Winter 2016

COMP-250: Introduction

to Computer Science
Lecture 26,April 14,2016

REVIEWV SESSION

AYAVALI N B VIV - — NWWVITIM VAW 11 el I IV Wy MM i Al A N L L A LRl oL o e s “A RIvVE "rw wvmave LV b e 4 V4
COMP 250 001 Intro to Computer Science Apr28 2 pm Crepeau AAA ZZZ GYM FIELD HOUSE = 18-30
WANIIVETL IS -~ — WVITIM VAW W 11 el T IV Wy MM i AN AN N LA Tl U TN S s AT IvE Tver ese e = aave ~ T T~
COMP 250 001 Intro to Computer Science Apr28 2 pm Crepeau AAA ZZZ GYM FIELD HOUSE 18-30
WANIIVEE S \IT - — NWVITIM VAW 11 el I IV W MM e WO MR A mraw e s “A RIvVE "rw W mave LV b e W
COMP 250 001 Intro to Computer Science Apr28 2 pm Crepeau AAA - 7277 GYM FIELD HOUSE = 18-30
WANIIVEE SIS - — NWWVITIM VAW 11 el I IV Wy MM i Al A N L L A LRl oL o e s “A RIvVE "rw wvmave LV b e 4 V4
COMP 250 001 Intro to Computer Science Apr28 2 pm Crepeau AAA ZZZ GYM FIELD HOUSE = 18-30
WANIIVETL IS -~ — WVITIM VAW W 11 el T IV Wy MM i AN AN N LA Tl U TN S s AT IvE Tver ese e = aave ~ T T~
COMP 250 001 Intro to Computer Science Apr28 2 pm Crepeau AAA ZZZ GYM FIELD HOUSE 18-30
WANIIVEE S \IT - — NWVITIM VAW 11 el I IV W MM e WO MR A mraw e s “A RIvVE "rw W mave LV b e W
COMP 250 001 Intro to Computer Science Apr28 2 pm Crepeau AAA - 7277 GYM FIELD HOUSE = 18-30

This is a multiple choices exam. For each question, only one answer can be provided.
Answer the questions on the multiple choice page, using a LEAD PENCIL.

You have 180 minutes to write the exam.

This exam is worth 50% of your total mark.

ALL DOCUMENTATION IS PERMITTED including books, notes and printed slides.
No electronic devices are allowed.

If you believe that none of choices provided for a given question are correct, provide the
answer that is the closest to being correct.

This exam contains 40 questions on 16 pages.
This examination is printed on both sides of the paper.

THIS EXAMINATION PAPER MUST BE RETURNED.

The Examination Security Monitor Program detects pairs of students with unusually similar
answer patterns on multiple-choice exams. Data generated by this program can be used as
admissible evidence, either to initiate or corroborate an investigation or a charge of cheating
under Section 16 of the Code of Student Conduct and Disciplinary Procedures.

e This 1s a multiple choices exam. For each question, only one ans an be provided.

e Answer the questions on the multiple choice page, using
e You have 180 minutes to write the exam.
e This exam 1s worth 50% of your total mark.

ALL S PERMITTED includi

e If you

of choices provided for a given question are correct, provide the
answer that 1s the closes i

e This exam cont

e This examination is pri € paper.

e The Examination Security Monitor Program detects pairs of students with unusually similar
answer patterns on multiple-choice exams. Data generated by this program can be used as
admissible evidence, either to initiate or corroborate an investigation or a charge of cheating
under Section 16 of the Code of Student Conduct and Disciplinary Procedures.

Winter 2016

COMP-250: Introduction

to Computer Science
Lectures |-26, January-April, 2016

Algorithms

® Informal definition

An algorithm is the specification of a
sequence of instructions to be carried out by
a processor.

* Algorithms can be run on a computer, but they
don’ t have to:

— Mayas had algorithms to predict solar eclipses centuries
in advance

— Egyptians had algorithms to build pyramids

— Indians had algorithms for factorizing polynomaials

— Greeks had algorithms to build all kinds of geometric
construction using only a compass and straight lines.

Music SCORE

The blessed son of God

6

lei

cy, have mer --
Lord__ have mer

have mer

son. Ky - ri -e -
cy,

'~
=
]
v
1
[
. ,
VMJ

Lord_

mer

Lord_ have

-r-m

Assembly Instruction

Computer Program

wold wlcmyllchlemmmlint mtgran | = M OHEGP1HLOEIN],
Int wm_pn_tuist L OBESHI0LINIST],
Int wyllctie_en_mmH SULALE] SAEGP]]
w

wigrapH OESH], tep_stgras [OESN];
tajet_pv[2], tep_aeR];
wlichis, wm, mtgre, tejet;

for Cayllctie = B; wyllchle < LSALALE; wyllchie]
i

17 (gl Ictiln — SALALE JRALID] || Gyl ichie — SALALE HOE)]
i

wjmm | Clmminglu_bu|st (ayllchin]]
i

tulat - wychiu_to_bu]et (uyllchie];
for Gum = B; wm < HLOPESH; we]

migrap(nm] - (e tejst qe]lteie] — teje];
]

1

@ C program [essee

temp o8] - sy pn tujst (mu]kelet_oe[8]];
temp_pre[]] = mu_pn puist (mu]kelet_oe[1]];
| mon_ip_ymcuerce ¢ wp_gre, 2]
It (Gmp_pre(B] — tust_ow(B]] 02
Gup_pre[]] — tajwt_av([1]]]
ntgap(am] - 3;
ulm-

ntgap(ws] - 8;
]
]
for (mtgre - B; mige ¢ LOMEIGP; stge-]
]

for (mm = B; mm < HLOPESM; wyeer]
tep_mtgrap(ne] - (atgrop(ye] L2 stgroan | (s (wtge]ae]];

wyl ot lm_pn sy [wy (o 1e] [mtgre] = shichtgron G ep_stgrap,

migran_ (=t];
11 Ouyl Ictlm_sn sy [wy| (o] [mtgre] < B)

<]t _p_rvon_smcge (oojc_my| chie_pn_mm : migrap mt fond'];

-
It talat_pnwylichislint twist, [t wyllchis]
-

ion method

ight around 1503 about calculat

F

-

CD / DVD
/ Blu-ray

Flat Screens

Smart phones E

" —

MP3 players

U S B connectivity

MacRumons

Electronic Tablets scanner

L2727

=
O
Y
Y
O
>
O
—

PORNRANNN00000 0000000000

B BV Y Y Y T I L /O O Y T B Y R R

Computer Science

@ Computer Science is the study of algorithms
for computing machines.

@ (Formal) Definition of an Algorithm

A well-ordered collection of unambiguous
effectively computable operations that when

executed produces a result and halts in a
finite amount of time.

| > |1 | o o | | o o |] [

Winter 2016

COMP-250: Introduction

to Computer Science
Lecture 2, January 14,2016

S EEEEEEE EEEEEEEEEE6 |8

Grade School Algorithms

Representation quite inefficient
"+" easy to describe

BAROOOOO0O00000O0eO0O0000000CoCe e

Grade School Algorithms

LR

Representation quite inefficient
"X" easy to describe

P iEEEEEEEEE SEEEbEEEE6ES =

Grade School Algorithms

Algorithm 1 Addition (base 10): Add two N digit numbers a and b which are represented as
arrays of digits

P iEEEEEEEEE SEEEbEEEE6ES =

Grade School Algorithms

Algorithm 1 Addition (base 10): Add two N digit numbers a and b which are represented as
arrays of digits

0001

2343

+ 4519
6862

| > |1 | o o | | o o |] [

Grade School Algorithms

Algorithm 1 Addition (base 10): Add two N digit numbers a and b which are represented as
arrays of digits

carry < 0

fori <— 0 to N—1 do
rlil<—R|ali],b|i],carry]
carry<—L|alil,bli],carry]

end for

r|N|«—carry

P iEEEEEEEEE SEEEbEEEE6ES =

Grade School Algorithms

Algorithm 1 Addition (base 10): Add two N digit numbers a and b which are represented as
arrays of digits

carry = 0
for:=0to N —1 do

rli] < (ali] + bli] + carry) 7% 10
carry < (ali| + bli| + carry)/10
end for

r|N| < carry

S EEEEEE EeEEEEE6EEN =

Grade School Algorithms

Algorithm 1 Addition (base l) Add two N -numbers a and b which are represented as

arrays of
+ E

D|=(A+B+C) % P

S EEEEEE EeEEEEE6EEN =

Grade School Algorithms

Algorithm 1 Addition (base l) Add two -numbers a and b which are represented as
arrays of

carry = 0
fori.=0to N -1 do
rli| < (ali] + bli] 4+ carry) %
carry < (at] + bli| + carry)/
end for
r|N| < carry

BERCOO00000000OROO00000000OOmO
Subtraction

1
f/
3
’
3 /
5
5 6
7
8 10 11 12 13 14 15 16
8 9 10 11 12 13 14 15 16 17
9 10 11 12 13 14 15 16 17 18

P iEEEEEEEEE SEEEbEEEE6ES =

Grade School Algorithms

3 5 7 8 9 10 11 12

5 7 8 9 10 11 12 13
5 7 8 9 10 11 12 13 14
8 9 10 11 12 13 14 15 16 17
9 10 11 12 13 14 15 16 17 18

BAROOOOO0O00000O0eO0O0000000CoCe e

Grade School Algorithms

Algorithm 2 Multiplication (base 10) of two numbers a and b

Nome:

12 15 |18 |21 24 27

16 20 24|28 |32 |38

20 | 25 30|35 40|45

24 30 |36 | 42 | 48 | 54

28 35 42|49 | 56|43

32|40 |48 | 56 |44 |72

|00 | 0|0 0|0 |0 | O | O H=
0V NS W N

36 45 | 54 |63 |72 |81

Super Taocher Worksheats - waw supertecchervorkshes s com

| > |1 | o o | | o o |] [

Grade School Algorithms

Algorithm 2 Multiplication (base 10) of two numbers a and b
for j=0to N —1do
carry < 0
fori:=0to N —1do

prod < (ali] * blj] + carry) Cl[l] 352
tmpljlli + j] < prod%10

carry < prod/10 b[]] x S61

end for T
tmpljl[N + j| - carry
end for 14:08

carry < 0
fort:=0to2x N —1do
sum <— carry
for j=0to N —1do

sum <— sum + tmpl|j]|i]
end for
r(i] <+ sum%10
carry < sum/10
end for
r(2 % N| < carry

EBEO0O000000008000000000C0C0 MO
Multiplication

for 7=0to N —1do
carry <— 0
fori.=0to N —1do
prod < (ali] * b[j] + carry)
tmp|jl|t + 7] < prod710
carry <— prod/10
end for
tmp|j||N + j] ¢ carry
end for

EBEO0O000000008000000000C0C0 MO
Multiplication

carry <— 0
for:=0to2x N —1do

SUM <— carry
for 7 =0to N —1do

sum <— sum + tmpl7j]|1]
end for
rli] < sum%10
carry < sum/10
end for

r|2 x N| < carry

EECO0000000O0MO000000000C0MO
Multiplication

Algorithm 2 Multiplication (base.) of two numbers a and b
for j=0to N —1do
carry < 0
fori:=0to N -1do
prod < (ali] * b[j] + carry)

tmplj]li + J] p'rod%. carry < 0
carry<—pr0d/. fori=0to2x N —1do
end for sum <— carry
tmplj]|N + j] < carry for j=0to N —1do
end for sum <— sum + tmp|j||¢]
end for

rli] < sum%
carry < sum/
end for
r(2 x N| < carry

EEC00000000O0RO0000000000MO
Long Division

Nome:

—(Multiplicaﬁon Table

o | O =

123 41672542996

n b | w|N
-
N
-
o~
n
© |
N
K
N
®
w
N
w
o

CIESCISICIEE:

0 | ® | N o
a=d
o
N
N
w
N
B
o
Y
[
(4
o
o~
Y
~
N

Super Taochar Worksheats - waw, supertecchervorkshes s com

P iEEEEEEEEE SEEEbEEEE6ES =

Grade School Algorithms

Nome:

—(Multiplicaiion Table

123 41672542996

o
-
N
-l
@

o|lcojojlo|joj0o|oco|(o0 o

~0
-
(=]
N
~N

Super Teocher Worksheats - waw supertecchervorkshee s com

| > |1 | o o | | o o |] [

Grade School Algorithms

57638372
723 | 50
41672542996 / 723 = 57638372
41672542996 % 723 = 50

| EEEEEEEEE SEEEbEEEEEE =

Analysis of Addition

cst {carry =
forZ—OtoN—l do
linear cst{ « (alt] + bli] + carry) % 10
carry < (ali] + bli] 4+ carry)/10
end for
cst {r[N] < carry

