
Winter 2016
COMP-250: Introduction 

to Computer Science
Lecture 9, February 9, 2016



Running Times and
Asymptotic Notation



Charles Babbage (1864)

As soon as an Analytic Engine exists, it will necessarily guide the 
future course of the science.  Whenever any result is sought by its 
aid, the question will arise - By what course of calculation can 
these results be arrived at by the machine in the shortest time?

- Charles Babbage

Analytic Engine (schematic)

Computational Tractability



Brute force.  For many non-trivial problems, there is a natural brute force 
search algorithm that tries every possible solution.
■ Typically takes 2N time or worse for inputs of size N.
■ Unacceptable in practice.

Desirable scaling property.  When the input size doubles, the algorithm 
should only slow down by some constant factor C. 

Def.  An algorithm is poly-time if the above scaling property holds.

There exists constants a > 0 and d > 0 such that on every 
input of size N, its running time is bounded by a Nd steps.

choose C = 2d 

even worse :  N ! for some problems

Computational Tractability



Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.
■ Generally captures efficiency in practice.
■ Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on
random input as a function of input size N.
■ Hard (or impossible) to accurately model real instances by random

distributions.
■ Algorithm tuned for a certain distribution may perform poorly on other

inputs.

Worst Case Analysis



Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!
■ Although 6.02 × 1023 × N20 is technically poly-time, it would be useless in

practice.
■ In practice, the poly-time algorithms that people develop almost always

have low constants and low exponents.
■ Breaking through the exponential barrier of brute force typically exposes

some crucial structure of the problem.

Exceptions.
■ Some poly-time algorithms do have high constants and/or exponents, and

are useless in practice.
■ Some exponential-time (or worse) algorithms are widely used because

the worst-case instances seem to be rare.
simplex method 
Unix grep

Primality testing

Worst Case Polynomial-Time



125

Note: age of Universe ~ 1010 years…

Why it matters ?



Computer Science Approach 
to problem solving

If my boss / supervisor / teacher formulates a 
problem to be solved urgently, can I write a 
program to efficiently solve this problem ???



Computer Science Approach 
to problem solving

Are there some problems that cannot be 
solved at all ? and, are there problems that 
cannot be solved efficiently ??



Computer Science Approach 
to problem solving

If my boss / supervisor / teacher formulates a 
problem to be solved urgently, can I write a 
program to efficiently solve this problem ???



Asymptotic order of 
Growth and Notation



Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and n0 ≥ 0
such that for all n ≥ n0 we have T(n) ≤ c · f(n).

Lower bounds. T(n) is Ω(f(n)) if there exist constants c > 0 and n0 ≥ 0
such that for all n ≥ n0 we have T(n) ≥ c · f(n).

Tight bounds. T(n) is Θ(f(n)) if T(n) is both O(f(n)) and Ω(f(n)).

Ex: T(n) = 32n2 + 17n + 32.
■ T(n) is O(n2), O(n3),Ω(n2),Ω(n), and Θ(n2) .
■ T(n) is not O(n),Ω(n3),Θ(n), or Θ(n3).

Asymptotic order of Growth 
and Notation



Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and n0 ≥ 0
such that for all n ≥ n0 we have T(n) ≤ c · f(n).

Lower bounds. T(n) is Ω(f(n)) if there exist constants c > 0 and n0 ≥ 0
such that for all n ≥ n0 we have T(n) ≥ c · f(n).

Ex: T(n) = 32n2 + 17n + 32.

■ T(n) is O(n2) since there exists c = 81 and n0 = 1
such that for all n ≥ 1 we have T(n) ≤ 32n2 + 17n2 + 32n2 = 81n2.

■ T(n) is Ω(n2) since there exists c = 1 and n0 = 0
such that for all n ≥ 0 we have T(n) ≥ n2.

■ T(n) is not O(n) since for all c > 0 and n0 ≥ 0 there exists n = ⌈c + 1/c + n0⌉
such that T(n) > 32(c+1/c+n0)

2 + 17(c+1/c+n0) + 32 ≥ c2 + c•n0 + 32 ≥ cn.

Asymptotic order of Growth 
and Notation



Transitivity.
■ If f is O(g) and g is O(h) then f is O(h).
■ If f is Ω(g) and g is Ω(h) then f is Ω(h).
■ If f is Θ(g) and g is Θ(h) then f is Θ(h).

Additivity.
■ If f is O(h) and g is O(h) then f + g is O(h).
■ If f is Ω(h) and g is Ω(h) then f + g is Ω(h).
■ If f is Θ(h) and g is O(h) then f + g is Θ(h).

Asymptotic Notation



Polynomials. a0 + a1n + … + adnd is Θ(nd) if ad > 0.

Polynomial time. Running time is O(nd) for some constant d
independent of the input size n.

Logarithms. O(log a n) = O(log b n) for any constants a, b > 0.

Logarithms. For every x > 0, log n is O(nx).

