Chapter 2

Basics of Algorithm Analysis
<table>
<thead>
<tr>
<th>Time</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>Omar MC-102</td>
<td>Claude MC-110N</td>
<td>Tianyu MC-107</td>
<td>Yixin MC-104</td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>Mon MC-110N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>Mon MC-110N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Mon MC-110N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td>Mon MC-110N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30</td>
<td>Mon MC-110N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>Mon MC-110N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:30</td>
<td>Mon MC-110N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>Mon MC-110N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:30</td>
<td>Mon MC-110N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td>Mon MC-110N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MC = MCENG = McConnell Engineering Building
2.1 Computational Tractability

"For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense, and even mysterious. But once unlocked, they cast a brilliant new light on some aspect of computing." - Francis Sullivan

Francis Sullivan has been the director of IDA's Center for Computing Science since 1993. From 1986 to 1993, he was the Director, Computing and Applied Mathematics Laboratory at the National Institute of Standards and Technology (NIST) and, before that, from 1979, he was in the Scientific Computing Division of NIST.
As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise - By what course of calculation can these results be arrived at by the machine in the shortest time? - Charles Babbage
Computer Science Approach to problem solving

- If my boss / supervisor / teacher formulates a problem to be solved urgently, can I write a program to efficiently solve this problem??
Computer Science Approach to problem solving

- Are there some problems that cannot be solved at all? and, are there problems that cannot be solved efficiently??
A few Computability Classes

ALL PROBLEMS

COMPUTABLE

P-Space

NP

P
Computer Science Approach to problem solving

- If my boss / supervisor / teacher formulates a problem to be solved urgently, can I write a program to efficiently solve this problem??
Polynomial-Time

Brute force. For many non-trivial problems, there is a natural brute force search algorithm that checks every possible solution.
- Typically takes 2^N time or worse for inputs of size N.
- Unacceptable in practice.

Desirable scaling property. When the input size doubles, the algorithm should only slow down by some constant factor C.

There exists constants $a > 0$ and $d > 0$ such that on every input of size N, its running time is bounded by $a \cdot N^d$ steps.

Def. An algorithm is poly-time if the above scaling property holds.

Property: poly-time is invariant over *all* computer models.
Average/Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time of algorithm on any input of a given size N.

- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.
- For probabilistic algorithms, we take the worst average running time.

Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N.

- Hard (or impossible) to accurately model real instances by random distributions.
- Algorithm tuned for a certain distribution may perform poorly on other input distributions.
Worst-Case Polynomial-Time

Def. An algorithm is **efficient** if its running time is polynomial.

Justification: It really works in practice!
- Although $6.02 \times 10^{23} \times N^{20}$ is technically poly-time, it would be useless in practice.
- In practice, the poly-time algorithms that people develop almost always have low constants and low exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

Exceptions.
- Some poly-time algorithms do have high constants and/or exponents, and are useless in practice.
- Some exponential-time (or worse) algorithms are widely used because the worst-case instances seem to be rare.

- **Primality testing**
- **simplex method**
- **Unix grep**
Why It Matters

Big-O Complexity

Operations vs. Elements for different time complexities:
- $O(1)$
- $O(\log n)$
- $O(n)$
- $O(n \log n)$
- $O(n^2)$
- $O(2^n)$
- $O(n!)$

The graph illustrates how the number of operations increases as the number of elements grows, with different growth rates for each complexity class.
Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

<table>
<thead>
<tr>
<th>n</th>
<th>n</th>
<th>$n \log_2 n$</th>
<th>n^2</th>
<th>n^3</th>
<th>1.5^n</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 10$</td>
<td>< 1 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>$n = 30$</td>
<td>< 1 sec</td>
<td>18 min</td>
<td>10^{25} years</td>
</tr>
<tr>
<td>$n = 50$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>11 min</td>
<td>36 years</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 100$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>12,892 years</td>
<td>10^{17} years</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 1,000$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>18 min</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 10,000$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 100,000$</td>
<td>< 1 sec</td>
<td>2 sec</td>
<td>3 hours</td>
<td>32 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 1,000,000$</td>
<td>1 sec</td>
<td>20 sec</td>
<td>12 days</td>
<td>31,710 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
</tbody>
</table>

Note: age of Universe $\sim 10^{10}$ years...
2.2 Asymptotic Order of Growth
Asymptotic Order of Growth

Let \(f: \mathbb{N} \rightarrow \mathbb{R}^+ \) be a function, we define

Upper bounds.

\[
O(f) = \{ g: \mathbb{N} \rightarrow \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+, n_0 \in \mathbb{N} \text{ s.t. } \forall n \geq n_0 \ [g(n) \leq c \cdot f(n)] \}.
\]

Lower bounds.

\[
\Omega(f) = \{ g: \mathbb{N} \rightarrow \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+, n_0 \in \mathbb{N} \text{ s.t. } \forall n \geq n_0 \ [g(n) \geq c \cdot f(n)] \}.
\]

Tight bounds.

\[
\Theta(f) = O(f) \cap \Omega(f).
\]

Ex: \(T(n) = 32n^2 + 17n + 32. \)

\(T(n) \in O(n^2), O(n^3), \Omega(n^2), \Omega(n), \) and \(\Theta(n^2) \).