Time (N) = c1 + c»%XN

| EEEEEEEEE SEEEbEEEEEE =

Analysis of Multiplication

quadratic
linear

end for

end for

for 7=0to N —1do
cst{carry < 0

forz—OtoN—ldo
prod <—
{tmp
carry <— p’rod /10

x b|j| + carry)
| < prod%10

cst {tmpl|j||N + j| + carry

ERROO0000000RO000000000CMEO
Analysis of Multiplication

cst carry <— 0
fori.=0to2x /N —1 do

cst{ sum < carry

for 7 =0to N —1do
{ cst{ sum < sum + tmpl|j][i]
' end for
rli] « sum%10
carry < sum/10

end for
r|2x N| < carry

quadratic

cst

| EEEEEEEEE SEEEbEEEEEE =

Analysis of Algorithms

Algorithm 2 Multiplication (base 10) of two numbers a and b
for j=0to N —1do
carry < 0
fori=0to N —1do
prod < (ali] * b[j] + carry)

tmpljlli + j] + prod%10 carry < 0
carry < prod/10 fori=0to2x N —1do
end for sum <— carry
tmplj]|N + j] < carry for j =0to N —1do
end for sum <— sum + tmp|j||¢]
end for

r(i] < sum%]10
carry < sum/10
end for
r(2 x N| < carry

Time (N) = c1 + Cco2XN + Cc3%XN4

| EEEEEEEEE SEEEbEEEEEE =

Analysis of Algorithms
Addition

Time (N) = c1 + C»XN

Multiplication

Time (N) = c1 + Cco2XN + Cc3%XN4

| EEEEEEEEE SEEEbEEEEEE =

Analysis of Algorithms
Addition

Time (N) 1s O (N)

Multiplication

Time (N) is O (N¢)

ERBO0O0000000RO000000000008O
Analysis of Algorithms

<2000

Unary
. Iﬁ'sn e Representation

Multiplication

Decimal/binary
Representation

- Addition

| EEEEEEEEE EEEEEEsaEEE 8

Analysis of Algorithms

e Multiplication
Multiplication
______________________ ,m Mult ! P| ication
Multiplication
______________________ 1 M u Itl PI Icatl on

Addition

EERNO000000O0MO0O0O0O0O0000000ORO
Base 8 vs Base 2

(2143)3

=(?7?277)

EEBOODO000000O0EO000O00O00000O0RO
Base 8 vs Base 2

(2143)s

NN

=(010 001 100 101)o
=(10001100101)>

EEBOODO000000O0EO000O00O00000O0RO
Powers of 2 in Base |0

20=1 21=2 22=4

23=8 24=16 2°=32
25=64 2'=128 28=256
2°=512 210=1024 211=2048
212=4096 2'3=8192 214=16384
21°=32768 21°=65536

232 = 4 294 967 296

EEBOODO000000O0EO000O00O00000O0RO
Powers of |10 in Base 2

10°=1

101=1010
104=1100110
105=1111101000 =210
104=10011100010000

ERRCO0O000000OmO00000000O0OmO
to Base 2

Algorithm 3 Convert integer to binary

INPUT: a number m
OUTPUT: the number m expressed in base 2 using a bit array b| |
1 < 0
while m > 0 do
bli] <+ m%2
m < m/2
141+ 1
end while

EEEOO0000000O0ROO00000000O00ONO
to Base B

Algorithm 3 Convert integer to binary

INPUT: a number m
OUTPUT: the number m expressed in base.using a bit array b| |
1< 0
while m > 0 do
bli] < m%
m <— m
11+ 1
end while

ERERO000000mOO0000000000Omc
Fractional Numbers

26.375
=(11010.) 2
0.375
=1/4+1/8
=(0.011)2

26.375
=(11010.011),

| | EEEEEEEE SEEEbEEEEEE
More Binary

Representation

00000011

01111110 00000010
01111111 00000001
10000000 00000000
10000001 11111111
10000010 11111110
unsigned signed

126 126
127 127

128 ~128
129 — 127

130 — 126

| | | I [| o o | | o o |][

Representation

binary signed unsigned
00000000 0 0
00000001 1 1
01111111 127 127
10000000 -128 128

10000001 -127 129

11111111 -1 200

| | | I [| o o | | o o |][

binary I signed unsigned

0000000000000000 0 0
0000000000000001 1 1
0000000001111111 127 127
0000000010000000 128 128
0000000010000001 129 129
0111111111111111 215 1 215 1
1000000000000000 —915 215
1000000000000001 —2 41 215 + 1
111101111111 -129 216 _ 199
1111111110000000 -128 216 _ 198
111110000001 -127 216 _ 197
1111111111111111 -1 216 _ 1

| | |EEEEEEEE EEEEEEEEEE6E |8

A Byte

10100110

00010110
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

A Byte

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
10100110
00000000
00000000
00000000
00000000
00000000
00000000

| | | I [| o o | | o o |][

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00010110

0000000C
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
10100110
00000000
00000000
00000000
00000000
00000000
00000000

| | | I [| o o | | o o |][

An address

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

| | | I [| o o | | o o |][

A (32-bit) address
100000000{00000000'00000000(00010110

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

0000000080 0000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

0000000
1000000
00000
10100110
00000000
00000000
00000000
00000000
00000000
00000000

v

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

| | | I [| o o | | o o |][

A (64-bit) address

00000000i00000000 00000000
00000000j00000000 00OOOOOOO

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

0000000
1000000
00000
10100110
00000000
00000000
00000000
00000000
00000000
00000000

v

00010110
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00010110

BEEERCCC0O00O00O000O0RO0000000 000 e
Java Primitive Types

Boolean [0000BBOBI 00000000 00000000 00000000
Byte LY 00000000 00000000 00000000
Char 00000000 00000000 00000000 00000000

short [00000000 GG 00000000 00000000
1. LI 00000000({00000000{00000000(00000000

Long 00000000 10100110 00000000 000OOOOQOO
00000000 00000000 00000000 0OOOOOOOO

| | | I [| o o | | o o |][

(32-bit) addresses
00000000 00000000
00101010

100000000{00000000 00000000(00101010
00000000 000000 0000000 00000000
00000000 000000 000000 00000000
00000000 0000000 10100110 00000000
00000000 0000000§800000000 00000000
00000000 00000000§R0000000 00000000
00000000 00000000 WH00000 00000000
00000000 00000000 EYO00000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

)| | [| | e | | | [
Java Reference Types

Address 00000000 10100110 000O0OOOOO 0OOOOGOOOO
00000000 00000000 0000O0O0O0O0O 0OOOOOOOO

64-Bit

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

byte[] a;

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

| | | I [| o o | | o o |][

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

| | | I [| o o | | o o |][

a=new byte[3];
a: 00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
10000000

0000000
000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

| | | I [| o o | | o o |][

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

a[0]=166;

-84 00000000{00000000 00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

10000000

0000000
000000
10100110
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

| | | I [| o o | | o o |][

a:
b:

int|

00000000j00000000

00000000({00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

] b;

00000000
00000000

000000
10100110
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000

| | | I [| o o | | o o |][

b=new int[2];
00000000 00000000
00000000 00101010

a:
38 00000000(00000000 00000000|00101010
00000000
00000000
10100110 00000000
00000000 0000OO0O0O

10000000 00000000

00000000
00000000
00000000
00000000 0000000¢
00000000 00000000
00000000 00000000 ®0O0O00000 00000000

00000000 00000000 000000 00000000
00000000 00000000 00OOOCOO0O0O OOOOOOOO

00000000 00000000 (00000000 00000000
100000000 00000000 00000000 00000000

| | EEEEEEEE (66666 EE =

bl |]=-1;
00000000 00000000
00000000

a.

38 00000000(00000000 00000000|00101010
00000000
00000000
10100110 00000000
00000000 0000OO0O0O

10000000 00000000

00101010

00000000
00000000
00000000
00000000 0000000¢
00000000 00000000
00000000 00000000 ®0O0O00000 00000000

00000000 00000000 000000 00000000
00000000 00000000 00OOOCOO0O0O OOOOOOOO

00000000 00000000 11111111 11111111
11111111 11111111 00000000 00000000

EEEEBECOOO00000RO000000000CMEO
Sorting

ALGORITHM: INSERTION SORT
INPUT: an array a| | with IV elements that can be compared (<,=,>)
OUTPUT: the array a| | containing the same elements, in increasing order

fork=1to N —1do
tmp < alk]
1<k
while (i > 0) & (tmp < alt — 1]) do
alt] < alt — 1]
i14—-2—1
end while
ali| = tmp
end for

http://tech-algorithm.com/articles/insertion-sort

EEEERCOCOO00008OO00000000C0C0MC
Analysis of Insertion Sort

ALGORITHM: INSERTION SORT
INPUT: an array a| | with IV elements that can be compared (<,=,>)
OUTPUT: the array a| | containing the same elements, in increasing order

for k=1to N —1do 9
tmp < alk] +
©

1< k } cst %.
while (¢ > 0) & (tmp < ali — 1]) do @
ali] < ali — 1] } cst cst~linear o
i5—t=1 d
end while 8
ali] =tmp } cst c
end for :ll

EEEERCOCOO00008OO00000000C0C0MC
Analysis of Insertion Sort

ALGORITHM: INSERTION SORT
INPUT: an array a| | with IV elements that can be compared (<,=,>)
OUTPUT: the array a| | containing the same elements, in increasing order

fork=1to N —-1do
tmp < alk] } cst
1< k
while (2 > 0) & (tmp < ali — 1))
ali] < ali — 1] } cst }
i4=2—1
end while
ali| = tmp
end for

Time (N) 2 ci; + coxXN

linear

EEEERCOCOO00008OO00000000C0C0MC
Analysis of Insertion Sort

ALGORITHM: INSERTION SORT
INPUT: an array a| | with IV elements that can be compared (<,=,>)
OUTPUT: the array a| | containing the same elements, in increasing order

for k=1to N —1do

tmp < alk
i — k & } cst 9
while (i > 0) & (tmp < ali — 1)) p
oli] - ali — 1 }cst 4
i4t—1 ©
end while g-.
ali| = tmp
end for

Time (N) £ c1 + c>XN + c3xN?

| | |] s |] o o | | o o] [

Analysis of Algorithms

Best Case

Time (N) is £ (N)

Worst Case

Time (N) is O (N¢)

EEEEEOCO00000O00000000000MO
Linked Lists

List = ordered set of elements.

(ao PX- 5 aSize—l)

Size = number of elements.

| | |] s |] o o | | o o] [
Array of integers:

O 1 2 3 4 5 6 7
[51219131311/7101

Array of shapes:

O 1 2 3 4 5 6 7

z/ﬂ [L\Q\

EEEERCOCOO00008OO00000000C0C0MC
Adding element to Front

// add new element to front of the list
// assuming that there is room left in the array

//
for (i = size; i > 0; i--)
ali]l = al[i-1]
al0] = new element
size size + 1

| | |] s |] o o | | o o] [

Removing element at Front

// remove the element at front of the list

//
for (i = 1; i < size-1; i++)
ali-1] = alil
alsize-1] = null
size = size - 1

| | |] s |] o o | | o o] [

Adding/Removing at End

// add new last element to the list
// assuming that there is room left in the array

//

alsize] = new element
size size + 1

// remove the last element from the list

//
alsize-1] = null
size = size - 1

| | |] s |] o o | | o o] [
Array of shapes

2 3 4 5 6 7
ﬂf] ,\Ew&,ﬁl

Linked list of shapes.

