
Computer Science COMP-250B
Midterm, Feb 23, 2016, 13:05-14:25.

O P E N • B O O K S •/• O P E N • N O T E S

1) Consider the following recursive function definition:

 n2 if n<4
 f(n)=
 f(n-1)+2f(n-2)+4f(n-3) if n≥4

a) Write an iterative algorithm to compute this function for any n ≥1.

 f1=1; f2=4; f3=9;
 FOR i = 1 to n-1
 tmp = f3+2*f2+4*f1;
 f1 = f2;
 f2 = f3;
 f3 = tmp;
 return f1.

b) Why not simply compute this function recursively if it was defined
recursively?

 If computed recursively this function will repeatedly compute
 the same values on and on, whereas the iterative version computes
 each f(i) exactly once and no more.

2)
Write any algorithm that runs in time 𝛩(n2 log2 n) in worse case. Explain
why this is its running time. I don’t care what it does. I only care about its
running time…

 WhatEver(array int A)

 n = A.length;
 FOR i=1 TO n
 FOR j=1 TO n
 x=n; WHILE x>1 DO { x=x/2; y=n;
 WHILE y>1 DO y=y/2 }  

{

3) Prove by mathematical induction that for n ≥ 1,

 ∑n
i=1i

2 = n(n+1)(2n+1)/6.

 Base case: n=1, ∑1
i=1i

2 = 12 = 1 = 1*2*3/6 = 1(1+1)(2*1+1)/6.
 Induction step: Assume for induction hypothesis that for n≥1,

 we already have ∑n
i=1i

2 = n(n+1)(2n+1)/6. Let’s prove for n+1.

 ∑n
i=
+
1
1i 2 = (n+1)2 + ∑n

i=1i
2 = (n+1)2 + n(n+1)(2n+1)/6

 = (n+1)(n+1+n(2n+1)/6)
 = (n+1)(2n2+7n+6)/6
 = (n+1)((n+1)+1)(2(n+1)+1)/6.

4)
Consider the following arithmetic expression

5 + 6 * 4 + (6 + 5 * (2 + 1)).

Give the successive states of the argument and operator stacks that
will result of computing (from left to right) the value corresponding to
this expression.

 1
 2 2 3 3
 4 5 5 5 5 5 5 5 15
 6 6 6 24 6 6 6 6 6 6 6 6 6 6 21 21
 5 5 5 5 5 5 29 29 29 29 29 29 29 29 29 29 29 29 29 29 50

 + +
 ((((
 * * * * * *
 + + + + + + + + +
 * * ((((((((((((
 + + + + + + + + + + + + + + + + + + +  

5) Consider the situation where you are given a Singly Linked List of
objects as in Lecture 5. An example is given below :

A) Write (Java-like) pseudo-code to break this list (call it MyList) into
two sub-lists (call them MyLeftList and MyRightList) of nearly
equal sizes (difference of sizes is ≤ 1). In the example above your
algorithm would produce two sub-lists of sizes 3 and 2.

 BREAK(MyList)
 Middle = MyList.head;
 FOR i = 1 to MyList.size/2
 Middle = Middle.next;

 MyLeftList.head = MyList.head; MyLeftList.tail = Middle;
 MyRightList.head = Middle.next; MyRightList.tail = MyList.tail;
 Middle.next = null;
 MyLeftList.size = MyList.size/2;
 MyRightList.size = MyList.size - MyLeftList.size;
 RETURN [MyLeftList,MyRightList]

B) Write (Java-like) pseudo-code to merge two such sub-lists once
they each have been sorted . *

 MERGE(MyLeftList,MyRightList)
 NEW MyList; NEW MyList.Tail; MyList.head = MyList.tail;
 WHILE MyLeftList.head≠null AND MyRightList.head≠null DO
 | IF MyLeftList.head.element.Bigger(MyRightList.head.element)
 | THEN MyList.tail.next = MyRightList.head;
 | MyList.tail = MyList.tail.next;
 | MyRightList.head = MyRightList.head.next;
 | ELSE MyList.tail.next = MyLeftList.head;
 | MyList.tail = MyList.tail.next;
 | MyLeftList.head = MyLeftList.head.next;
 WHILE MyLeftList.head≠null DO
 | MyList.tail.next = MyLeftList.head;
 | MyList.tail = MyList.tail.next;
 | MyLeftList.head = MyLeftList.head.next;
 WHILE MyRightList.head≠null DO
 | MyList.tail.next = MyRightList.head;
 | MyList.tail = MyList.tail.next;
 | MyRightList.head = MyRightList.head.next;
 MyList.head = MyList.head.next;
 MyList.size = MyLeftList.size + MyRightList.size;
 RETURN MyList;

C) Write (Java-like) pseudo-code combining A) and B) to perform
merge sort of the elements of such a list.  
** Make sure the asymptotic running time remains O(n log n). **

 MERGESORT(MyList)
 IF MyList.size ≤ 1 THEN RETURN MyList;
 [L,R] = BREAK(MyList);
 RETURN MERGE(MERGESORT(L),MERGESORT(R));

 Assume any object contains a (boolean valued) method named Bigger to *

compare it with another object of the same type. For instance, in the above
example I can compare the blue-triangle with the green-pentagon using 
 
 MyList.head.element.Bigger(MyList.head.next.element).