\(T(n) \not\in O(n), \Omega(n^3), \Theta(n), \) or \(\Theta(n^3). \)
Notation

Abuse of notation. $T(n) = O(f(n))$.

- Not transitive:
 - $f(n) = 5n^3; \ g(n) = 3n^2$
 - $f(n) = O(n^3)$ and $g(n) = O(n^3)$ but $f(n) \neq g(n)$.
- Better notation: $T(n) \in O(f(n))$.
- Acceptable notation: $T(n)$ is $O(f(n))$. (if scared by \in !)

Meaningless statement. Any comparison-based sorting algorithm requires at least $O(n \log n)$ comparisons.

- Statement doesn't "type-check".
- Precisely, $f(n)=1 \in O(n \log n)$, therefore "at least one comparison".
- Use Ω for lower bounds: "at least $\Omega(n \log n)$ comparisons".
- "requires at least $cn \log n$ comparisons for $c>0$ and all large enough n".
Limit theorems.

Let $f, g : \mathbb{N} \to \mathbb{R}^+$ be functions, such that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \in \mathbb{R}^+,$$

then $f \in \Theta(g)$, $g \in \Theta(f)$, $\Theta(f) = \Theta(g)$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0,$$

then $f \in O(g)$, $f \notin \Omega(g)$, $O(f) \subset O(g)$, $\Omega(g) \subset \Omega(f)$
Properties

Let \(f, g: \mathbb{N} \rightarrow \mathbb{R}^+ \) be functions

Transitivity.

- If \(f \in O(g) \) and \(g \in O(h) \) then \(f \in O(h) \) \(\text{since } O(f) \subset O(g) \subset O(h) \).
- If \(f \in \Omega(g) \) and \(g \in \Omega(h) \) then \(f \in \Omega(h) \) \(\text{since } \Omega(f) \subset \Omega(g) \subset \Omega(h) \).
- If \(f \in \Theta(g) \) and \(g \in \Theta(h) \) then \(f \in \Theta(h) \) \(\text{since } \Theta(f) \subset \Theta(g) \subset \Theta(h) \).

Additivity.

- If \(f \in O(h) \) and \(g \in O(h) \) then \(f + g \in O(h) \)
 \(\text{since } f(n) < c_f \ h(n), g(n) < c_g \ h(n) \Rightarrow f(n) + g(n) < (c_f+c_g) \ h(n) \).
- If \(f \in \Omega(h) \) and \(g \in \Omega(h) \) then \(f + g \in \Omega(h) \).
- If \(f \in \Theta(h) \) and \(g \in O(h) \) then \(f + g \in \Theta(h) \).

Consequence:

- \(f + g \in O(\max\{f,g\}) \) \(\text{since } f + g \leq 2\max\{f,g\} \).
- \(f + g \in \Omega(\max\{f,g\}) \) \(\text{since } f + g \geq \max\{f,g\} \).
- \(f + g \in \Theta(\max\{f,g\}) \) \(\text{since } \max\{f,g\} \leq f + g \leq 2 \max\{f,g\} \).
Consequence:
- $f + g \in O(\max\{f,g\})$.
- $f + g \in \Omega(\max\{f,g\})$.
- $f + g \in \Theta(\max\{f,g\})$.

\begin{verbatim}
max ← a_i
for i = 2 to n {
 if (a_i > max)
 max ← a_i
}

min ← (x_1 - x_2)^2 + (y_1 - y_2)^2
for i = 1 to n {
 for j = i+1 to n {
 d ← (x_i - x_j)^2 + (y_i - y_j)^2
 if (d < min)
 min ← d
 }
}

foreach set S_i {
 foreach other set S_j {
 foreach element p of S_i {
 determine whether p also belongs to S_j
 }
 if (no element of S_i belongs to S_j)
 report that S_i and S_j are disjoint
 }
}
\end{verbatim}
Asymptotic Bounds for Some Common Functions

Polynomials. \(a_0 + a_1n + \ldots + a_d n^d \in \Theta(n^d) \) if \(a_d > 0 \).