Exponentials. For every r > 1 and every d > 0, nd is O(rn).

every exponential grows faster than every polynomial

can avoid specifying the base

log grows slower than every polynomial

Frequently Used Functions



58 Chapter 2 Basics of Algorithm Analysis

precisely up to constant factors. And as the definition of ®(-) shows, one canobtain such bounds by closing the gap between an upper bound and a lowerbound. For example, sometimes you will read a (slightly informally phrased)
sentence such as "An upper bound of O(n3) has been shown on the worst-caserunning time of the algorithm, but there is no example known on which thealgorithm runs for more than f2 (n2) steps." This is implicitly an invitation to
search for an asymptotically tight bound on the algorithm’s worst-case running
time.

Sometimes one can also obtain an asymptotically tight bound directly bycomputing a limit as n goes to infinity. Essentially, if the ratio of functionsf(n) and g(n) converges to a positive constant as n goes to infinity, then
f(n) = ®(g(n)).
(2.1) Let f and g be two functions that

lim f(n___~)
.-->~ g(n)

exists and is equal to some number c > O. Then f(n) = ®(g(n)).
Proof. We will use the fact that the limit exists and is positive to show that
f(n) = O(g(n)) and f(n) = S2(g(n)), as re.quired by the definition of ®(.).

Since

lira f(n) = c > 0,n-+oo g(n)
it follows from the definition of a limit that there is some no beyond which the
ratio is always between ½c and 2c. Thus, f(n) < 2cg(n) for all n >_ no, whichimplies that f(n) = O(g(n)); and [(n) >_ ½cg(n) for all n >_ no, which impliesthat [(n) = ~(g(n)). []

Properties of Asymptotic Growth Rates
Having seen the definitions of O, S2, and O, it is useful to explore some of their
basic properties.
Transitivity A first property is transitivity: if a function f is asymptotically
upper-bounded by a function g, and if g in turn is asymptotically upper-bounded by a function h, then f is asymptotically upper-bounded by h. A
similar property holds for lower bounds. We write this more precisely as
follows.

(z.2)
(a)
(b)

!ff = O(g) and g = O(h), then f = O(h).
If f = S2 (g) and g = ga (h), then f = ~2 (h).

2.2 Asymptotic Order of Growth

Proof. We’ll prove part (a) of this claim; the proof of part (b) is very similar.
For (a), we’re given that for some constants c and n0, we have f(n) <_ cg(n)for all n >_ n0. Also, for some (potentially different) constants c’ and n~, wehave g(n) <_ c’h(n) for all n _> n~. So consider any number n that is at least aslarge as both no and n~. We have f(n) < cg(n) < cc’h(n), and so f(n) < cc’h(n)

for all n > max(no, n~). This latter inequality is exactly what is required forshowing that f = O(h). ,,

Combining parts (a) and (b) of (2.2), we can obtain a similar resultfor asymptotically tight bounds. Suppose we know that [ = ®(g) and thatg = ®(h). Then since [ = O(g) and g = O(h), we know from part (a) that[ = O(h); since [ = S2(g) and g = S2(h), we know from part (b) that [ =It follows that [ = ® (h). Thus we have shown
(2.3) !f/=O(g) andg=®(h),thenf=®(h).
Sums of Functions It is also useful to have results that quantify the effect ofadding two functions. First, if we have an asymptotic upper bound that appliesto each of two functions f and g, then it applies to their sum.
(2.4) Suppose that f and g are two functions such that for some other function
h, we have f = O(h) and g = O(h). Then f + g = O(h).
Proof. We’re given that for some constants c and no, we have f(n) <_ Ch(n)
for all n > no. Also, for some (potentially different) constants c’ and no,

’ So consider any number n that is atwe have g(n) < c’h(n) for all n > no.
’ We have f(n) + g(n) < ch(n) + c’h(n). Thusleast as large as both no and no. _f(n) + g(n) <_ (c + c’)h(n) for all n _> max(no, n~), which is exactly what isrequired for showing that f + g = O(h). m

There is a generalization of this to sums of a fixed constant number offunctions k, where k may be larger than two. The result can be stated preciselyas follows; we omit the proof, since it is essenti!lly the same as the proof of(2.4), adapted to sums consisting of k terms rather than just two.
(2.5) Let k be a fixed constant, and let fl, f2 ..... & and h be functions such
that fi = O(h) for all i. Then fl + f2 +"" + fk = O(h).

There is also a consequence of (2.4) that covers the following kind ofsituation. It frequently happens that we’re analyzing an algorithm with twohigh-level parts, and it is easy to show that one of the two parts is slowerthan the other. We’d like to be able to say that the running time of the wholealgorithm is asymptotically comparable to the running time of the slow part.Since the overall running time is a sum of two functions (the running times of

39

is

is

is is

is
is

Asymptotic Notation



Winter 2016
COMP-250: Introduction 

to Computer Science
Lecture 9, February 9, 2016




