
Winter 2016
COMP-250: Introduction 

to Computer Science
Lecture 8, February 4, 2016

2.12More Stacks

Java Method Stack

Java Program

main() {

cool(i);

int i=5;

}

cool(int j) {

fool(k);

}

14

216

int k=7;

fool:

PC = 320

fool(int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Java Stack

2.11More Stacks

Stacks in the Java Virtual

Machine

• Each process running in a Java program has its own
Java Method Stack.

• Each time a method is called, it is pushed onto the
stack.

• The choice of a stack for this operation allows Java
to do several useful things:

- Perform recursive method calls

- Print stack traces to locate an error

• Java also includes an operand stack which is used to
evaluate arithmetic instructions, i.e.

Integer add(a, b):

OperandStack Op

Op.push(a)

Op.push(b)

temp1 ← Op.pop()

temp2 ← Op.pop()

Op.push(temp1 + temp2)

return Op.pop()

2.12More Stacks

Java Method Stack

Java Program

main() {

cool(i);

int i=5;

}

cool(int j) {

fool(k);

}

14

216

int k=7;

fool:

PC = 320

fool(int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Java Stack

2.12More Stacks

Java Method Stack

Java Program

main() {

cool(i);

int i=5;

}

cool(int j) {

fool(k);

}

14

216

int k=7;

fool:

PC = 320

fool(int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Java Stack

2.11More Stacks

Stacks in the Java Virtual

Machine

• Each process running in a Java program has its own
Java Method Stack.

• Each time a method is called, it is pushed onto the
stack.

• The choice of a stack for this operation allows Java
to do several useful things:

- Perform recursive method calls

- Print stack traces to locate an error

• Java also includes an operand stack which is used to
evaluate arithmetic instructions, i.e.

Integer add(a, b):

OperandStack Op

Op.push(a)

Op.push(b)

temp1 ← Op.pop()

temp2 ← Op.pop()

Op.push(temp1 + temp2)

return Op.pop()

2.12More Stacks

Java Method Stack

Java Program

main() {

cool(i);

int i=5;

}

cool(int j) {

fool(k);

}

14

216

int k=7;

fool:

PC = 320

fool(int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Java Stack

2.12More Stacks

Java Method Stack

Java Program

main() {

cool(i);

int i=5;

}

cool(int j) {

fool(k);

}

14

216

int k=7;

fool:

PC = 320

fool(int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Java Stack

2.11More Stacks

Stacks in the Java Virtual

Machine

• Each process running in a Java program has its own
Java Method Stack.

• Each time a method is called, it is pushed onto the
stack.

• The choice of a stack for this operation allows Java
to do several useful things:

- Perform recursive method calls

- Print stack traces to locate an error

• Java also includes an operand stack which is used to
evaluate arithmetic instructions, i.e.

Integer add(a, b):

OperandStack Op

Op.push(a)

Op.push(b)

temp1 ← Op.pop()

temp2 ← Op.pop()

Op.push(temp1 + temp2)

return Op.pop()

2.12More Stacks

Java Method Stack

Java Program

main() {

cool(i);

int i=5;

}

cool(int j) {

fool(k);

}

14

216

int k=7;

fool:

PC = 320

fool(int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Java Stack

2.12More Stacks

Java Method Stack

Java Program

main() {

cool(i);

int i=5;

}

cool(int j) {

fool(k);

}

14

216

int k=7;

fool:

PC = 320

fool(int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Java Stack

2.11More Stacks

Stacks in the Java Virtual

Machine

• Each process running in a Java program has its own
Java Method Stack.

• Each time a method is called, it is pushed onto the
stack.

• The choice of a stack for this operation allows Java
to do several useful things:

- Perform recursive method calls

- Print stack traces to locate an error

• Java also includes an operand stack which is used to
evaluate arithmetic instructions, i.e.

Integer add(a, b):

OperandStack Op

Op.push(a)

Op.push(b)

temp1 ← Op.pop()

temp2 ← Op.pop()

Op.push(temp1 + temp2)

return Op.pop()

2.12More Stacks

Java Method Stack

Java Program

main() {

cool(i);

int i=5;

}

cool(int j) {

fool(k);

}

14

216

int k=7;

fool:

PC = 320

fool(int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Java Stack

Stack

5Stacks

Application: Time Series
• The span si of a stock’s price on a certain day i is the

maximum number of consecutive days (up to the
current day) the price of the stock has been less than
or equal to its price on day i.

s6=6

s5=4

s2=1

s3=2

0 1 2 3 4 5 6

s1=1

s0=1

s4=1

6Stacks

An Inefficient Algorithm
• There is a straightforward way to compute the span

of a stock on each of n days:

Algorithm computeSpans1(P):
Input: an n-element array P of numbers such that

P[i] is the price of the stock on day i
Output: an n-element array S of numbers such that

S[i] is the span of the stock on day i
for i ← 0 to n − 1 do

k ←0
done ← false
repeat

if P[i − k] ≤ P[i] then
k ← k + 1

else
done ← true

until (k = i) or done
S[i] ← k

return S

• The running time of this algorithm is (ugh!) O(n2).
Why?