® &

Size=5

) | | |- [| | | |) [
(Singly) Linked List Node

class SNodeq
Type element;

SNode next;

| | |] s |] o o | | o o] [

class SLinkedList{

SNode head;
SNode tail;
integer size;

HEERRBRCOCO0O0000mO0000000000Cmcl
class SLinkedList{

SNode head;
SNode tall;
integer size;

¥

R — E—

head tail size

4 AVES

EERROES 55&!9@%!@!’........

newNode.next = head;
head = newNode;
size = size + 1;

newNode

L — R

head tail size

EREERAOOOCOOCORCO00O000000C0E0

tmp = head;

head = head.next;
tmp.next = null;
size = size - 1;

“ } head tail size

0

llllla%&!ls IHEMOICPGH!IIIIIIII

talil.next = newNode; __ ...
tail tall.next;
size size + 1;

}

L — R

head tail size

.,6
]]

@ A

EEEEBE.__ . . ¢§ OO0O0OmO

if (head == tail){

head = null;
tall = null;
size = 0;
}
elseq
tmp = head;

while (tmp.next != tail){
tmp = tmp.next;

¥

tmp.next = null,;
tail = tmp;

slize = size - 1;

|]| | EEEEEEE ESEEEEEEEES6E |8

removelLast ()4
if (head == tail){

head = null;
talil = null;
size = 0O;

head tail size

X X 0
[4

EEREREENEN ... N OOOCOOC e

tmp = head;
while (tmp.next != tail){
tmp = tmp.next,

}

tmp.next = null;
tail = tmp;

size = size - 1;

head tail size

Java Generics
class SNode<E>{

E element
SNode<E> next
}
class SLinkedList<E>{
SNode<E> head;
SNode<E> tail;
int slze;

}

R —

T

element next

Java Generics
class SNode<E>{

E element
SNode<E> next
}
class SLinkedList<E>{
SNode<E> head;
SNode<E> tail;
int slze;

}

SLinkedList<Shape> shapelist = new SLinkedList<Shape>();
SLinkedList<Student> studentlist = new SLinkedList<Student>();

Java Generics
class DNode<E>{

E element;
DNode<E> next;
DNode<E> prev,

}

class DLinkedList<E>{
DNode<E> head;
DNode<E> tall;
int slze;

¥

DLinkedList<Shape> shapelist = new DLinkedList<Shape>();
DLinkedList<Student> studentlist = new DLinkedList<Student>();

) | |] || | | [|) [
(Doubly) Linked List Node

class DNode<E>{

E element;
DNode<E> next;

DNode<E> prev;

}

L — e ————

element next prev
—

class DLinkedList<E>{

DNode<E> head;

DNode<E> tall;

int slze;
}

head tail size

4 ’4
r_ 7 r
_—

A

NN R B R etNode (1)1 OOOCOOC e

if (i < size/2){
tmp = head
index = 0
while (index < i){
tmp = tmp.next
index++

}

head tail size

EEEEERBEEE csef HEEEEE |8

tmp = tail

index = size - 1

while (index > i){
tmp = tmp.prev
index—-

}

return tmp

R

head tail size

remove (node ;!

node.prev.next = node.next;
node.next.prev = node.prev,
size = size-1;

node

= head tail size

. A NI

&

&

A

EEERERn OG0 e&!&&;lllllllll

DNode<E> dummyHead;
DNode<E> dummyTail;
1nt size;

¥

dummy dummy
Head Tail size

X |) | X X
[4
IEIN| T o REE,
~ 7

A

IIIIIHIIPIII HEEEEEEEEEE =
remove(node
node.prev.next = node.next;
node.next.prev = node.prev,
size = size-1;
¥
node
= head tail size

TR IR,

&

A

| |]| | |(EEEEEE S =
Array vs Linked List

addFirst
removekFirst
addLast
removelast
getNode (i)

=, ==

singly
linked list

H =2 = = =

doubly
linked list

= =

1
min(i, N/2 - i)

EEEEEACOO0000E00000000000MO
Linked List operations

add(i,element) //

//
//

set(i,element) //

Inserts element into the 1-th position

(and increments the indices of elements that were
previously at index i or up)

Replaces the element in the i-th position

remove (i) // Removes the i-th element from list

get (i) // Returns the i-th element (but doesn’t alter list)

clear () // Empties list.

isEmpty () // Returns true if empty, false if not empty.

size() // Returns number of elements in the list
LinkedList<Student>

studentlList = new LinkedList<Student>();

IIIIIHIIrIIE. OO OO00O0000C0MC]
ava LinkedList

® implemented as doubly linked list
(with dummies)
® Node class is private

dummy dummy
Head Tail size

EEEEERNOO000RO000000000CMC
Java LinkedList

LinkedL1ist

add (element) 1
add (i,element) n
set (i,element) n |
remove (i) n expensive
get (i) n
clear () 1
isEmpty () 1
size() 1

AAezd

ERAE] N PP S KA N P

EEEEERNOO000RO000000000CMC
Java LinkedList

for (j = 1; j < n; j++)
print (studentList.get(j))

Time (n) is 2 (n?%)

BOOOCO0O0000 00 M
rrayList

EEEERAEE
ava

® implementation using arrays of
growing sizes
® cannot access using afi] notation

array size cap.

add (element)

add (i,element)
set(i,element)
remove (1)

get (i)

clear ()
isEmpty ()
size()

S— - —

) | |] || | | [|) [
LinkedList vs ArrayList

LinkedList ArrayList
add (element) 1 1

add(i,element) n n
set (i,element)
remove (i) n n
get (1)
clear() 1 1
isEmpty () 1 1
size () 1 1

1] 1]] | (ST] Y = = =] [

ADTs

® An Abstract Data Type is an abstraction of a
data structure: no coding is involved.

® The ADT specifies:
- what can be stored in it
- what operations can be done on/by it.

® There are lots of formalized and
standardized ADTs (in Java).

1] 1]] | (ST] Y = = =] [

ADTs

® For example, if we are going to model a bag
of marbles as an ADT, we could specify that

- this ADT stores marbles
- this ADT supports putting in a marble and

getting out a marble.

® |n this course we are going to learn a lot of
different standard ADTs. (stacks, queues,

trees...)

® (A bag of marbles is not one of them.)

EREERRRRD00O0ORO000000000CmO
Stack

® A stack is a container of objects that are
inserted and removed according to the
last-in-first-out (LIFO) principle.

® Objects can be inserted at any time, but
only the last (the most-recently inserted)
object can be removed.

® |nserting an item is known as “pushing”
onto the stack.

® “Popping” off the stack is synonymous with
removing an item.

EREERRRRD00O0ORO000000000CmO
Stack

® A stack isan ADT that supports two main methods:
- push(0): Inserts object o onto top of stack

- pop(): Removes the top object of stack and returns it;
if the stack is empty then an error occurs.

® The following support methods should also be
defined:
- size(): returns the number of objects in stack
- isEmpty(): returns a boolean indicating if stack is empty.

- top(): returns the top object of the stack, without
removing it; if the stack is empty then an error occurs.

EEEEEROCO00ONO00000000008O
mesn® EXamples:

push(6)
push (4)
push(1)
pop ()
push (5)
pop ()
pop ()

1 5
4 4 4 4 4
6 6 6 6 6 6 6
3 3 3 3 3 3 3 3

EEEEENROOO000RO000000000CMEO
Examples:

3+ (4 -x)x7+ (y-2x% (2 +x)).

EEEEENROOO000RO000000000CMEO
Examples:

cCitl)y)y [l 0]}

e — e EEEEEE——

N

| ~~

| '~ ~~ ™
7~
~

EEEEEERCOO000RO00O00000000C08O
Examples:

3+ (4 -1)*7 + (6 -2 * (2 + 3))

HEEERRRRC1C00mCO00000000000mc
+ +

(

* % * * %

(¢ ¢ C C C C ¢ o
+ + + + + + + + + + + + +

3+ (4-1)*%7+ (6 - 2
3

2 2 2

2 2 2 2 2 2

6 6 6 6 6 6 6 6

=
N
=
N
1N
N
=
N
=
N

24 24 24 24 24 2

EEEEERRCOOO000NO000000000CEC
Processing arithmetics

t=gettoken ()

while type(t)#eol do
if type (t)=number then
if type(t)=operator then
if t=" (" then
if t=")" then
t=gettoken ()

while not isemptyO() do
op=popO ()
arg2=popaA ()
argl=popA ()
pushA (exec (argl,op,argl))
return popA()

L e—— e

EEEEERRCOOO000NO000000000CEC
Processing arithmetics

i1f type (t)=number then pushA(t)

if type(t)=operator then
if prio(t)<prio(topO())
then op=popoO ()
arg2=popA ()
argl=popA ()
pushA (exec (argl,op,arg2))
pushO (t)

EEEEERRCOOO000NO000000000CEC
Processing arithmetics

if t=" (" then pushO(t)

if £=")" then
op=popO ()
while op#" (" do
arg2=popA ()
argl=popA)
pushA (exec (argl,op,arg2))
op=popO ()

1] 1]] | (ST] Y 6 = =] [

t=gettoken ()
while type(t)#eol do
if type (t)=number then pushA(t)
if type(t)=operator then
if prio(t)<prio(topO())
then op=popO()
arg2=popA ()
argl=popA ()
pushA (exec (argl,op,arg2))
pushO (t)
if t=" (" then pushO(t)
if t=")" then
op=popO ()
while op#" (" do
arg2=popA ()
argl=popA ()
pushA (exec (argl,op,arg2))
op=popO ()
t=gettoken ()
while not isemptyO() do
op=popO ()
arg2=popaA ()
argl=popA()
pushA (exec (argl,op,arg2))
return popA ()

HF SUg
Graphing Calculator

4. lLr H h [[H'Jb
[F*i

CMD UNDO PRG CHARS MIRW EQW MTH ‘:--

HISTM EVALN ' O SYMBP

COS T

X X 1/XY
v EXP&IN FANANCE

8 9

EEEEERRCOOO000NO000000000CEC
Examples:

3+ (4 -1)x7 + (6 -2 * (2 + 3))

341-7%*+622 3+ * -+

3
2 2 5
1 7 2 2 2 210
4 4 3 321 6 6 6 6 6 6 -4
3 3 3 3 3 3242424242424242420

Stacks in the Java Virtual - N
Machine main() 1
int i=5;
e Each process running in a Java program has its own .
Java Method Stack. i cool i) Y
e Each time a method is called, it 1s pushed onto the y
stack.) '
e The choice of a stack for this operation allows Java
to do several useful things: cool(int j) {
- Perform recursive method calls . k_J7_
- Print stack traces to locate an error " .
216 fool(k); Y
cool: :
PC =216 }
g
k=7 320 fool(int m) {
main:) ’
PC =14
=5 b /
Java Program

Java Stack

e The code for our new algorithm:

Algorithm computeSpan2(P):
Input. An n-element array P of numbers representing
stock prices
Output. An n-element array S of numbers such that
S[i] 1s the span of the stock on day i
Let D be an empty stack
fori<—Oton—1do
done < false
while not(D.isEmpty() or done) do
if P[i] = P[D.top()] then
D.pop() ---
else
done < true
if D.isEmpty() then -
h < -1
else
h < D.top()
Slil «<—i—nh
D.push(i)
return §

Queue ADT

HEREEREERR[1000mO000000000000 8]
Queue

® A queue differs from a stack in that its
insertion and removal routines follows the

first-in-first-out (FIFO) principle.

® Elements may be inserted at any time, but
only the element which has been in the
queue the longest may be removed.

® Elements are inserted at the rear
(enqueued) and removed from the front

(dequeued).

HEREEREERR[1000mO000000000000 8]
Queue

® The queue has two fundamental methods:
- enqueue(o): Inserts object o at rear of the queue
- dequeue(): Removes object from front of queue
and returns it; an error occurs if queue is empty.

® These support methods should also be defined:
- size(): Returns number of objects in the queue
- isEmpty(): Returns a boolean value that indicates
whether the queue is empty
- front(): Returns, but not remove, the front object
in the queue; an error occurs if queue is empty.

012345688 head size

OPERATION

0 0
add(a) a 0 1
add (b) ab 0 2
remove () b 1 1
add(c) bc 1 2
add (d) bcd 1 3
add(e) bcde 1 4
remove () cde 2 3
add (f) cdef 2 4
remove () def 3 3
add(g) defg 3 4

e e | T i
removeFirs addLast (newNode){
tmp = head; Q u eu e as tail.next = newNode;

head = head.next; tail = tail.next;
tmp.next = null;

. . o size = size + 1;
size = size - 1; I ISt }
}

| — T

head tail size

4 4 Es

AL

)] 1]] s |] | | | [
Queue as Array

Array of shapes: ..., .

m,_.!}, 0 1 2 3 4 5 6 7

ll; | 4 1 4 1 4 1 4 I&I&Ix]
VK L\

Size=5

)] 1]] s |] | | | [
Queue as Array

o
Iy f@’?j e R
O (H) 2 3 4 (T) 6 7

I r [7 ’\/’kgi

head=1, tail=5, (size=5)

)] 1]] s |] | | | [
Queue as Array

ﬁﬁf' 'p\\
0 ® A

head=3, tail=2, (size=8)

)] 1]] s |] | | | [
Queue as Array

enqueue(element){ // array implementation
if (size == length)
increase length of array // *xx SEE BELOW *x

al[(head + size) % length] = element
size = size + 1

dequeue () {

out = al[head]

head = (head + 1) % length
size = size - 1

return out

}

v— —*—

)] 1]] s |] | | | [
Queue as Array

// copy the length elements to a new bigger array
create a bigger array

for 1 = 0 to small.length-1
big[i] = small[(head + i) % small.length]

head = 0
tail = small.length-1
size = small.length

T — B

// copy the length elements to a new bigger array
create a bigger array

for 1 = 0 to small.length-1
bigl[i] = small[(head + i) % small.length]

head = 0
tail = small.length-1
size = small.length

'

array size length

| / 1‘4123]
H2,2,.F,8,8,K 8
m,ZEl";E —

-

®

\

ENNEENEEANO0ORO0000000000CMO
Running limes and

Asymptotic Notation

ENEEEEREERCOORO00000000000MO
Computational Tractability

Brute force. For many non-trivial problems, there is a natural brute force
search algorithm that tries every possible solution.

