CONTENTS

Preface to the First Edition xi
 To the student ... xi
 To the educator ... xii
 The first edition ... xiii
 Feedback to the author xiii
 Acknowledgments .. xiv

Preface to the Second Edition xvii

Preface to the Third Edition xx

0 Introduction 1
 0.1 Automata, Computability, and Complexity 1
 Complexity theory 2
 Computability theory 3
 Automata theory 3
 0.2 Mathematical Notions and Terminology 3
 Sets .. 3
 Sequences and tuples 6
 Functions and relations 7
 Graphs .. 10
 Strings and languages 13
 Boolean logic ... 14
 Summary of mathematical terms 16
 0.3 Definitions, Theorems, and Proofs 17
 Finding proofs .. 17
 0.4 Types of Proof 21
 Proof by construction 21
 Proof by contradiction 21
 Proof by induction 22
 Exercises, Problems, and Solutions 25
Part One: Automata and Languages

1 Regular Languages
 1.1 Finite Automata
 Formal definition of a finite automaton
 Examples of finite automata
 Formal definition of computation
 Designing finite automata
 The regular operations
 1.2 Nondeterminism
 Formal definition of a nondeterministic finite automaton
 Equivalence of NFAs and DFAs
 Closure under the regular operations
 1.3 Regular Expressions
 Formal definition of a regular expression
 Equivalence with finite automata
 1.4 Nonregular Languages
 The pumping lemma for regular languages

Exercises, Problems, and Solutions

2 Context-Free Languages
 2.1 Context-Free Grammars
 Formal definition of a context-free grammar
 Examples of context-free grammars
 Designing context-free grammars
 Ambiguity
 Chomsky normal form
 2.2 Pushdown Automata
 Formal definition of a pushdown automaton
 Examples of pushdown automata
 Equivalence with context-free grammars
 2.3 Non-Context-Free Languages
 The pumping lemma for context-free languages
 2.4 Deterministic Context-Free Languages
 Properties of DCFLs
 Deterministic context-free grammars
 Relationship of DPDAs and DCFGs
 Parsing and LR(k) Grammars

Exercises, Problems, and Solutions

Part Two: Computability Theory

3 The Church-Turing Thesis
 3.1 Turing Machines
 Formal definition of a Turing machine
CONTENTS

Examples of Turing machines .. 170

3.2 Variants of Turing Machines 176
 Multitape Turing machines 176
 Nondeterministic Turing machines 178
 Enumerators .. 180
 Equivalence with other models 181

3.3 The Definition of Algorithm 182
 Hilbert's problems ... 182
 Terminology for describing Turing machines 184

Exercises, Problems, and Solutions 187

4 Decidability .. 193
4.1 Decidable Languages ... 194
 Decidable problems concerning regular languages 194
 Decidable problems concerning context-free languages ... 198

4.2 Undecidability ... 201
 The diagonalization method 202
 An undecidable language 207
 A Turing-unrecognizable language 209

Exercises, Problems, and Solutions 210

5 Reducibility .. 215
5.1 Undecidable Problems from Language Theory 216
 Reductions via computation histories 220
5.2 A Simple Undecidable Problem 227
5.3 Mapping Reducibility ... 234
 Computable functions ... 234
 Formal definition of mapping reducibility 235

Exercises, Problems, and Solutions 239

6 Advanced Topics in Computability Theory 245
6.1 The Recursion Theorem ... 245
 Self-reference .. 246
 Terminology for the recursion theorem 249
 Applications .. 250
6.2 Decidability of logical theories 252
 A decidable theory .. 255
 An undecidable theory .. 257
6.3 Turing Reducibility ... 260
6.4 A Definition of Information 261
 Minimal length descriptions 262
 Optimality of the definition 266
 Incompressible strings and randomness 267

Exercises, Problems, and Solutions 270
Part Three: Complexity Theory

7 Time Complexity

7.1 Measuring Complexity
- Big-O and small-o notation
- Analyzing algorithms
- Complexity relationships among models

7.2 The Class P
- Polynomial time
- Examples of problems in P

7.3 The Class NP
- Examples of problems in NP
- The P versus NP question

7.4 NP-completeness
- Polynomial time reducibility
- Definition of NP-completeness
- The Cook–Levin Theorem

7.5 Additional NP-complete Problems
- The vertex cover problem
- The Hamiltonian path problem
- The subset sum problem

Exercises, Problems, and Solutions

8 Space Complexity

8.1 Savitch’s Theorem
8.2 The Class PSPACE
8.3 PSPACE-completeness
- The TQBF problem
- Winning strategies for games
- Generalized geography

8.4 The Classes L and NL
8.5 NL-completeness
- Searching in graphs

8.6 NL equals coNL
Exercises, Problems, and Solutions

9 Intractability

9.1 Hierarchy Theorems
- Exponential space completeness

9.2 Relativization
- Limits of the diagonalization method

9.3 Circuit Complexity
Exercises, Problems, and Solutions

10 Advanced Topics in Complexity Theory

10.1 Approximation Algorithms
10.2 Probabilistic Algorithms ... 396
 The class BPP ... 396
 Primality ... 399
 Read-once branching programs 404
10.3 Alternation .. 408
 Alternating time and space 410
 The Polynomial time hierarchy 414
10.4 Interactive Proof Systems 415
 Graph nonisomorphism 415
 Definition of the model 416
 IP = PSPACE .. 418
10.5 Parallel Computation .. 427
 Uniform Boolean circuits 428
 The class NC .. 430
 P-completeness ... 432
10.6 Cryptography ... 433
 Secret keys .. 433
 Public-key cryptosystems 435
 One-way functions .. 435
 Trapdoor functions .. 437
Exercises, Problems, and Solutions 439

Selected Bibliography .. 443

Index ... 448