Winter 2016

COMP-250: Introduction

to Computer Science
Lecture 9, February 9,2016

Running Times and
Asymptotic Notation

Computational Tractability

As soon as an Analytic Engine exists, it will necessarily guide the
future course of the science. Whenever any result is sought by its
aid, the question will arise - By what course of calculation can
these results be arrived at by the machine in the shortest time!?

- Charles Babbage

Charles Babbage (1864) Analytic Engine (schematic)

Computational Tractability

Brute force. For many non-trivial problems, there is a natural brute force
search algorithm that tries every possible solution.

= Typically takes 2N time or worse for inputs of size N.

= Unacceptable in practice. \

even worse : N ! for some problems

Desirable scaling property. When the input size doubles, the algorithm
should only slow down by some constant factor C.

There exists constants a > O and d > O such that on every
input of size N, its running time is bounded by a N9 steps.

Def. An algorithm is poly-time if the above scaling property holds. \

choose C = 24

Worst Case Analysis

Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.

Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.
= Generally captures efficiency in practice.

Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.

= Generally captures efficiency in practice.

= Draconian view, but hard to find effective alternative.

Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.

= Generally captures efficiency in practice.

= Draconian view, but hard to find effective alternative.

Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.

= Generally captures efficiency in practice.

= Draconian view, but hard to find effective alternative.

Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.

= Generally captures efficiency in practice.

= Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on
random input as a function of input size N.

Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.

= Generally captures efficiency in practice.

= Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on
random input as a function of input size N.

= Hard (or impossible) to accurately model real instances by random
distributions.

Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.

= Generally captures efficiency in practice.

= Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on

random input as a function of input size N.

= Hard (or impossible) to accurately model real instances by random
distributions.

= Algorithm tuned for a certain distribution may perform poorly on other
inputs.

Worst Case Polynomial-Time

\

Primality testing

\

simplex method
Unix grep

Worst Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

\

Primality testing

\

simplex method
Unix grep

Worst Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

\

Primality testing

\

simplex method
Unix grep

Worst Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!

\

Primality testing

\

simplex method
Unix grep

Worst Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!
= Although 6.02 x 1023 x N20 is technically poly-time, it would be useless in
practice.

\

Primality testing

\

simplex method
Unix grep

Worst Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!

= Although 6.02 x 1023 x N20 is technically poly-time, it would be useless in
practice.

= In practice, the poly-time algorithms that people develop almost always
have low constants and low exponents.

\

Primality testing

\

simplex method
Unix grep

Worst Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!
= Although 6.02 x 1023 x N20 is technically poly-time, it would be useless in
practice.

= In practice, the poly-time algorithms that people develop almost always
have low constants and low exponents.

= Breaking through the exponential barrier of brute force typically exposes
some crucial structure of the problem.

\

Primality testing

\

simplex method
Unix grep

Worst Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!
= Although 6.02 x 1023 x N20 is technically poly-time, it would be useless in
practice.

= In practice, the poly-time algorithms that people develop almost always
have low constants and low exponents.

= Breaking through the exponential barrier of brute force typically exposes
some crucial structure of the problem.

\

Primality testing

\

simplex method
Unix grep

Worst Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!

= Although 6.02 x 1023 x N20 is technically poly-time, it would be useless in
practice.

= In practice, the poly-time algorithms that people develop almost always
have low constants and low exponents.

= Breaking through the exponential barrier of brute force typically exposes
some crucial structure of the problem.

Exceptions.

\

Primality testing

\

simplex method
Unix grep

Worst Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!

= Although 6.02 x 1023 x N20 is technically poly-time, it would be useless in
practice.

In practice, the poly-time algorithms that people develop almost always
have low constants and low exponents.

Breaking through the exponential barrier of brute force typically exposes
some crucial structure of the problem.

Exceptions.

= Some poly-time algorithms do have high constants and/or exponents, and

are useless in practice. \
Primality testing

\

simplex method
Unix grep

Worst Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!
= Although 6.02 x 1023 x N20 is technically poly-time, it would be useless in
practice.

