Computer Science 308-250B
 Midterm, Feb 20, 2004, 13:30-14:30. OPEN•BOOKS \%OPEN•NOTES

1) Show the following (and justify your steps)
a) $\mathrm{n}^{\log \mathrm{n}}$ is $\mathrm{O}\left(\mathrm{n}^{\sqrt{ } / \mathrm{n}}\right)$.
b) for any positive constant a we have, n ! is $\Omega\left(\mathrm{a}^{\mathrm{n}}\right)$.
2)

(a) Solve the following recurrence $\mathrm{T}(\mathrm{n})$ and express your answer using Big- -

(b) Let \mathbf{A} and \mathbf{B} be algorithms solving the same problem and let $\mathbf{T}_{\mathbf{A}}(\mathbf{n})$ and $\mathbf{T}_{\mathbf{B}}(\mathbf{n})$ be the worst case running times of \mathbf{A} and \mathbf{B} on inputs of size \mathbf{n}. Consider a situation in which $T_{A}(n)$ is $\Theta\left(n^{2}\right)$, while $T_{B}(n)$ is $\Theta\left(n^{3}\right)$.

Enumerate 3 distinct cases where algorithm \mathbf{B} may still be better than algorithm \mathbf{A}.
3) Consider the following algorithms for computing the Greatest Common Divisor (GCD) of two integers a, b.
\square

```
GCD (a,b)
```

IF $\mathrm{a}=0$ THEN RETURN b
ELSE RETURN GCD ($(b \bmod a), a) \square$
(a) Write an iterative version of this algorithm.
(b) Prove by mathematical induction that for all $\mathbf{a}, \mathbf{b} \geq \mathbf{0}$ this algorithm always terminates. Suggestion: prove by induction on \mathbf{a} that for all $\mathbf{b} \geq \mathbf{0}$ this algorithm always terminates.