= Typically takes 2N time or worse for inputs of size N.

= Unacceptable in practice. \

even worse : N ! for some problems

Desirable scaling property. When the input size doubles, the algorithm
should only slow down by some constant factor C.

There exists constants a > O and d > O such that on every
input of size N, its running time is bounded by a N9 steps.

Def. An algorithm is poly-time if the above scaling property holds. \

choose C = 24

EEEEEEENDEEENEEEEEEEEEEEEE
Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.

= Generally captures efficiency in practice.

= Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on

random input as a function of input size N.

= Hard (or impossible) to accurately model real instances by random
distributions.

= Algorithm tuned for a certain distribution may perform poorly on other
inputs.

Worst Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!
= Although 6.02 x 1023 x N20 is technically poly-time, it would be useless in
practice.

= In practice, the poly-time algorithms that people develop almost always
have low constants and low exponents.

= Breaking through the exponential barrier of brute force typically exposes
some crucial structure of the problem.

Exceptions.
= Some poly-time algorithms do have high constants and/or exponents, and
are useless in practice. \

. . . . Primality testing
= Some exponential-time (or worse) algorithms are widely used because

the worst-case instances seem to be rare. \
simplex method

Unix grep

Why it matters !

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10%° years, we simply record the algorithm as

taking a very long time.

n nlog, n n? n’ 1.5" 2n n!

n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec

n =30 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 18 min 10%° years

n =50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long

n =100 <lsec <l1lsec <1 sec 1sec 12,892 years 107 years very long

n = 1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Note: age of Universe ~ 10'? years...

133

EEEEEEENDEEENEEEEEEEEEEEEE
Computer Science Approach

to problem solving

If my boss / supervisor / teacher formulates a
problem to be solved urgently, can | write a
program to efficiently solve this problem ???

| can't find an efficient algonthm, | guess I'm just too dumb.

EEEEEEENDEEENEEEEEEEEEEEEE
Computer Science Approach

to problem solving

Are there some problems that cannot be
solved at all ? and, are there problems that
cannot be solved efficiently ??

| can't find an efficient algorithm, because no such algonthm is possible

EEEEEEENDEEENEEEEEEEEEEEEE
Computer Science Approach

to problem solving

If my boss / supervisor / teacher formulates a
problem to be solved urgently, can | write a
program to efficiently solve this problem ???

50 L L

| can't find an efficient algornthm, but neither can all these famous people. h

EENEEEERDCOONOO00000000C0C0MO
Asymptotic order of Growth

and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0and ny = 0
such that for all n = ny we have T(n) < ¢ - f(n).

Lower bounds. T(n) is CQ(f(n)) if there exist constants ¢ > 0and ny = 0
such that for all n = ny we have T(n) = c - f(n).

Tight bounds. T(n) is O(f(n)) if T(n) is both O(f(n)) and C(f(n)).

Ex: T(n) =32n?+ |7n + 32.
= T(n) is O(n?), O(n3), Q(n?), Q(n),and O(n?) .
= T(n) is not O(n), Q(n3), O(n), or O(n3).

EENEEEERDCOONOO00000000C0C0MO
Asymptotic order of Growth

and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ >0 and ny = 0
such that for all n = ny we have T(n) < c -f(n).

Lower bounds. T(n) is ((f(n)) if there exist constants ¢ > 0 and n, = 0
such that for all n = ny we have T(n) = c - f(n).

Ex: T(n)=32n>+ 17n + 32.

= T(n) is O(nz) since there exists ¢ = 81 and ny = |
such that for all n = | we have T(n) < 32nt + 17n% + 32n% = 8In%

= T(n) is Q(nz) since there exists c = | and n, = 0

such that for all n = 0 we have T(n) > n’.

" T(n) is not O(n) since for all ¢ > 0 and n, = 0 there exists n = [c+ l/c+ n0-|
such that T(n) > 32(c+1/c+ny)” + 1 7(c+1/c+ny) + 32 = ¢* + cony + 32 = cn.

Asymptotic Notation

Frequent Abuse of notation. T(n) = O(f(n)).
* Not transitive:
—f(n) = 5n3; g(n) = 3n?
~f(n) = O(n?) and g(n) = O(n3)
- but f(n) # g(n) and f(n) #= O(g(n)).
= Better notations: T(n) € O(f(n)), T(n) is O(f(n)).

Meaningless statement. "Any comparison-based sorting algorithm requires at
least O(n log n) comparisons.”

= Statement doesn't "type-check".

= The constant function f(n)=1I is O(n log n).

» Use () for lower bounds.

EEEEEEERDCOONOO00000000C0CMO
Frequently Used Functions

Polynomials. ay +a;n + ... + ajn? is O(nd) ifa, > 0.

Polynomial time. Running time is O(n9) for some constant d
independent of the input size n.

Logarithms. O(log,n) = O(log n) for any constants a,b > 0.
I

can avoid specifying the base

Logarithms. For every x > 0, log n is O(n).
I

log grows slower than every polynomial

Exponentials. For every r > | and every d > 0, ndis O(r").

I

every exponential grows faster than every polynomial

Linear Time: O(n)

Linear time. Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers a,, ..., a,.

max < a;
for i = 2 to n {
if (a; > max)

max < a;

Linear Time: O(n)

Merge. Combine two sorted lists A = a|,a,,...,a, with B = b,b,,...,b,
into a sorted whole.

Merged result

Anle A
S

/// |bj b

i=1, =1
while (both lists are nonempty) ({
if (a; =b;) append a; to output list and increment i

else append b; to output list and increment j

}

append remainder of nonempty list to output 1list

Claim. Merging two lists of size n takes O(n) time.
Pf. After each comparison, the length of output list increases by I.

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.
\
also referred to as linearithmic time

Sorting. Mergesort and Heapsort are sorting algorithms that perform
O(n log n) comparisons.

Largest empty interval. Given n time-stamps X, ..., X, on which copies of
a file arrive at a server, what is largest interval of time when no copies of the
file arrive!?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order,
identifying the maximum gap between successive time-stamps.

Quadratic Time: O(n?)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane
(X5 ¥1)s -5 (X, ¥p), find the pair that is closest.

O(n?) solution. Try all pairs of points.

min & (x; - x,)%2 + (y; - ¥,)?
for 1 =1 to n {
for j = i+l to n {
d « (x; - x)2 + (y; - y;)? don't need to
if (d < min) take square roots

min <« d
}

Remark. This algorithm is Q(n?) and it seems inevitable in general,
but this is just an illusion.

Cubic Time: O(n?)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S, ..., S, each of which is a subset of
l,2,...,n,is there some pair of these which are disjoint?

O(n3) solution. For each pair of sets, determine if they are disjoint.

foreach set S; {
foreach other set S; {
foreach element p of S; {
determine whether p also belongs to S,

}

if (no element of S; belongs to S,)
report that S; and S; are disjoint

Polynomial Time: O(nX)

Independent set of size k. Given a graph, are there k nodes such that no

.. \
two are joined by an edge! k is a constant

O(n") solution. Enumerate all subsets of k nodes.

foreach subset S of k nodes {
check whether S in an independent set
if (S is an independent set)
report S is an independent set

}

}
L
* Check whether S is an independent set = O(k?). L)

— < —
k

= Number of k element subsets : (
k(k=-1)(k=-2)---(2) (D) k!

n)_n(n—l)(n—Z)---(n—k+1) n®
= O(k? nk/ k') is O(n¥).
\

poly-time for k=17,
but not practical

EEEEEEEEENOCOROO000000000C0EC
Exponential Time: O(c")

Independent set. Given a graph, what is the maximum size of an
independent set!

O(n%2") solution. Enumerate all subsets.

S* « @
foreach subset S of nodes {
check whether S in an independent set
if (S is largest independent set seen so far)

update S* < S

}
}

Induction Proofs

Predicate.
= P(n) : f(n) = some formula in n

Statement.
vn= |, P(n) is true.

Proof.
= Base case: proof that P(1) is true.

* |[nduction step: vn=1, P(n) = P(n+1).

Let n> 1.
Assume for induction hypothesis that P(n) is
true and prove P(n+1) is also true.

lteration vs Recursion

-f(n)=l+2+...+n=Zi=||
f(n)
sum < O

for 1i = 2 to n {
sum < sum + 1

}

return sum

{ 0 if n=0
n f(n)z
f(n-1)+n ifn>0

f(n)
if n=0 { return 0 }
else { return f£(n-1)+n }

Generalized Induction Proofs

Predicate.
= P(n) : f(n) = some formula in n

Statement.
For all n> 1, P(n) is true.

Proof.
= Base case: proof that P(1) is true.

" Induction step:let n> 1. Assume for
induction hypothesis that P(1)...P(n) are all
true.We show P(n+1) is also true.

O] o
[1 .. C
ln%
B O &
..ﬂe
.rS
B 5 G
B g o
lem
B o
u 0
T
[|
[|
| |
[|
[|
[|
[|

)

BARKAX)
DOAOAL
RAAAY

voc

X}

QXX
OO

)

SRR
...'-.
"W

v 00
S CVARKY
AR N S
RSOORTLERALYAN
ORI AN
OOROARRIRIANY
ORORRI
"

- fib(n)

if n> |

fib(n-1) + fib(n-2)

1,1,2,3,5,8,13,21,34,55,89,144,...

Fibonacci sequence

iteratively...

Ine I

= NOT so easy to def

Recursion vs lteration

{ n ifn < |
= fib(n)=
fib(n-1) + fib(n-2) ifn> |

fib (n)
if n < 2 { return n }
else { return fib(n-1)+ fib(n-2) }

fib (n)

a < 0

b « 1

for i =1 to n {
b a+b
a < b - a

}

return a

Weak Binet Formula

Statements.
For all n> 1, fib(n) < ¢" is true.
whenever 0 < @?%-@-l and @ > |.

For all n> 1, fib(n) = @™ is true.
whenever 0 > @?-¢-1 and @ > |.

Therefore:

For all n>1, ¢"/¢? < fib(n) < ¢" is true.
whenever 0 = @2-¢-1 and ¢ > I.

Only solution ¢ = golden ration = (1++/5)/2.

fib(n) is O (¢").

Merge Sort

Mergesort.

* Divide array into two halves.

= Recursively sort each ha
= Merge two halves to ma

f.
<e sorted whole.

Jon von Neumann

(1945)

divide O(l)
sort 2T(n/2)

merge O(n)

Merging. Combine two pre-sorted lists into a sorted whole.
How to merge efficiently!?

* Linear number of comparisons.
= Use temporary array.

o
A G H I -

sl s v

Challenge for the bored. In-place merge. [Kronrod, 1969]
I

using only a constant amount of extra storage

IIIIIIIIM“MH&IIIIIIII

Goal: move the n discs from
stack #3 to stack #2 while

® allowing only one disc removed
at any time

® allowing only a smaller disc to
rest on top of a larger one.

2

HEEREERERERERREND INCICCCO0O000000Cec]
Hanoi(n,S3,52,S51) // n=>1|

if n>|then Hanoi(n-1,S3,51,S2)
move disc n from S3 to S2
if n>Ithen Hanoi(n-1,S1,52,S3)

| 2 3

Recurrence Relation

Def. T(n) = number of moves to Hanoi of n.

Hanoi recurrence.

1 ifn=1
T(n) =
2T(n-1)+ 1 ifn>1

Solution. T(n) is O(2").

Assorted proofs. We describe several ways to prove this recurrence.

Telescoping Proof

Claim. If T(n) satisfies this recurrence, then T(n) = 2" -1.

1 ifn=1
T(n) =
2T(n-1) + 1 ifn>1

Pf. Forn>1: T(n)=2T(n-1) + |
=2(2T(n-2)+ 1)+ |
=4T(n-2) +2 + |
=4(2T(n-3)+ 1)+2+ |
=8T(n-3) +4+2+ |

=2T(n-k) + 2% + ..+ 2+ |

=2"IT(1)+2™2+ .. +2+ |
=2"- 1.

Induction Proof

Claim. If T(n) satisfies this recurrence, then T(n) = 2" - |.

1 ifn=1
T(n) =
2T(n-1)+ 1 ifn>1

Pf. (by induction on n)

= Basecase: n=1=2'-1.