= In practice, the poly-time algorithms that people develop almost always
have low constants and low exponents.

= Breaking through the exponential barrier of brute force typically exposes
some crucial structure of the problem.

Exceptions.
= Some poly-time algorithms do have high constants and/or exponents, and
are useless in practice. \

. . . . Primality testing
= Some exponential-time (or worse) algorithms are widely used because

the worst-case instances seem to be rare. \
simplex method

Unix grep

Why it matters !

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10%° years, we simply record the algorithm as

taking a very long time.

n nlog, n n? n’ 1.5" 2n n!

n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec

n =30 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 18 min 10%° years

n =50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long

n =100 <lsec <l1lsec <1 sec 1sec 12,892 years 107 years very long

n = 1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Note: age of Universe ~ 10'? years...

125

Computer Science Approach
to problem solving

If my boss / supervisor / teacher formulates a
problem to be solved urgently, can | write a
program to efficiently solve this problem ???

| can't find an efficient algonthm, | guess I'm just too dumb.

Computer Science Approach
to problem solving

Are there some problems that cannot be
solved at all ? and, are there problems that
cannot be solved efficiently ??

| can't find an efficient algonthm, because no such algonthm is possible k

Computer Science Approach
to problem solving

If my boss / supervisor / teacher formulates a
problem to be solved urgently, can | write a
program to efficiently solve this problem ???

50 L L

i Jﬁéj Z

.|'.""[; | i {7
| | {l | L" |?
III‘L

| can't find an efficient algonthm, but neither can all these famous people.

|

Asymptotic order of
Growth and Notation

Asymptotic order of Growth
and Notation

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0and ny = 0
such that for all n = ny we have T(n) < ¢ - f(n).

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0and ny = 0
such that for all n = ny we have T(n) < ¢ - f(n).

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0and ny = 0
such that for all n = ny we have T(n) < ¢ - f(n).

Lower bounds. T(n) is C2(f(n)) if there exist constants ¢ > 0and ny = 0
such that for all n = ny we have T(n) = c - f(n).

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0and ny = 0
such that for all n = ny we have T(n) < ¢ - f(n).

Lower bounds. T(n) is C2(f(n)) if there exist constants ¢ > 0and ny = 0
such that for all n = ny we have T(n) = c - f(n).

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0and ny = 0
such that for all n = ny we have T(n) < ¢ - f(n).

Lower bounds. T(n) is C2(f(n)) if there exist constants ¢ > 0and ny = 0
such that for all n = ny we have T(n) = c - f(n).

Tight bounds. T(n) is O(f(n)) if T(n) is both O(f(n)) and Q(f(n)).

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0and ny = 0
such that for all n = ny we have T(n) < ¢ - f(n).

Lower bounds. T(n) is C2(f(n)) if there exist constants ¢ > 0and ny = 0
such that for all n = ny we have T(n) = c - f(n).

Tight bounds. T(n) is O(f(n)) if T(n) is both O(f(n)) and Q(f(n)).

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0and ny = 0
such that for all n = ny we have T(n) < ¢ - f(n).

Lower bounds. T(n) is C2(f(n)) if there exist constants ¢ > 0and ny = 0
such that for all n = ny we have T(n) = c - f(n).

Tight bounds. T(n) is O(f(n)) if T(n) is both O(f(n)) and Q(f(n)).

Ex: T(n) =32n?+ |7n + 32.

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0and ny = 0
such that for all n = ny we have T(n) < ¢ - f(n).

Lower bounds. T(n) is C2(f(n)) if there exist constants ¢ > 0and ny = 0
such that for all n = ny we have T(n) = c - f(n).

Tight bounds. T(n) is O(f(n)) if T(n) is both O(f(n)) and Q(f(n)).

Ex: T(n) =32n?+ |7n + 32.
= T(n) is O(n2), O(n3), Q(n?), Q(n),and O(n?) .

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0and ny = 0
such that for all n = ny we have T(n) < ¢ - f(n).

