Faculty of Science
Final Examination

Computer Science 308-251B
Data Structures and Algorithms

Examiner: Prof. Claude Crépeau
Associate Examiner: Prof. Patrick Hayden

Date: April 24, 2008
Time: 14:00 – 17:00

INSTRUCTIONS:
• This examination is worth 50% of your final grade.
• The total of all questions is 100 points.
• Each question is assigned a value found in brackets next to it.
• OPEN BOOKS / OPEN NOTES
• Faculty standard calculator permitted only.
• This examination consists of 4 pages including title page.
• This examination consists of 6 questions.

SUGGESTION: read all the questions and their values before you start.
1) Remember the application of the Disjoint-Sets data structure to find connected components of a graph and the related example we saw in class:

Illustrate the execution of algorithm CONNECTED-COMPONENTS(G) on this example, from the initial collection of disjoint sets, to the final configuration, showing the evolution of the data structure after the processing of each new edge, in the context of the Disjoint-Set Forest representation together with the union by rank and path compression heuristics.

To be more precise about my expectations for this question, I expect a bunch of drawings like the following, representing the data structure after processing of each edge, as well as the table of ranks:

2) Prove using constructive induction that the following \(T(n) \) is \(\Theta(n) \):

\[
T(n) = \begin{cases}
1 & \text{if } n=1,2 \\
2T(\lceil n/4 \rceil) + T(\lceil n/3 \rceil) + \Theta(n) & \text{if } n>2
\end{cases}
\]
3) Consider the set of edges defined by a *Single-Source shortest path* algorithm from a given source s.

a) Show that these edges form a tree.

b) Explain why this tree is not necessarily a *Minimum Spanning Tree* and give an example where the Minimum Spanning Tree is distinct from the tree defined by the *Single-Source Shortest Path* algorithm.

c) Show that in any graph, there exists a source such that the two notions coincide.

4) For each statement, say if it is true or false.

<table>
<thead>
<tr>
<th>Correct = +1 pt, Incorrect = -0.5 pt, No answer = 0 pt, Minimum Total= 0 pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be an arbitrary function of the natural integers to themselves, such that $f(n) \leq n$ for all $n \in \mathbb{N}$. In an array of n unsorted integers we can find the element of rank $f(n)$ in worst case time $O(n)$.</td>
</tr>
<tr>
<td>(b) Any comparison-based sorting algorithm of an array of n integers of k bits each must use, in the worst case, at least $\Omega(k , n , \lg , n)$ time if we take into account the time necessary to compare integers.</td>
</tr>
<tr>
<td>(c) For any $\varepsilon > 0$, we know how to multiply two $n \times n$ matrices using only $O(n^{1+\varepsilon})$ time.</td>
</tr>
<tr>
<td>(d) We can always construct an optimal binary search tree by putting the key with the greatest probability at the root.</td>
</tr>
<tr>
<td>(e) The greedy algorithm for making change without nickels presented by professor Hayden doesn’t necessarily minimize the number of coins returned.</td>
</tr>
<tr>
<td>(f) The longest common subsequence of “patato” and “tomato” is “ato”.</td>
</tr>
<tr>
<td>(g) The Bellman-Ford algorithm is preferable to Dijkstra’s when negative edges are present.</td>
</tr>
<tr>
<td>(h) A theoretical speedup obtained for matrix multiplication would translate to a speedup for matrix inversion.</td>
</tr>
<tr>
<td>(i) Any algorithm that solves the All-Pairs Shortest Path problem must use time at least $\Omega(n^3)$.</td>
</tr>
<tr>
<td>(j) The Longest Simple path problem is an example where the optimal substructure property does not apply.</td>
</tr>
</tbody>
</table>
5) The *edit distance* of two strings, s_1 and s_2, is defined as the *minimum* number of *point mutations* required to change s_1 into s_2, where a point mutation is one of:

A. change a letter,
B. insert a letter or
C. delete a letter.

The following recurrence relations define the edit distance, $d(s_1, s_2)$, of strings s_1 and s_2:

$$d(s_1 + \text{ch}_1, s_2 + \text{ch}_2) =$$

$$\min \left(d(s_1, s_2) + \begin{cases} 0 & \text{if } \text{ch}_1 = \text{ch}_2 \\ 1 & \text{if } \text{ch}_1 \neq \text{ch}_2 \end{cases} \right)$$

The first rule above is obviously correct, so it is only necessary to consider the second. Here, neither string is empty, so each has a last character, ch_1 and ch_2 respectively. Somehow, ch_1 and ch_2 have to be explained in an *edit* of $s_1 + \text{ch}_1$ into $s_2 + \text{ch}_2$.

- If $\text{ch}_1 = \text{ch}_2$, they can be *matched* at no cost, i.e. 0, and the edit distance is $d(s_1, s_2)$.

- If $\text{ch}_1 \neq \text{ch}_2$, then ch_1 *could* be changed into ch_2, i.e. cost=1, giving an overall edit distance $d(s_1, s_2) + 1$. Another possibility is to delete ch_1 and edit s_1 into $s_2 + \text{ch}_2$, yielding an edit distance of $d(s_1, s_2 + \text{ch}_2) + 1$. The last possibility is to edit $s_1 + \text{ch}_1$ into s_2 and then insert ch_2, yielding an edit distance of $d(s_1 + \text{ch}_1, s_2) + 1$.

There are no other alternatives. We take the least expensive, i.e. min, of these.

A. Explain why $d(s_1, s_2)$ depends only on $d(s'_1, s'_2)$ where s'_1 is shorter than s_1, or s'_2 is shorter than s_2, or both.

B. Given two input strings, s_1, s_2, describe a *dynamic programming* algorithm to compute a table of the edit distances necessary to determine $d(s_1, s_2)$.

C. Analyze the running time of your algorithm.

6) Sorting. (*Copyright © 1999 Luc Devroye.*)

The input is a sequence of n integers with many duplications, such that the number of distinct integers in the sequence is $O(\log n)$. Design a sorting algorithm (based on comparisons only) to sort such sequences using at most $O(n \log \log n)$ comparisons in the worst case (justify the running time).

Hint: A red-black tree may be useful here!