* Inductive hypothesis: for n>1,T(n) =2"- |.
* Goal: show that T(n+l) =21 - |,

T(nt+1) =2T(n) + 1 by definition
=2(2"-1)+1 byLH.
=21 .2 +1
=21 o],

Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

M ergeso rt recurrence.

0 if n=1
T(n) =< - \T([n/2])J + ¥T (|_nv/2J)J + L otherwise
| solve left half solve right half ~ MTEINg

Solution. T(n) is O(n log, n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace < with =.

Telescoping Proof

Claim. If T(n) satisfies this recurrence, then T(?) = n log, n.

assumes n is a power of 2

0) if n=1
Tn)=3 2Tm/2) + n otherwise
. > J S
| sorting both halves merging
Pf. For n > I: T(n) _ 2T(n/2) .
n n
_ T(n/2) L
nl?2
- Tn/4) + 1+ 1
nl4
- I/m +1+---+1
nin —
log, n

= log,n

Induction Proof

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.

assumes n is a power of 2

0 if n=1
Tn)=4 2T(m/2) + n otherwise
. ~ 7 Wn
| sorting both halves Merging

Pf. (by induction on k such that n=2)

= Base case: n=20=|.

= Inductive hypothesis: T(n) =T(2X) = n log, n.

= Goal: show that T(2n) =T(2*!) = 2n log, (2n).
T(2n) 2T(n) + 2n

2nlog,n + 2n

2n(logy (2n)-1) + 2n

2nlog, (2n)

Generalized Induction Proof

Claim. If T(n) satisfies the following recurrence,thenT(n) <n [lIgn].
I

0 if n=1 logzn
T(n) < A LT(|'nv/ 2])J + kT ([nv/ 2])J + L otherwise
| solve left half solve right half ~ M¢T&INg

Pf. (by induction on n)

» Basecase: n=1L.T(H)=0=11[Igl|.

* Definen, = [n/2] ,n,= [n/2]. (note | =n,<n, | <n,<n)
* |Induction step: Let n>2,assume true for |, 2,...,n—I.

I'(n) = I(m)+ I(ny) + n n, = [n/2]
< mlgn |+ nyflgn,| + n _ '2[1’5"]/2.‘
< nllgn, |+ nzflgnz] + n ~ ol
= nllgn,| + n -

= lgn, = [lgn] -1

< n([lgn'—1)+ n
= nl[lgn]

11l]l]]]| [SEEEEEEEEEE =

Master Theorem

Used for many d1v1de and -conquer recurrences
I'(n)=al(n/b)+ f(n). |
. where a >1,b>1,and f(n) > 0. I

a = (constant) number of sub-1nstances,

b = (constant) size ration of sub-instances,

f(n) = time used for dividing and recombining.

Based on the master theorem (Theorem 4.1).

3

Compare n'°% % vs. f(n): .

......Mas%.ﬁeo.r.e.ng......

I(n)=al(n/b)+ f(n)

‘ Case 1: f (n) iS O(nL) for some constant L < logb a.

M T(n) is O(n'og, 4)

P _prama BRI W 9 5 LBl Apip B Lo _bosha EXT N

1 fai f (n) is @(nlogbalog n) for some k > O

+ Solutlon T(n) iS @(nlogbal()gk+1 n)

O e PD o BIES <l GO 23 1 G e - Aol By Lo _bosha BXL

e = - . g2E o -
NV T ~ = - TNy Y. 22 o v g Ny T > W - PITONRD TV, SN - 1 ~a

ﬁ‘i Case 3: f (n) is .(Z(nL) for some constant L>logya
¥ and f(n) satisfies the regularity condition af(n/b) < c¢f(n) for some c<1 and all large n. ¥

| Solution: 7(n) is O(f(n)) ,

] o] S

- - AT =i = 2 =g = 3 5 0 =l = =
o~ . Do S-S = A D g o o

Case 2: f(n) is O(nlog,21ogk n), for some k = 0.

Solution: 7(n) is O@(n'og,2logk+l n)

T(n) =27T(n/3) + O(n3/log n)

Compare nlog; 27 vs. n’.

Since 3 = logs 27 use Case 2

but 7n’/log nis not @(n3 log ¥n) for k =0
Cannot use Master Method.

] o] S

Divide-and-Conquer

Divide-and-conquer. 0 if n=1
= Break up problem into several parts. =y 2r (f/ 2) + n otherwise
| sorting both halves merging

= Solve each part recursively.
= Combine solutions to sub-problems into overall solution.

Most common usage.

* Break up problem of size n into two equal parts of size "/>.
= Solve two parts recursively.

= Combine two solutions into overall solution in linear time.

Consequence. - .
Divide et impera.

Veni, vidi, vici.
= Divide-and-conquer: n log n. - Julius Caesar

= Straightforward: n2.

] o] S

Binary Search

Find a value v 1in a
sorted array of elements.

[a0 £ a1 &,..,2 asize-1]

Size = number of elements.

] o] S

Binary Search

Algorithm: binarySearch(a, v, low, high)
Input: array a, value v, lower and upper bound indices low, high (low = 0, high = n — 1 initially)
Output: the index 7 of element v (if it is present), -1 (if v is not present)

if low == high then

if allow] == v then
return [ow
else
return —1
end if
else

mid < (low + high)/2
if v < a[mid] then
return binarySearch(a, v, low, mid)
else
return binarySearch(a, v, mid + 1, high)
end if
end if

] o] S

Recurrence Relation

Def. T(n) = number of comparisons to find v among n sorted elements.

Binary Search recurrence.

1 ifn=1
T(n) =
T(n/2)+ 1 ifn>1

Solution. T(n) is O(log n) (Master Theorem Case 2).

] o] S

D&C Multiplication

To multiply two n-digit integers:
= Multiply four "/>-digit integers.
= Add two "/>-digit integers, and shift to obtain result.

x = 2"%x + x,
y = 2"y + ¥,
Xy = (2n/2°x1+ xo) (zn/2°yl +)’o) = 2" x + 2n/2°(le’0+on’1) + Xo)o

T(n) = 4T(n/2) + O(n) = T(n)isO")

recursive calls add, shift

I

assumes n is a power of 2

] o] S

Karatsuba Multiplication

To multiply two n-digit integers:

= Add two "/7 digit integers.

= Multiply three "/>-digit integers.

= Add, subtract, and shift "/>-digit integers to obtain result.

X = 2n/2°x1 + X,
T 2n/2.y1 -
xy = 2"-xy + 2"/2°(x1y0+x0y1) + Xo)o
= 2"-xy + 2n/2°((x1+x0)(J’1+)’0) = le’1_x0y0) + XoJo
A B A C C

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in
O(n'~>%) bit operations.

T(n) = T(|n/2]) + T([n/2]) + T(1+[n/2]) + 0m

h'd

h'd
recursive calls add, subtract, shift

= T(n) is On'**’) is On"*®)

HEEEEREEREEERE 0O0O00O0O0O0O0OC0s e

Karatsuba Multiplication

Generalization: O(n'*€) for any € > 0.
Best known: n log n 20(og"n)

0 if x<1
where log*(x)=
| +log*(log x) if x>|

Conjecture: ()(n log n) but not proven yet.

Alice and Bob’s

Respohder
477
City Police

=

B
e

[6llZ/ Ul

|4

Public-Key C

vtograph

Fast Modular
Exponentiation

4
@ Input: base x ,modulus N and exponent e.

@ Output: x¢ %N .

y =1

WHILE >0 DO
IF %2 = | THEN y = xy %N
e =el2;x =x% %N

return y

.

@ running time is O(|e|*|x|?) = O(|x|?)

|4

Euclidian Algorithm

e

@ Input: integers a,b.

@ Output: g,x,y such that g=GCD(q,b).

g=a,g =b;
WHILE ¢’>0 DO
k=glg
g = g-kg’;
g=g;
g=g;
return g

[l g7 =g %g

@ running time is O(|a|*|b|)

, [: 14
y N

“¥¥ . Primality Testing
2 A

o Input: base a, modulus N.

@ Output:Is N a base-a pseudo-prime!? .

IF GCD(a,N) > | THEN return False

sets = 0and t (odd) s.t. N-1 =25

x = a* %N;y = N-I

FORi=1TOs
IF x =1 AND y = N-I THEN return True
y = x;x = x> %N

return False

@ running time is O(|N|*)

|4

RSA Encryption

@ Gen:on input |" run GenRSA(1") and obtain (N,e,d).
Let (N,e) be the public-key and (d) the private key.

@ Enc: on input (N,e) and a message 0<m<N compute
c=m*mod N

@ Dec:on input (d) and a ciphertext 0<c<N compute
m = c? mod N

EEEEEEEEEEEEED (O 0D

NIST’s Plan for the Future

Dustin Moody
Post Quantum Cryptography Team
National Institute of Standards and Technology (NIST)

24 Feb 2016

Timeline

» Fall 2016 - formal Call For Proposals
» Nov 2017 - Deadline for submissions
» 3-5 years - Analysis phase

> NIST will report its findings
» 2 years later — Draft standards ready

» Workshops
- Early 2018 - submitter’s presentations
> One or two during the analysis phase

HENEEEEEREREEERCOOromorriee

| Alice and Bob's v
Adventures in
GEOM-Iland...

HEERERERERERERRRRRCO0O00000ccimc
Some Geometric Problems

Segment intersection: Given two segments, do
they intersect?

HEEEEREERERRERnCIC0O00000cCmc
Some Geometric Problems

Simple closed path: Given a set of points, find a
nonintersecting polygon with vertices on the
points.

HEEEEREERERRERnCIC0O00000cCmc
Some Geometric Problems

Inclusion in polygon: Is a point inside or outside
a polygon?

HEEEEEEEEEERRRRNCOOO0000000mO
How to Compute the Orientation

* slope of segment (p1,py): 6= (yr—y1)/ (xr—x1)

* slope of segment (p,,p3): T=(y3—Y>) / (Xx3—X»)
P3

Y37Y2

P2

" X3—Xo

Y2—Y1

P1 Xp=X1

HEEREERREEREEEREERE L1O00000O00C]
o % U

e given a polygon and a point, 1s the point inside or
outside the polygon?

* orientation helps solving this problem in linear time

HEEEREEERERERRERRn 10000000 cd
Simple Closed Path — Part 1

e Problem: Given a set of points ...

e “Connect the dots” without crossings

HEEEEEEEEEEEEEE OO0OOOOCse

Package Wrap

e given the current point, how do we compute
the next point?

* set up an orientation tournament using the
current point as the anchor-point...

* the next point 1s selected as the point that
beats all other points at CCW orientation,
1.e., for any other point, we have

orientation(c, p, q) = CCW

HEEEEREEERERERRERRnCICI0O000000cCiec
Time Complexity of

Package Wrap

e For every point on the hull we examine all
the other points to determine the next point

» Notation:
e N: number of points
 M: number of hull points (M < N)
e Time complexity:
e O(MN)
e Worst case: O(N 2)
e all the points are on the hull (M=N)
e Average case: O(N log N) — G)(N4/ 3)
 for points randomly distributed inside
a square, M = ©(log N) on average
 for points randomly distributed inside
a circle, M = O(N I 3) on average

HEEEEEERREEREREDMOOrOOoCiee

Graham Scan

e Form a simple polygon (connect the dots as
before)

—

 Remove points at concave angles

HEEEEEERREEREREDMOOrOOoCiee

(p,cn)isa
right turn!

(p,cn)isa
right turn!

EEEEEEEEEN 5 | |) [
*me E)mp eX1-ty of

Graham Scan

e Phase 1 takes time O(N logN)

e points are sorted by angle around the
anchor

e Phase 2 takes time O(N)

e cach point 1s 1nserted 1nto the sequence
exactly once, and

e cach point 1s removed from the
sequence at most once

e Total time complexity O(N log N)

EEEEEEEEEEEEEEED 00
GRAPHS

e Definitions

 Examples

 The Graph ADT

[

~
// \\\/7;\ /
B

/ i
/ |
/‘ [
A ; / ‘
. \
[~V g f |
/) — |
< ([|
T |
~ /\ / / |
‘ N / [f
™~ \ /
y \‘\ = c\;x\; I |
\V \ -

/ —

HEEEERREEREERRRERREEnCIOO0O0CCCimel
What is a Graph?