Lower bounds. T(n) is C2(f(n)) if there exist constants ¢ > 0and ny = 0
such that for all n = ny we have T(n) = c - f(n).

Tight bounds. T(n) is O(f(n)) if T(n) is both O(f(n)) and Q(f(n)).

Ex: T(n) =32n?+ |7n + 32.
= T(n) is O(n?), O(n3), Q(n?), Q(n),and O(n?) .
= T(n) is not O(n), Q(n3), O(n), or O(n3).

Asymptotic order of Growth
and Notation

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ >0 and ny = 0
such that for all n = ny we have T(n) < c -f(n).

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ >0 and ny = 0
such that for all n = ny we have T(n) < c -f(n).

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ >0 and ny = 0
such that for all n = ny we have T(n) < c -f(n).

Lower bounds. T(n) is (f(n)) if there exist constants ¢ > 0and n, = 0
such that for all n = ny we have T(n) = ¢ -f(n).

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ >0 and ny = 0
such that for all n = ny we have T(n) < c -f(n).

Lower bounds. T(n) is (f(n)) if there exist constants ¢ > 0and n, = 0
such that for all n = ny we have T(n) = ¢ -f(n).

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ >0 and ny = 0
such that for all n = ny we have T(n) < c -f(n).

Lower bounds. T(n) is (f(n)) if there exist constants ¢ > 0and n, = 0
such that for all n = ny we have T(n) = ¢ -f(n).

Ex: T(n)=32n>+ |7n + 32.

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ >0 and ny = 0
such that for all n = ny we have T(n) < c -f(n).

Lower bounds. T(n) is (f(n)) if there exist constants ¢ > 0and n, = 0
such that for all n = ny we have T(n) = ¢ -f(n).

Ex: T(n)=32n>+ |7n + 32.

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ >0 and ny = 0
such that for all n = ny we have T(n) < c -f(n).

Lower bounds. T(n) is (f(n)) if there exist constants ¢ > 0and n, = 0
such that for all n = ny we have T(n) = ¢ -f(n).

Ex: T(n)=32n>+ |7n + 32.

= T(n) is O(nz) since there exists ¢ = 81 and ny = |
such that for all n = | we have T(n) < 32nt + 17n% + 32n% = 8In

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ >0 and ny = 0
such that for all n = ny we have T(n) < c -f(n).

Lower bounds. T(n) is (f(n)) if there exist constants ¢ > 0and n, = 0
such that for all n = ny we have T(n) = ¢ -f(n).

Ex: T(n)=32n>+ |7n + 32.

= T(n) is O(nz) since there exists ¢ = 81 and ny = |
such that for all n = | we have T(n) < 32nt + 17n% + 32n% = 8In

= T(n)is Q(nz) since there exists ¢ = | and n, = 0

such that for all n = 0 we have T(n) > n’.

Asymptotic order of Growth
and Notation

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ >0 and ny = 0
such that for all n = ny we have T(n) < c -f(n).

Lower bounds. T(n) is (f(n)) if there exist constants ¢ > 0and n, = 0
such that for all n = ny we have T(n) = ¢ -f(n).

Ex: T(n)=32n>+ |7n + 32.

= T(n) is O(nz) since there exists ¢ = 81 and ny = |
such that for all n = | we have T(n) < 32nt + 17n% + 32n% = 8In

= T(n)is Q(nz) since there exists ¢ = | and n, = 0

such that for all n = 0 we have T(n) > n’.

" T(n) is not O(n) since for all ¢ > 0 and n, = 0 there exists n = [c+ l/c+ n0-|
such that T(n) > 32(c+1/c+ny)” + 1 7(c+1/c+ny) + 32 = ¢* + cony + 32 = cn.

Asymptotic Notation

Asymptotic Notation

Frequent Abuse of notation. T(n) = O(f(n)).

Asymptotic Notation

Frequent Abuse of notation. T(n) = O(f(n)).
* Not transitive:

Asymptotic Notation

Frequent Abuse of notation. T(n) = O(f(n)).

