Faculty of Science Final Examination

Computer Science 308-251B Data Structures and Algorithms

Examiner: Prof. Claude Crépeau **Date:** April 30, 2010 **Associate Examiner:** Prof. Patrick Hayden **Time:** 09:00 – 12:00

INSTRUCTIONS:

This examination is worth 50% of your final grade.

The total of all questions is 100 points.

Each question is assigned a value found in brackets next to it.

OPEN • BOOKS •/• OPEN • NOTES

Faculty standard calculator permitted only.

This examination consists of 5 pages including title page.

This examination consists of 6 questions.

SUGGESTION: read all the questions and their values before you start.

[20%]

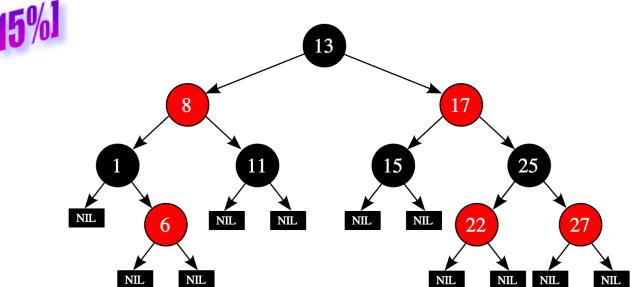
1) In an *Integer Minimum Spanning Tree* problem the input instance is a graph **G=(V,E)**, an integer **U** and an integer weight function, **w: E --> {0,1,2...,U}** (the weight of each edge is an integer between **0** and **U**). When considering the running time of algorithms solving this problem, you have three parameters to consider: **IVI=n** the number of vertices of your graph, **IEI** the number of edges of your graph and **U** the upper bound on the weights of the edges.

Discuss extensively, which algorithm should be favored for its efficiency at solving an Integer Minimum Spanning Tree problem as a function of **n**, **IEI** and **U**.

Example (false):

IEI is $\Theta(\mathbf{n}^3)$	U is Θ(n log n)	Prim is better because it runs in time $\Theta(\mathbf{n}^{17})$ while
		Kruskal is $\Theta(\mathbf{n}^{42})$.
IEI is Θ(n)	U is Θ(1)	Kruskal is better because it runs in time $\Theta(\mathbf{n}^{1/2})$
		while Prim is $\Theta(\mathbf{n}^{\log n})$.

2) Consider the following red-black tree: (for clarity: nodes 8, 17, 6, 22 and 27 are "red")



- a) Find the MINIMUM and MAXIMUM of this tree.
- **b)** Find the SUCCESSOR of node **11** and PREDECESSOR of node **17**.
- **c)** Show the result of removing node **25**. Indicate colors.
- **d)** Show the result of inserting a node for value **10**. Indicate colors.

3) For each statement, say if it is *true* or *false*.

Correct = +1 pt, Incorrect = -0.5 pt, No answer = 0 pt, Minimum Total= 0 pt.

- (a) Let $f: N \rightarrow N$ be the function $f(n) = \lfloor n / 5 \rfloor + 1$. In an array of n unsorted elements we can find the element of rank f(n) in worst case time O(n).
- (b) Any comparison-based sorting cannot possibly be correct on all inputs of size n if the time it takes is not $\Omega(n \log n)$.
- (c) A dynamic programming algorithm can always run in time at most $O(n^2)$.
- (d) Insertion in a generic Binary Search Tree always takes time O(n / log n).
- (e) The data structure for Disjoint Sets is used by Dijkstra's algorithm.
- (f) Simple problems always have simple (efficient) algorithms with simple running times.
- (g) Johnson's algorithm for All-Pairs Shortest Paths uses both Bellman-Ford's and Prim's algorithms.
- (h) Optimal Sub-structure is relevant to both Dynamic programming and Greedy algorithms.
- (i) Suppose T is a MST. Let e be an edge of weight w not in T. If we add e to T, it closes a cycle c. Suppose there exists another edge e' of c with weight w. The new tree T' = T {e} U {e'} is also a MST.
- (j) "Sorting out Sorting" is the title of an animation movie demonstrating several sorting algorithms.
- 4) Prove using (constructive) induction that the following T(n) is $\Theta(n)$:

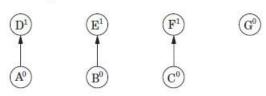
[15%]

$$T(n) = \begin{cases} 1 & \text{if } n = 1, 2 \\ 3T(\lfloor n/5 \rfloor) + T(\lfloor n/4 \rfloor) + \Theta(n) & \text{if } n > 2 \end{cases}$$

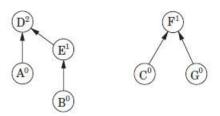
A sequence of disjoint-set operations. Superscripts denote rank.

- 1) After makeset(A), makeset(B),..., makeset(G):
 - A^0
- C
- \bigcirc
- \mathbf{E}_0
- $\widehat{\mathrm{F}^0}$

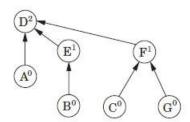
2) After union(A,D), union(B,E), union(C,F):



3)After union(),union()



4) After union(B,G):



Consider the above sequence of operations on a disjoint-sets data structure.

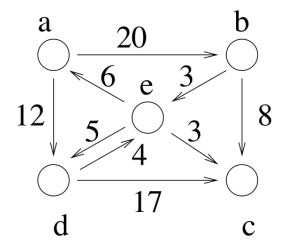
- A) In step 3) I removed the arguments to the **union** operations. Give correct arguments to these two calls to **union** that would produce the observed result. If there is more than one solution to this question **GIVE ALL THE CORRECT SOLUTIONS.**
- B) What is the set of sets represented after step 3)?

 Example: the set of sets after step 1) is { {A}, {B}, {C}, {D}, {E}, {F}, {G} }.
- C) If we insert the operation **find-set(B)** before step **4)** what would be the result after **union(B,G)** as in step **4)**?
- **D**) This is the book version of **find-set** that implements the *path-compression* heuristic.

find-set(x) **if** x ≠ x.p x.p = **find-set**(x.p) **return** x.p Write an iterative version of **find-set** instead of recursive as in the book.
Why should we prefer iterative?

[20%]

6) Consider the following directed graph:



In Chapter 25, we considered recursive definitions of two families of matrices, $\mathbf{L}^{(m)}$, which is computed in a way analogous to matrix multiplication, and $\mathbf{D}^{(m)}$, in the Floyd-Wharshall algorithm. Both of these algorithms assume the vertices are labeled as $\{1,2,...,n\}$; thus when considering the graph above you may assume $\mathbf{a=1}$, $\mathbf{b=2},...$, $\mathbf{e=5}$.

- **A.** Provide the definitions of $L^{(m)}$ and $D^{(m)}$.
- **B.** Provide explicitly matrices $L^{(0)}$ and $D^{(0)}$.
- C. Provide explicitly matrices $L^{(2)}$ and $D^{(3)}$.
- **D.** What is the longest simple path in this graph?
 Why don't we have a book chapter on the longest simple path problem??