A graph G = (V,E) 1s composed of:

V: set of vertices

E: set of edges connecting the vertices in 'V
 An edge e = (u,v) 1s a pair of vertices

e Example:

1(a,b),(a,c),(a,d),
(b,e),(c,d),(c.e),
(de);

Applications
pplicat
Transportation street intersections highways
communication computers fiber optic cables
World Wide Web web pages hyperlinks
social people relationships
food web species predator-prey
software systems functions function calls
scheduling tasks precedence constraints
circuits gates wires

Graph Terminology

e adjacent vertices: connected by an edge

e degree (of a vertex): # of adjacent vertices

> deg(v) = 2(# edges)
ve V

* Since adjacent vertices
each count the
adjoining edge, 1t will
be counted twice

panning

IIIIIIIIII;

Frgelllllllll

e A spanning tree of G 1s a subgraph which
- 1S a tree
- contains all vertices of GG

spanning tree of G

e Failure on any edge disconnects system (least fault
tolerant)

il Lo g b el b o) S

GRAPHS

e Edge list
* Adjacency lists

* Adjacency matrix

)
Nw 35 DL 247|.| AA 49 HpL 335|.|AA 13sfan s23dan a11Hua 120das sosdua 877|.| TW 45
N\ 1 J\\ | \ J\\ / \ 17 Z 0\ / 1/ l //L |
[\ \/ /
BOS LAX F JFK MIA}=-{ORD SFO

Vv

the edges 1nto unsorted sequences.
e Easy to implement.

* Finding the edges incident on a given vertex 1s
inefficient since it requires examining the entire
edge sequence

E

NW 35 DL 247 f AA 49 DL 335JAA 138k AA 523kdAA 411 fdUA 120LAA 903k UA 87 7fud TW 45

\\
/’
/i
\\

Edge List

III.IIIIIII!.‘I AO00000OCI OO

sequence of vertices adjacent to v

e represent the graph by the adjacency lists of all the
vertices

Adjacency List (traditional)

e Space = O(N + Zdeg(v)) =OOIN+M)

O o6 o .

* matrix M with entries for all pairs of vertices

 M[1,j] = true means that there 1s an edge (1,)) in the
graph.

Adjacency Matrix (traditional)

 MJ1,]] = false means that there 1s no edge (1,)) in the
graph.

* There 1s an entry for every possible edge, therefore:
Space = O(N?)

Edge List

Adjacency List

Adjacency Matrix

Operation Time
size, isSEmpty, replaceElement, swap O(1)
Operation Time num Vertices, numEdges O(1)
size, isEmpty, replaceElement, swap O(1) vertices O(n)
numVertices, numEdges O(1) edges, directedEdges, undirectedEdges | O(m)
vertices O(n) elements, positions O(n+m)
edges, directedEdges, undirectedEdges O(m) endVertices, opposite, origin, destina- | O(1)
elements, positions O(n+m) tion, isDirected, degree, inDegree, out-
endVertices, opposite, origin, destination, |O(1) Degree
isDirected incidentEdges(v), inIncidentEdges(v), |O(deg(v))
incidentEdges, inIncidentEdges, outInci- | O(m) outIncidentEdges(v), adjacentVerti-
dentEdges, adjacentVertices, inAdja- ces(v), inAdjacentVertices(v), outAdja-
centVertices, outAdjacentVertices, centVertices(v)
areAdjacent, degree, inDegree, outDegree areAdjacent(u, v) O(min(deg(u),
insertVertex, insertEdge, insertDirected- | O(1) deg(v)))
Edge, removeEdge, makeUndirected, insertVertex, insertEdge, insertDirected- | O(1)
reverseDirection, setDirectionFrom, setDi- Edge, removeEdge, makeUndirected,
rectionTo reverseDirection,
remove Vertex O(m) remove Vertex(v) O(deg(v))

Operation Time
size, iISEmpty, replaceElement, swap o(1)
num Vertices, numEdges O(1)
vertices O(n)
edges, directedEdges, undirectedEdges O(m)
elements, positions O(n+m)
endVertices, opposite, origin, destination, |O(1)
isDirected, degree, inDegree, outDegree
incidentEdges, inIncidentEdges, outlnci- | O(n)
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacentVertices,
areAdjacent O(1)
insertEdge, insertDirectedEdge, remov- O(1)
eEdge, makeUndirected, reverseDirection,
setDirectionFrom, setDirectionTo
insertVertex, remove Vertex O(nz)

ENENEEEEEEEEERREODOEREEERENE

*frees

ebinary trees

straversals of trees
stemplate method pattern

edata structures for trees

EEEEEEEEEEEEEEEEm)00

*Unix or DOS/Windows file system

/user/rt/cou rses/\‘\

cs016/ 05252/]
grades . grades
homeworks/ | |programs/ projects/

[\ /1N [/

hwi| [hw2| |hw3 1 2 3
W W W Pf o DY })apers/] demos/]

buylow | | sellhigh market

* A 1s the root node.

* B 1s the parent of D and E.

e C is the sibling of B

e D and E are the children of B

e D, E, F, G, are external nodes, or leaves
e A, B, C, H are internal nodes

*The depth (level) of E is 2

*The height of the tree is 3

*The degree of node B is 2

Property: (# edges) = (#nodes) — 1 I

EEEEEEEEEEEmEEREE@D |

e Ordered tree: the children of each node are ordered.

* Binary tree: ordered tree with all internal nodes of
degree 2.

*Recursive definition of binary tree:

e A binary tree is either
- an external node (leaf), or

- an internal node (the root) and two binary trees
(left subtree and right subtree)

EEEEEEEEEEEEEEEEm)00

Examples of Binary Trees

earithmetic expression

&
R X

3 O 2(18

41 |6

(B +@ +06))+ 2+38) x5+ (4x(+2)

e (# external nodes) = (# internal nodes) + 1
e (# nodes at leveli) < X

e (# external nodes) < 2 (height)

* (height) =2 log, (# external nodes)

* (height) = log, (# nodes) — 1

e (height) < (# internal nodes) = ((# nodes) — 1)/2

Level
(- O L — -
[@ LEETTTTE R, ()-------- -
RO T m B o S @ 2
c B gy -1

EEEEEEEEEEEEEEEEE (0 m]
Linked Data Structure for

Binary Trees

=

£
;/?[N ¢

%)

L

EEEEEEEEEEEEEEEEm)00

Representing General Trees

otreec T

EEEEEEEEEEEEEEEEm)00

Representing General Trees

ebinary tree T' representing T

AENEEEEEEEEEEEEEEEODEEEEEEEE
DEPTH-FIRST SEARCH

e Graph Traversals

* Depth-First Search

Depth-First Search

Algorithm DFS(v);
Input: A vertex v in a graph
Output: A labeling of the edges as “discovery” edges
and “backedges”
for each edge e incident on v do
if edge e 1s unexplored then
let w be the other endpoint of e
if vertex w 1s unexplored then
label e as a discovery edge
recursively call DFS(w)
else

label e as a backedge

EEEEEEEEEEEEEEEEED | | W
DFS Properties

e Proposition 9.12 : Let G be an undirected graph on
which a DFES traversal starting at a vertex s has been
preformed. Then:

1) The traversal visits all vertices in the
connected component of s

2) The discovery edges form a spanning tree of
the connected component of s

e Justification of 1):

- Let’s use a contradiction argument: suppose there
1s at least on vertex v not visited and let w be the
first unvisited vertex on some path from s to v.

- Because w was the first unvisited vertex on the
path, there 1s a neighbor u that has been visited.

- But when we visited u we must have looked at
edge(u, w). Therefore w must have been visited.

- and justification

EEEEEEEEEEEEEEEEED | | W
DFS Properties

e Proposition 9.12 : Let G be an undirected graph on
which a DFES traversal starting at a vertex s has been
preformed. Then:

1) The traversal visits all vertices in the
connected component of s

2) The discovery edges form a spanning tree of
the connected component of s

e Justification of 2):

- We only mark edges from when we go to unvisited
vertices. So we never form a cycle of discovery
edges, 1.e. discovery edges form a tree.

- This 1s a spanning tree because DES visits each
vertex 1n the connected component of s

Running Time Analysis

e Remember:
- DFS 1s called on each vertex exactly once.

- Every edge 1s examined exactly twice, once from
each of its vertices

 For n vertices and m edges in the connected
component of the vertex s, a DES starting at s runs in
O(ng +m) time if:
- The graph 1s represented in a data structure, like
the adjacency list, where vertex and edge methods
take constant time

- Marking a vertex as explored and testing to see if a
vertex has been explored takes O(degree)

- By marking visited nodes, we can systematically
consider the edges incident on the current vertex
so we do not examine the same edge more than
once.

Breadth-First Search

0 1 2 3

EEEEEEEEEEEEEEEEEnD | L Im
Breadth-First Search

e[1ke DFS, a Breadth-First Search (BFS) traverses a
connected component of a graph, and 1n doing so
definesaspanningtreewithseveralusefulproperties

-The starting vertex s has level O, and, as in DFS,
defines that point as an “anchor.”

-In the first round, the string 1s unrolled the length
of one edge, and all of the edges that are only one
edge away from the anchor are visited.

-These edges are placed into level 1

-In the second round, all the new edges that can be
reached by unrolling the string 2 edges are visited
and placed in level 2.

-This continues until every vertex has been
assigned a level.

-The label of any vertex v corresponds to the length
of the shortest path from s to v.

I(!{. OOOOCiCIme
seudo-Code

Algorithm BFS(s):
Input: A vertex s 1n a graph
Output: Alabelingoftheedgesas*discovery’edges
and “‘cross edges”
initialize container L to contain vertex s
1 <0
while L; is not empty do
create container L, ; to initially be empty
for each vertex vin L; do
for eachedge e incident on v do
if edge e i1s unexplored then
let w be the other endpoint of e
if vertex w 1s unexplored then
label e as a discovery edge
insert w into L ¢
else
label e as a cross edge
11+ 1

Properties of BFS

* Proposition:Let G be an undirected graph on which
a BFS traversal starting at vertex s has been
performed. Then

-The traversal visits all vertices 1n the connected
component of s.

-The discovery-edges form a spanning tree 7,
which we call the BES tree, of the connected
component of s

-For each vertex v at leveli,the path of the BFS tree
T between s and v has i edges, and any other path
of G between s and v has at least i edges.

- I f{u, v) 1s an edge that 1s not in the BES tree, then
the level numbers of u and v differ by at most one.

Properties of BFS

* Proposition: Let G be a graph with n vertices and m
edges. A BFS traversal of G takes time O(n + m).
Also, there exist O(n + m) time algorithms based on
BFS for the following problems:

—Testing whether G is connected.
-Computing a spanning tree of G
-Computing the connected components of G

-Computing, for every vertex v of GG, the minimum
number of edges of any path between s and v.

EEEEEEEEEEEEEEEEEEODEEEEEEE
SEARCHING

 the dictionary ADT

* binary search trees

The Dictionary ADT

e a dictionary is an abstract model of a database

* like a priority queue, a dictionary stores key-element
pairs

e the main operation supported by a dictionary 1s
searching by key

* simple container methods:
- size()

- iIsSEmpty()
- elements()

The Dictionary ADT

e query methods:
- findElement(k)
- findAllElements(k)

e update methods:
- insertltem(k, e)
- removeElement(k)
- removeAllElements(k)

e special element

- NO_SUCH_KEY, returned by an unsuccessful
search

- each 1nternal node stores an 1tem (k, €) of a
dictionary.

- keys stored at nodes 1n the left subtree of v are less
than or equal to k.

- keys stored at nodes 1n the right subtree of v are
greater than or equal to k.

- external nodes do not hold elements but serve as
| B @ place holders.

(17,

Binary Search Trees

EEENEEEEEEEESEAEEEODEEREREE®

e A binary search tree T is a decision tree, where the
question asked at an internal node v 1s whether the
search key k 1s less than, equal to, or greater than the
key stored at v.