= Not transitive:
—f(n) = 5n3%; g(n) = 3n?

Asymptotic Notation

Frequent Abuse of notation. T(n) = O(f(n)).
* Not transitive:

—f(n) = 5n3%; g(n) = 3n?

—f(n) = O(n?) and g(n) = O(n3)

Asymptotic Notation

Frequent Abuse of notation. T(n) = O(f(n)).
* Not transitive:

—f(n) = 5n3%; g(n) = 3n?

—f(n) = O(n?) and g(n) = O(n3)

- but f(n) # g(n) and f(n) # O(g(n)).

Asymptotic Notation

Frequent Abuse of notation. T(n) = O(f(n)).
* Not transitive:
—f(n) = 5n3%; g(n) = 3n?
—f(n) = O(n?) and g(n) = O(n3)
- but f(n) # g(n) and f(n) # O(g(n)).
= Better notations: T(n) € O(f(n)), T(n) is O(f(n)).

Asymptotic Notation

Frequent Abuse of notation. T(n) = O(f(n)).
* Not transitive:
—f(n) = 5n3%; g(n) = 3n?
—f(n) = O(n?) and g(n) = O(n3)
- but f(n) # g(n) and f(n) # O(g(n)).
= Better notations: T(n) € O(f(n)), T(n) is O(f(n)).

Asymptotic Notation

Frequent Abuse of notation. T(n) = O(f(n)).
* Not transitive:
—f(n) = 5n3%; g(n) = 3n?
—f(n) = O(n?) and g(n) = O(n3)
- but f(n) # g(n) and f(n) # O(g(n)).
= Better notations: T(n) € O(f(n)), T(n) is O(f(n)).

Meaningless statement. "Any comparison-based sorting algorithm requires at
least O(n log n) comparisons.”

Asymptotic Notation

Frequent Abuse of notation. T(n) = O(f(n)).
* Not transitive:
—f(n) = 5n3%; g(n) = 3n?
—f(n) = O(n?) and g(n) = O(n3)
- but f(n) # g(n) and f(n) # O(g(n)).
= Better notations: T(n) € O(f(n)), T(n) is O(f(n)).

Meaningless statement. "Any comparison-based sorting algorithm requires at
least O(n log n) comparisons.”

= Statement doesn't "type-check".

Asymptotic Notation

Frequent Abuse of notation. T(n) = O(f(n)).
* Not transitive:
—f(n) = 5n3%; g(n) = 3n?
—f(n) = O(n?) and g(n) = O(n3)
- but f(n) # g(n) and f(n) # O(g(n)).
= Better notations: T(n) € O(f(n)), T(n) is O(f(n)).

Meaningless statement. "Any comparison-based sorting algorithm requires at
least O(n log n) comparisons.”

= Statement doesn't "type-check".

* The constant function f(n)=1 is O(n log n).

Asymptotic Notation

Frequent Abuse of notation. T(n) = O(f(n)).
* Not transitive:
—f(n) = 5n3%; g(n) = 3n?
—f(n) = O(n?) and g(n) = O(n3)
- but f(n) # g(n) and f(n) # O(g(n)).
= Better notations: T(n) € O(f(n)), T(n) is O(f(n)).

Meaningless statement. "Any comparison-based sorting algorithm requires at
least O(n log n) comparisons.”

= Statement doesn't "type-check".
* The constant function f(n)=1 is O(n log n).

» Use () for lower bounds.

Asymptotic Notation

Asymptotic Notation

Transitivity.

Asymptotic Notation

Transitivity.
= |f fis O(g) and g is O(h) then f is O(h).

Asymptotic Notation

Transitivity.
= |f fis O(g) and g is O(h) then f is O(h).
= If fis (QQ(g) and g is QQ(h) then fis Q(h).

Asymptotic Notation

Transitivity.

= |f fis O(g) and g is O(h) then f is O(h).
= If fis (QQ(g) and g is QQ(h) then fis Q(h).
= If fis O(g) and g is O(h) then f is O(h).

Asymptotic Notation

Transitivity.

