

1.999 Exhibit and explain an algorithm to find the shortest regular expression \(R_{\text{min}} \) equivalent to a given regular expression \(R \).

(Shortest means least number of symbols and operators. The alphabet is \(\{0,1\} \).)