Algorithm TreeSearch(k, v):
Input: A search key k and a node v of a binary search
tree 7.
Ouput: A node w of the subtree T(v) of T rooted at v,

if v 1s an external node then
return v
if kK = key(v) then
return v
else if k£ < key(v) then
return TreeSearch(k, T.leftChild(v))
else

{ k>key(v) }
return TreeSearch(k, T.rightChild(v))

Insertion

e To perform insertltem(k, e), let w be the node
returned by TreeSearch(k, T.root())

e If w is external, we know that k 1s not stored in 7. We
call expandExternal(w) on T and store (k, ¢) in w

Removal 1

e We locate the node w where the key is stored with
algorithm TreeSearch

e If w has an external child 7z, we remove w and 7
with removeAboveExternal(z)

e A search, insertion, or removal, visits the nodes
along a root-to leaf path, plus possibly the siblings
of such nodes

 Time O(1) 1s spent at each node

* The running time of each operation 1s O(%), where h
1s the height of the tree

* The height of binary serch tree 1s 1n 7 1n the worst
case, where a binary search tree looks like a sorted
sequence

* To achive good running time, we need to keep the
tree balanced, 1.e., with O(log n) height

AENEEEEEEEEEEEEEEEEEEaEEEEEE

00 O

O %ge®

@)
O000° 000

000 Op

O @0 O ooom
0® O
OQOOO

HEAPS 1

e Insertion and Deletion

* Heaps
e Properties

ENEEEENEENEENE Heaps ERERBERRNENE

* A heap is a binary tree T that stores a collection of

keys (or key-element pairs) at its internal nodes and
that satisfies two additional properties:

- Order Property: key(parent) < key(child)

- Structural Property: all levels are full, except the
last one, which is left-filled (complete binary tree)

AENEEEEEEEEEEEEEEEEEEaEEEEEE

Height of a Heap

A heap T storing n keys has height h =[log(n + 1) |,
which 1s O(log n)

e n>14+24+4+.. . +2M2 1 =01 _141=2m1

AENEEEEEEEEEEEEEEEEEEaEEEEEE

Height of a Heap
en<1+2+4+.. 42 =201
0 O
1 (5) (6]

h—2 ® (9) (7, (20

h=1 (@ @& O @ W G 6
h

e Therefore 271 <n<2"-1
e Taking logs, we getlog(n+ 1)<h<logn+ 1
e Which implies & =[log(n+1) |

nserton

IIIIIIIIIH&E!I L] | |»/SEEE =

So here we go ...

The key to insert is 6

AENEEEEEEEEEEEEEEEEEEaEEEEEE

Upheap

* Swap parent-child keys out of order

SHINGTICE AT .

AENEEEEEEEEEEEEEEEEEEaEEEEEE

Removal From a Heap
RemoveMin()

3
\
@

AENEEEEEEEEEEEEEEEEEEaEEEEEE

Downheap

HEAPS 11

* Implementation

* HeapSort

e Bottom-Up Heap Construction

0O ©
o
00000 o
O..... e ©
%.. O Q. (o)
@.@) 0000 O
0 ®000e030® 00 %o
o 000 00 ® ® o Ole ©
00000 O¢ @O, S85%e%s O
00 0ge0® Oo 8038588 o
o @ o O ooo@uwo o
00 9000, O SUTHE" O
o) “O O OO
0 O00 Og
-~0e
0 O
O @ g0®0
OO.OO
®0
lo)
0O OQ.O
0 a Q0. 09
0e .0 %0
OOO.O .. O‘ O]
O o000 ~O0% °
0]O O.O
CeeTTRe® O Og0 00 00
nnuuo“w o1oh e © oo

e | ocators

00
000 O¢ 0o~gree O
00 0 oo“m%%ooo o
080 © 00005 ee °
OOO o) oe% ¢ 0® OO
0 Yoo 000g0
O‘O (I (0]
ooooooooo o
OQ..OO ©Soo0o0
O.e20
090
000
oo
(0] OOO

0-e%0 000

AENEEEEEEEEEEEEEEEEEEOEEEEEE

AENEEEEEEEEEEEEEEEEEEaEEEEEE

Implementation of a Heap

public class HeapPriorityQueue implements PriorityQueue
{
BinaryTree T;

Position last;
Comparator comparator;

-
(= (=
heap last

AENEEEEEEEEEEEEEEEEEEaEEEEEE

Vector Based Implementation

e Updates in the underlying tree occur only at the “last
clement”

* A heap can be represented by a vector, where the
node at rank i has

- left child at rank 2i and
- right child at rank 27 + 1
1
()
2 3
() ()
o S 6 7
() () ()

3 9 10 11 12 13

AENEEEEEEEEEEEEEEEEEEaEEEEEE

Heap Sort

e All heap methods run in logarithmic time or better

 If we implement PriorityQueueSort using a heap for
our priority queue, insertltem and removeMin each
take O(log k), k being the number of elements in the
heap at a given time.

* We always have at most n elements in the heap, so
the worst case time complexity of these methods is

O(log n).

* Thus each phase takes O(n log n) time, so the
algorithm runs in O(n log n) time also.

e This sort is known as heap-sort.

e The O(n log n) run time of heap-sort i1s much better
than the O(n) run time of selection and insertion
sort.

In-Place Heap-Sort

e Do not use an external heap

 Embed the heap into the sequence, using the vector
representation

AENEEEEEEEEEEEEEEEEEEaEEEEEE

Bottom-Up Heap Construction

e build (n + 1)/2 trivial one-element heaps
()

~
P __/ ~

7
" e
._7
/ \

RRRARRRR G

AR e 7 S
\) \ ! \ \
& / ~_’ 4

\ / \ / \

V0 1 1 73 5 I
E! . ! S10 Or Inscruon sort operating on three elements. An internal node an-

notated by i:j indicates a comparison between «; and a j- A leaf annotated by the permutation
(r(1), m(2), ..., m(n)) indicates the ordering Ax(l) = Ax(2) < -+ = Ax(n)- The shaded path indi-
cates the decisions made when sorting the input sequence (a; = 6, ar = 8, a3 = 5); the permutation
(3, 1, 2) at the leaf indicates that the sorted orderingisaz =5 <a) =6 < aj) = 8. Thereare 3! = 6
possible permutations of the input elements, so the decision tree must have at least 6 leaves.

(a1,a2,a3) (ai,as,az)
(a2,a1,a3) (a2,a3,ar)
(a3z,a1,22) (az,az,a1)

(alpa2aa3> @ (212931933)
(a1,a3,a2) (a2,a3,a1)
(az,a1,a2) > (az,az2,a1)

9 (alaa?’:aZ) < (32,33,3-1)
(a3,a1,a2) = (a3,a2,a1)

@ [(az,eu,a?,) @

(as,a1,a2) ((az,a3,a1) (a3,a2,ala

[(31,32,33)

< >

IA

>

((a1,a3,az)

@y 20
(a1,22,83) (ar,a2,23)

(anaas)

(@a1aa3)
(an,aa3) (an,a2,a3)
.
(a1.a2.a3)

(a1,a2,83)

: {anazas) {ar.a2,23)

N!/2 ; N!/2

log N! € B(N log N)

N1/4 N1/4 N1/4

~— ~— ~—
{a1.a2,23)
2.85) (.22 i) (auaza) (anana) \Qna) (a2 (ar.a20) (@ aa) \ (anana) (a,a2a) () (anana) (ananas)
) (a1,a0.5) (aranas) () (arazas) (ananas) (ananas) (arazas) (aranas) (ananas) e I o) P e P

EEEENEEEEEEEEEEEEEEEEDEEEEE

INTRODUCTION TO

ALGORITHMS

THOMAS H. CORMEN

CHARLES E. LEISERSON

R OPNTA Y 2D D RS PRV BS-S T s

CHL LR R EOTR D T ST B EINON

ENEEEEEEEEEEEEEEEEEEaEEENE

COUNTING-SORT(A, B, k)

2 do Cli] < 0
for j < 1 to length| Al
do C[A[/j]] < C[A[/]] + |

> C[i] now contains the number of elements equal to 7.
fori «— 1tok

do Cli] < Cli]+C[i — 1]
> C[i] now contains the number of elements less than or equal to ;.
or j < length|A] downto 1

do B[C[A[j]]] < A[/]

0 1 O\ B W

ClALj]] < ClA[j]] — 1

i i
AENEEEEEEEEEEEEEEEEEEaREEEE

Radix sort

How IBM made its money. Punch card readers for census tabulation in early
1900’s. Card sorters, worked on one column at a time. It’s the algorithm for
using the machine that extends the technique to multi-column sorting. The human
operator was part of the algorithm!

Key idea: Sort least significant digits first.

329 720 720 329
457 359 329 355
657 436 436 436
839 wnusitne 457 s e 839 v - 457
436 657 3355 657
720 329 457 720
355 839 657 839

Figure 8.3 The operation of radix sort on a list of seven 3-digit numbers. The leftmost column is
the input. The remaining columns show the list after successive sorts on increasingly significant digit
positions. Shading indicates the digit position sorted on to produce each list from the previous one.

i i
AENEEEEEEEEEEEEEEEEEEaREEEE

RADIX-SORT(A, d)

| fori < 1tod
2 do use a stable sort to sort array A on digit i

i i
AENEEEEEEEEEEEEEEEEEEaREEEE

Correctness:

* Induction on number of passes (i in pseudocode).
* Assume digits 1,2, ...,7 — 1 are sorted.
* Show that a stable sort on digit i leaves digits 1, ..., i sorted:

« If 2 digits 1n position ; are different, ordering by position 7 1s correct, and
positions 1, ...,i — 1 are irrelevant.

« If 2 digits in position i are equal, numbers are already 1n the right order (by
inductive hypothesis). The stable sort on digit i leaves them in the right
order.

This argument shows why it’s so important to use a stable sort for intermediate
SOrt.

i i
AENEEEEEEEEEEEEEEEEEEaREEEE

RADIX-SORT(A, d)

| fori < 1tod
2 do use a stable sort to sort array A on digit i

Analysis: Assume that we use counting sort as the intermediate sort.

®(n + k) per pass (digits in range O, ..., k)
d passes

O (d(n + k)) total

If k= 0(n), time = O(dn).

AENEEEEEEEEEEEEEEEEEEEEEEEE

QuickSort

* Yet another sorting algorithm!

» Usually faster than other algorithms on average,
although worst-case is O(n?)

* Divide-and-conquer:
— Divide: Choose an element of the array for pivot.

Divide the elements into three groups: those smaller
than the pivot, those equal, and those larger.

— Conquer: Recursively sort each group.
— Combine: Concatenate the three sorted groups.

EEREENEENEREEENE
ort running time

EEEEN
lllC

* Worse case:

— Already sorted array (either increasing or decreasing)
— T(n)=Tn-1)+cn+d
— T(n) is O(n?)

* Average case: If the array 1s in random order, the
pivot splits the array 1n roughly equal parts, so the
average running time 1s O(n log n)

» Advantage over mergeSort:

— constant hidden 1n O(n log n) are smaller for quickSort.
Thus 1t 1s faster by a constant factor

— QuickSort 1s easy to do “in-place”

AENEEEEEEEEEEEEEEEEEEEEEEEE

In-place algorithms

* An algorithm 1s in-place 1f 1t uses only a constant
amount of memory 1n addition of that used to store
the mput

* Importance of in-place sorting algorithms:

— If the data set to sort barely fits into memory, we don't
want an algorithm that uses twice that amount to sort
the numbers

* SelectionSort and InsertionSort are in-place: all
we are doing 1s moving elements around the array

* MergeSort 1s not in-place, because of the merge
procedure, which requires a temporary array

* QuickSort can easily be made 1n-place...

AENEEEEEEEEEEEEEEEEEEEEEEEE

Partition

Algorithm partition(A, start, stop)
Input: An array A, indices start and stop.

Output: Returns an index j and rearranges the elements of A
such that for all i<j, A[i] = A[j] and
for all k>j, A[k] = A[j].

pivot <— A[stop]

left < start

right <— stop - 1

while left < right do
while left < right and A[left] < pivot) do left <— left + 1
while (left < right and A[right] = pivot) do right < right -1
if (left < right) then exchange Afleft] <= A[right]

exchange A[stop] <= Alleft]

return left

AENEEEEEEEEEEEEEEEEEEEEEEEE

In-place quickSort

Algorithm quickSort(A, start, stop)
Input: An array A to sort, indices start and stop
Output: Afstart...stop] is sorted
If (start < stop) then
pivot < partition(A, start, stop)
quickSort(A, start, pivot-1)
quickSort(A, pivot+1, stop)

ENEEEEEEEEEEAEEEEEEENE DN

RandomizedQuicksort(A,start,stop) {
if |[A| = 0 return

choose a pivot A[i] uniformly at random (start < i < stop)
exchange A[i] « A[stop]

pivot « partition(A,start,stop)

RandomizedQuicksort(A, start, pivot-1)
RandomizedQuicksort(A, pivot+|, stop)

}

AENEEEEEEEEEEEEEEEEEEEEEEEE

Quicksort

Running time.

= [Best case.] Select the median element as the pivot: quicksort makes O(n log n)

comparisons.
= [Worst case.] Select the smallest (or largest) element as the pivot: quicksort
makes O(n?) comparisons.

Randomize. Protect against worst case by choosing pivot at random.

Intuition. If we always select a pivot that is bigger than 25% of the elements and

smaller than 25% of the elements, then quicksort makes ©(n log n) comparisons.

Notation. Label elements so that x; <x, < ... <Xx,,.

AENEEEEEEEEEEEEEEEEEEEEEEEE

Randomized Quicksort: Expected Number of Comparisons

Theorem. Expected # of comparisons is O(n log n).

Theorem. [Knuth 1973] Stddev of number of comparisons is ~ 0.65n.