= |f fis O(g) and g is O(h) then f is O(h).
= If fis (QQ(g) and g is QQ(h) then fis Q(h).
= If fis O(g) and g is O(h) then f is O(h).

Asymptotic Notation

Transitivity.

= |f fis O(g) and g is O(h) then f is O(h).
= If fis (QQ(g) and g is QQ(h) then fis Q(h).
= If fis O(g) and g is O(h) then f is O(h).

Asymptotic Notation

Transitivity.

= |f fis O(g) and g is O(h) then f is O(h).
= If fis (QQ(g) and g is QQ(h) then fis Q(h).
= If fis O(g) and g is O(h) then f is O(h).

Additivity.

Asymptotic Notation

Transitivity.

= |f fis O(g) and g is O(h) then f is O(h).
= If fis (QQ(g) and g is QQ(h) then fis Q(h).
= If fis O(g) and g is O(h) then f is O(h).

Additivity.
= |f fis O(h) and g is O(h) then f + g is O(h).

Asymptotic Notation

Transitivity.

= |f fis O(g) and g is O(h) then f is O(h).
= If fis (QQ(g) and g is QQ(h) then fis Q(h).
= If fis O(g) and g is O(h) then f is O(h).

Additivity.
= |f fis O(h) and g is O(h) then f + g is O(h).
= If fis (Q(h) and g is Q)(h) then f + g is Q(h).

Asymptotic Notation

Transitivity.

= |f fis O(g) and g is O(h) then f is O(h).
= If fis (QQ(g) and g is QQ(h) then fis Q(h).
= If fis O(g) and g is O(h) then f is O(h).

Additivity.

= |f fis O(h) and g is O(h) then f + g is O(h).
= If fis (Q(h) and g is Q)(h) then f + g is Q(h).
= If fis ©(h) and g is O(h) then f + g is O(h).

Frequently Used Functions

i

can avoid specifying the base

i

log grows slower than every polynomial

I

every exponential grows faster than every polynomial

Frequently Used Functions

Polynomials. ay +a;n + ... + ajn? is O(n9) ifa, > 0.

Polynomial time. Running time is O(n9) for some constant d
independent of the input size n.

Logarithms. O(log,n) = O(log n) for any constants a,b > 0.
I

can avoid specifying the base

Logarithms. For every x > 0, log n is O(n).
I

log grows slower than every polynomial

Exponentials. For every r > | and every d > 0, ndis O(r").

I

every exponential grows faster than every polynomial

Asymptotic Notation

Sometimes one can also obtain an asymptotically tight bound directly by
computing a limit as n goes to infinity. Essentially, if the ratio of functions
f(n) and g(n) converges to a positive constant as n goes to infinity, then

f(n) is ®(g(n)).

Asymptotic Notation

Sometimes one can also obtain an asymptotically tight bound directly by
computing a limit as n goes to infinity. Essentially, if the ratio of functions
f(n) and g(n) converges to a positive constant as n goes to infinity, then

f() is ®(g(n)).

Asymptotic Notation

Sometimes one can also obtain an asymptotically tight bound directly by
computing a limit as n goes to infinity. Essentially, if the ratio of functions
f(n) and g(n) converges to a positive constant as n goes to infinity, then

f(n) is @)(g(n))
| (2 1) Let f and g »be two funcnons»that

exlsts and 15 equal to some namber c> O Then f (n) IS @(g(n))

Proof. We Wlll use the fact that the llII]lt exists and is pdsmve to show that |
f(n)is O(g(n)) and f(n)is 2(g(n)), as required by the definition of @(-).

Since

i)

= >0,
=00 g(1)

it follows from the definition of a limit that there is some ny beyond which the
ratio is always between %c and 2c. Thus, f(n) < 2cg(n) for all n > ny, which
implies that f(n) is O(g(n)); and f(n) > %cg(n) for all n > ny, which implies
that f(n)is Q(g(n)). =

Winter 2016

COMP-250: Introduction

to Computer Science
Lecture 9, February 9,2016