Polynomial time. Running time \(\in O(n^d) \) for some constant \(d \) independent of the input size \(n \).

Logarithms. \(O(\log_a n) \in O(\log_b n) \) for any constants \(a, b > 0 \).

\[\uparrow \]

(can avoid specifying the base)

Logarithms. For every \(x > 0 \), \(\log n \in O(n^x) \).

\[\uparrow \]

(log grows slower than every polynomial)

Exponentials. For every \(r > 1 \) and every \(d > 0 \), \(n^d \in O(r^n) \).

\[\uparrow \]

(every exponential grows faster than every polynomial)
2.4 A Survey of Common Running Times
Linear Time: $O(n)$

Linear time. Running time is proportional to input size.

Computing the maximum. Compute minimum of n numbers a_1, \ldots, a_n.

\[
\begin{align*}
\text{min} & \leftarrow a_1 \\
\text{for } i &= 2 \text{ to } n \{ \\
\quad & \text{if } (a_i < \text{min}) \\
\quad & \quad \text{min} \leftarrow a_i \\
\}
\end{align*}
\]
O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.\
also referred to as linearithmic time

Sorting. **Mergesort** and **Heapsort** are sorting algorithms that perform **O(n log n)** comparisons.

Closest Points on a line. Given n numbers x_1, \ldots, x_n, what is the smallest distance x_i-x_j between any two points?

O(n log n) solution. Sort the n numbers. Scan the sorted list in order, identifying the minimum gap between successive points.
Quadratic Time: $O(n^2)$

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane $(x_1, y_1), \ldots, (x_n, y_n)$, find the pair that is closest.

$O(n^2)$ solution. Try all pairs of points.

```plaintext
min ← (x_1 - x_2)^2 + (y_1 - y_2)^2
for i = 1 to n {
    for j = i+1 to n {
        d ← (x_i - x_j)^2 + (y_i - y_j)^2
        if (d < min)
            min ← d
    }
}
```
don't need to take square roots

Remark. This algorithm is $\Omega(n^2)$ and it seems inevitable in general, but this is just an illusion: $\Theta(n \log n)$ is actually possible and optimal... see chapter 5
Quadratic Time: $O(n^2)$

Quadratic time. Solve $O(n^2)$ independent sub-puzzles each in constant-time.

$nxnxn$ Rubik’s cube. Given a scrambled $nxnxn$ cube, put it in solved configuration.

Remark. This algorithm is $\Omega(n^2)$ and it seems inevitable in general, but this is just an illusion: $\Theta(n^2/\log n)$ is actually possible and optimal...
Cubic Time: $O(n^3)$

Cubic time. Enumerate all triples of elements.

Matrix multiplication. Given two $n \times n$ matrices of numbers A, B, what is their matrix product C?

$$
\begin{bmatrix}
c_{11} & c_{12} & \cdots & c_{1n} \\
c_{21} & c_{22} & \cdots & c_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n1} & c_{n2} & \cdots & c_{nn}
\end{bmatrix}
=
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}
\times
\begin{bmatrix}
b_{11} & b_{12} & \cdots & b_{1n} \\
b_{21} & b_{22} & \cdots & b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n1} & b_{n2} & \cdots & b_{nn}
\end{bmatrix}
$$

$O(n^3)$ solution. For each entry c_{ij} compute as below.

$$
c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}
$$
Polynomial Time: $O(n^k)$ Time

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?

$O(n^k)$ solution. Enumerate all subsets of k nodes.

\[
\begin{align*}
\text{foreach subset } S \text{ of } k \text{ nodes } \{ \\
\quad \text{if } (S \text{ is an independent set}) \\
\qquad \text{report } S \\
\}\}
\end{align*}
\]

- Check whether S is an independent set = $O(k^2)$.
- Number of k element subsets = \[\binom{n}{k} = \frac{n(n-1)(n-2) \cdots (n-k+1)}{k(k-1)(k-2) \cdots (2)(1)} \leq \frac{n^k}{k!}\]
 poly-time for $k=17$, but not practical.

k is a constant.
Independent set. Given a graph, what is the maximum size of an independent set?

\[O(n^2 2^n) \] solution. Enumerate all subsets.

\[
S^* \leftarrow \emptyset \\
\text{foreach subset } S \text{ of nodes } \\
\quad \text{if (S is an independent set and } |S| > |S^*|) \\
\quad \quad \text{update } S^* \leftarrow S \\
\} \\
\}
Chapter 2

Basics of Algorithm Analysis
The First Computer Programmer

Ada Lovelace