Ex. If n = | million, the probability that randomized quicksort takes less than 4n In n

comparisons is at least 99.94%.

Chebyshev's inequality. Pr[|X - p| = k§] < | /k
A .

Me:an Stdd:ev

AENEEEEEEEEEEEEEEEEEEEEEEEE

STRINGS AND PATTERN
MATCHING

* Brute Force,Rabin-Karp, Knuth-Morris-Pratt

* Regular Expressions

AENEEEEEEEEEEEEEEEEEEEEEEEE

String Searching

* The object of string searching 1s to find the location
of a specific text pattern within a larger body of text
(e.g., a sentence, a paragraph, a book, etc.).

e As with most algorithms, the main considerations
for string searching are speed and efficiency.

* There are a number of string searching algorithms in
existence today, but the three we shall review are
Brute Force,Rabin-Karp, and Knuth-Morris-Pratt.

EEEEEEEEEEEEEEEEEEEENEEEe
Rabin-Karp

 The Rabin-Karp string searching algorithm
calculates a hash value for the pattern, and for each
M-character subsequence of text to be compared.

 If the hash values are unequal, the algorithm will
calculate the hash value for next M-character
sequence.

 If the hash values are equal, the algorithm will do a
Brute Force comparison between the pattern and the
M-character sequence.

* In this way, there 1s only one comparison per text
subsequence, and Brute Force 1s only needed when
hash values match.

* Perhaps an example will clarify some things...

EEEEEEEEEEEEEEEEEEEE e
Rabin-Karp Algorithm

pattern is M characters long

=hash value of pattern
hash t=hash value of first M letters in
body of text

do
if (== hash_t)
brute force comparison of pattern
and selected section of text
hash_t = hash value of next section of
text, one character over
until (end of text or
brute force comparison == true)

AENEEEEEEEEEEEEEEEEEEEEEEEE

Rabin-Karp Complexity

 If a sufficiently large prime number 1s used for the
hash function, the hashed values of two different
patterns will usually be distinct.

e If this is the case, searching takes O(N) time, where
N 1s the number of characters in the larger body of
text.

It 1s always possible to construct a scenario with a
worst case complexity of O(MN). This, however, 1s
likely to happen only if the prime number used for
hashing 1s small.

Comment about input size...

2)
Write any algorithm that runs in time @(n?log2n) in worse case.

Explain why this is its running time. | don’t care what it does.
| only care about its running time...

WhatEver(int m)

FORi=1 TO m
FOR =1 TO m
x=m; WHILE x>1 DO { x=x/2; y=m;
WHILE y>1 DO y=y/2 }

n = |m| ~ log m. Therefore running time is ®(m?log? m)= 0(2?" n?)

Comment about input size...

2)

Write any algorithm that runs in time @(n?log2n) in worse case.
Explain why this is its running time. | don’t care what it does.

| only care about its running time...

WhatEver(int[] A)

n = A.length;
FORi=1TOn
FOR|=1TOn

x=n; WHILE x>1 DO { x=x/2; y=n;

WHILE y>1 DO y=y/2)

AENEEEEEEEEEEEEEEEEEEEEOaEEE

STRINGS AND PATTERN
MATCHING

* Brute Force,Rabin-Karp, Knuth-Morris-Pratt

* Regular Expressions

AENEEEEEEEEEEEEEEEEEEEEOaEEE

The Knuth-Morris-Pratt
Algorithm

* The Knuth-Morris-Pratt (KMP) string searching
algorithm differs from the brute-force algorithm by
keeping track of information gained from previous
comparisons.

e A failure function (f) 1s computed that indicates how
much of the last comparison can be reused if it fails.

e Specifically, f1s defined to be the longest prefix of
the pattern PJ[O,..,j] that 1s also a suffix of P[1,..,]]

- Note: not a suffix of P[0,..,j]

The KMP Algorithm (contd.)

e the KMP string matching algorithm: Pseudo-Code

Algorithm KMPMatch(7,P)
Input: Strings T (text) with n characters and P
(pattern) with m characters.
Output: Starting index of the first substring of 7
matching P, or an indication that P is not a
substring of 7.

f < KMPFailureFunction(P) {build failure function}
1< 0
j<0
while i < n do
if P[j] = T1i] then

if j=m -1 then

return i - m - 1 {a match}
1+ 1
je—j+1

else 1f j > 0 then {no match, but we have advanced}
j < f(j-1) {j indexes just after matching prefix in P}
else
[—i+1
return “There 1s no substring of T matching P”

HEEEE

HEENENENE 1he KMP Algorithm (contd.) N E SN E

*The KMP failure function: Pseudo-Code

Algorithm KMPFailureFunction(P);
Input: String P (pattern) with m characters
Ouput: The faliure function f for P, which maps j to

the length of the longest prefix of P that is a suffix
of P[1,..,j]

R |
j<0
while i < m-1 do
if P[j] = PJi] then
{we have matched j + 1 characters}
fy«—j+1
1<—1+1
je—j+1
else 1f j > 0 then
{j indexes just after a prefix of P that matches}
J < fG-1)
else
{there 1s no match}
fi) <0

I <—1+1

EEEEEEEEEEEEEEEEEEEEEEE N E.
The KMP Algorithm (contd.)

 Time Complexity Analysis
e definek=1i-j

* In every iteration through the while loop, one of
three things happens.

- 1) 1t T1i] = PJj], then i increases by 1, as does j
k remains the same.

- 2) 1t T1i] !'= P[j] and j > O, then i does not change
and k increases by at least 1, since k changes
fromi-jtoi-f(j-1)

- 3)1t T1i] != P[j] and j =0, then i increases by 1 and
k increases by 1 since j remains the same.

EEEEEEEEEEEEEEEEEEEEEEE N E.
The KMP Algorithm (contd.)

* Thus, each time through the loop, either i or £
increases by at least 1, so the greatest possible
number of loops 1s 2n

e This of course assumes that f has already been
computed.

 However, f1s computed in much the same manner as
KMPMatch so the time complexity argument 1s
analogous. KMPFailureFunction 1s O(m)

e Total Time Complexity: O(n + m)

EEEEEEEEEEEEEEEEEEEEENEE e
Regular Expressions

e notation for describing a set of strings, possibly of
infinite size

e ¢ denotes the empty string
e ab + ¢ denotes the set {ab, c}
 a* denotes the set {¢, a, aa, aaa, ...}

 Examples
- (a+b)* all the strings from the alphabet {a,b}
- b*(ab*a)*b* strings with an even number of a’s
- (a+b)*sun(a+b)* strings containing the pattern

(X4 29

sun
- (a+b)(a+b)(a+b)a 4-letter strings ending 1n a

AENEEEEEEEEEEEEEEEEEEEEOaEEE

Finite State Automaton Composition of FSA’s

* “machine” for processing strings

b

AENEEEEEEEEEEEEEEEEEEEEEEEE

Tries
a b
a b a b
b a b a b
a a b a a
b b b a b
1 2 3 4 S

ENNEEEEEEENE Triecs NEEEEENEED

e A trie 1s a tree-based data structure for storing
strings 1n order to make pattern matching faster.

e Tries can be used to perform prefix queries for
information retrieval. Prefix queries search for the
longest prefix of a given string X that matches a
prefix of some string in the trie.

* A trie supports the following operations on a set S of
strings:

insert(X): Insert the string X into S
Input: String Ouput: None

remove(X): Remove string X from S
Input: String Output: None

prefixes(X): Return all the strings in S that have a
longest prefix of X
Input: String Output: Enumeration of
strings

ENEEENEENEEEEEEEEEEEEE .
a b
a b a b
b a b a b
a a b a a
b b b a b
1 2 3 4 5
a b
abab baab abbb b
1 2 3 aaa bab
4 5

LU LD LU LU L LIt Ll DLl L

Algorithm prefixQuery(7, X):
Input: Trie T for a set S of strings and a query string X
Output: The node v of T such that the labeled nodes of
the subtree of 7 rooted at v store the strings
of S with a longest prefix in common with X
veT.root()
i«<—0 {i1s an index into the string X}
repeat
for each child w of v do
let e be the edge (v,w)
Y<string(e) {Y is the substring associated with e}
[«Ylength() {[=1 if T is a standard trie}
Z.<—X.substring(i, i+[-1) {Z holds the next / charac
ters of X}
if Z =Y then
VW
i<—i+1{move to W, incrementing i past 7}
break out of the for loop
else if a proper prefix of Z matched a proper prefix
of Y then
VE—W
break out ot the repeat loop
until v is external or v#w
return v

EREEEEEEEEEEEAEEEEEEEENEED
@
a b

(J @
a b a b
A N O search ®
b a b stops a b
here
() () (U () ()
a a b \ a a
(J @ (J () (J
b b b a b
H] Hul H
1 2 3 4 5
(J .
2 b insert(bbaabb)
(J U
a b a b
() D O ()
b a b a b
() () (U (J ()
a a b a a
(J (U (J () (U
b b a/ \b
| | HEul J |
1 2 3 4 b 5
|
6

EEEEEEEEEEEEEEEEEEEEEEEEEE

a b
abab baab abbb b
I 2 3 aaa bab
search stops here — -
: 5
insert(bbaabb)
a b
abab baab abbb b
1 2 3 aa bab
a bb 3

S UL LU UL L

e Constructing the trie:
- Let phrase O be the null string.
- Scan through the text

- If you come across a letter you haven’t seen
before, add it to the top level of the trie.

- If you come across a letter you’ve already seen,
scan down the trie until you can’t match any more
characters, add a node to the trie representing the
new string.

- Insert the pair (nodelndex, lastChar) into the
compressed string.

e Reconstructing the string:

- Every time you see a ‘0’ in the compressed string
add the next character in the compressed string
directly to the new string.

- For each non-zero nodelndex, put the substring
corresponding to that node into the new string,
followed by the next character in the compressed
string.

q, Enc(ﬁlglllllll

BN

e A graphical example:

Uncompressed text: i how now brown cow in town.

phrases: 0 12345 6 7 8 9 10 11 121314 15

Compressed text: OhOoOw0 On2w4b0r6mnd4c6 _0i5 0t9.

Trie: (0)
h o W r i t

O O OB OB O RO I ¢ (14

w b Cc _

(6, O O G

ENEEEEEEEEERSE RS EEEEENEDNE

e text files are usually stored by representing each
character with an 8-bit ASCII code (type man ascii in
a Unix shell to see the ASCII encoding)

e the ASCII encoding is an example of fixed-length
encoding, where each character 1s represented with
the same number of bits

* in order to reduce the space required to store a text
file, we can exploit the fact that some characters are
more likely to occur than others

* variable-length encoding uses binary codes of
different lengths for different characters; thus, we
can assign fewer bits to frequently used characters,
and more bits to rarely used characters.

e Example:
- text: java
- encoding: a =“0", j=“11", v ="10"
- encoded text: 110100 (6 bits)

e How to decode?
- a="0"j="01", v ="00"
- encoded text: 010000 (6 bits)
- 1s this java, jvv, jaaaa ...

EEEEEEEE Optimal Compression i llNNE N

e An 1ssue with encoding tries 1s to insure that the
encoded text 1s as short as possible:

ABRACADABRA
01011011010000101001011011010
29 bits

ABRACADABRA
001011000100001100101100
24 bits

EEEEEREENE C/nstruction Algorithm EEREEREE

e with a Huffman encoding trie, the encoded text has
minimal length

Algorithm Huffman(X):
Input: String X of length n
Output: Encoding trie for X

Compute the frequency f(c) of each character ¢ of X.
Initialize a priority queue Q.

for each character ¢ in X do
Create a single-node tree T storing ¢

QO.insertltem(f(c), T)
while O.size() > 1 do

f1 < O.minKey()
T1 < Q.removeMinElement()

f> < O.minKey()

T < Q.removeMinElement()

Create a new tree T with left subtree 7 and right
subtree T5.

Q.insertltem(f; + f»)
return tree O.removeMinElement()

e runing time for a text of length n with k distinct
characters: O(n + k log k)

ENEEEEEEEEEEEEEEEEEEEEEEnE

Winter 2016
COMP-250: Introduction

to Computer Science
Lecture 26,April 14,2016

REVIEWV SESSION

AENEEEEEEEEEEEEEEEEEEEEEEmE

EEEEEEEEEEEEEEEEEEEEEEEEEES

ENEEEEEEEEEEEEEEEEEEEEEEERn

ENEEEEEEEEEEEEEEEEEEEEEEE,

AEEEEEEEEEEEEEEEEEEEEEEEEA

ANEEEEEEEEEEEEEEEEEEEEEE e

ANEEEEEEEEEEEEEEEEEE e