5Stacks

Application: Time Series
• The span si of a stock’s price on a certain day i is the

maximum number of consecutive days (up to the
current day) the price of the stock has been less than
or equal to its price on day i.

s6=6

s5=4

s2=1

s3=2

0 1 2 3 4 5 6

s1=1

s0=1

s4=1

7Stacks

A Stack Can Help
• We see that si on day i can be easily computed if we

know the closest day preceding i, such that the price
is greater than on that day than the price on day i. If
such a day exists, let’s call it h(i), otherwise, we
conventionally define h(i) = −1

• The span is now computed as si = i− h(i)

We use a stack to keep track of h(i)

0 1 2 3 4 5 6

8Stacks

An Efficient Algorithm
• The code for our new algorithm:

Algorithm computeSpan2(P):
Input: An n-element array P of numbers representing

stock prices
Output: An n-element array S of numbers such that

S[i] is the span of the stock on day i
Let D be an empty stack
for i ← 0 to n − 1 do
done ← false
while not(D.isEmpty() or done) do

if P[i] ≥ P[D.top()] then
D.pop()

else
done ← true

if D.isEmpty() then
h ← −1

else
h ← D.top()

S[i] ← i − h
D.push(i)

return S

• Let’s analyize computeSpan2’s run time...

7Stacks

A Stack Can Help
• We see that si on day i can be easily computed if we

know the closest day preceding i, such that the price
is greater than on that day than the price on day i. If
such a day exists, let’s call it h(i), otherwise, we
conventionally define h(i) = −1

• The span is now computed as si = i− h(i)

We use a stack to keep track of h(i)

0 1 2 3 4 5 6

Queue ADT

Queue
• A queue differs from a stack in that its

insertion and removal routines follows the
first-in-first-out (FIFO) principle.

• Elements may be inserted at any time, but
only the element which has been in the
queue the longest may be removed.

• Elements are inserted at the rear
(enqueued) and removed from the front
(dequeued).

Queue
• The queue has two fundamental methods: 

- enqueue(o): Inserts object o at rear of the queue 
- dequeue(): Removes object from front of queue
and returns it; an error occurs if queue is empty.

• These support methods should also be defined: 
- size(): Returns number of objects in the queue 
- isEmpty(): Returns a boolean value that indicates
whether the queue is empty 
- front(): Returns, but not remove, the front object
in the queue; an error occurs if queue is empty.

Queue

|•,•| |•,•| |•,•| |•,•| |•,⊠|

head tail size

|•,•,5|

Queue as
List

Array of shapes:

Size=5

0 1 2 3 4 5 6 7

[•,•,•,•,•,⊠,⊠,⊠]

Queue as Array

Array of shapes:

Size=6

0 1 2 3 4 5 6 7

[•,•,•,•,•,•,⊠,⊠]

Queue as Array

Array of shapes:

Size=5

0 1 2 3 4 5 6 7

[•,•,•,•,•,•,⊠,⊠]

Queue as Array

⤻⤻⤻⤻ ⤻

Array of shapes:

Size=5

0 1 2 3 4 5 6 7

[•,•,•,•,•,⊠,⊠,⊠]

Queue as Array

Array of shapes:

Size=5

0 1 2 3 4 5 6 7

[•,•,•,•,•,⊠,⊠,⊠]

Queue as Array

But why ??

Array of shapes:

head=1, tail=5, (size=5)

0 (H) 2 3 4 (T) 6 7

[•,•,•,•,•,•,⊠,⊠]

Queue as Array

Array of shapes:

head=3, tail=7, (size=5)

 0 1 2 (H) 4 5 6 (T)

[⊠,⊠,⊠,•,•,•,•,•]

Queue as Array

Array of shapes:

head=3, tail=7, (size=5)

 0 1 2 (H) 4 5 6 (T)

[⊠,⊠,⊠,•,•,•,•,•]

Queue as Array

FULL ??

Array of shapes:

head=3, tail=0, (size=6)

(T) 1 2 (H) 4 5 6 7.

[•,⊠,⊠,•,•,•,•,•]

Queue as Array

Array of shapes:

head=3, tail=0, (size=6)

(T) 1 2 (H) 4 5 6 7.

[•,⊠,⊠,•,•,•,•,•]

Queue as Array

NO !!

Array of shapes:

head=3, tail=2, (size=8)

 0 1 (T)(H) 4 5 6 7.

[•,•,•,•,•,•,•,•]

Queue as Array

Array of shapes:

head=3, tail=2, (size=8)

 0 1 (T)(H) 4 5 6 7.

[•,•,•,•,•,•,•,•]

Queue as Array

FULL !!

Queue as Array

 out = a[head]

 return out
}

Queue as Array

small.length-1

head = 0
tail = small.length-1
size = small.length

 |•,•,T,H|

array size length

|•,4,4|

head = 0
tail = small.length-1
size = small.length

small.length-1

 |•,•,T,H|

array size length

|•,4,4|

head = 0
tail = small.length-1
size = small.length

small.length-1

 |•,•,T,H|

array size length

|•,4,4|

head = 0
tail = small.length-1
size = small.length

small.length-1

 |H,•,•,T,⊠,⊠,⊠,⊠|

 |•,•,T,H|

array size length

|•,4,4|

head = 0
tail = small.length-1
size = small.length

small.length-1

 |H,•,•,T,⊠,⊠,⊠,⊠|

 |•,•,T,H|

array size length

|•,4,4|

head = 0
tail = small.length-1
size = small.length

small.length-1

 |H,•,•,T,⊠,⊠,⊠,⊠|

 |•,•,T,H|

array size length

|•,4,4|

head = 0
tail = small.length-1
size = small.length

small.length-1

 |H,•,•,T,⊠,⊠,⊠,⊠|

 |•,•,T,H|

array size length

|•,4,4|

head = 0
tail = small.length-1
size = small.length

small.length-1

 |H,•,•,T,⊠,⊠,⊠,⊠|

 |•,•,T,H|

array size length

|•,4,4|

head = 0
tail = small.length-1
size = small.length

small.length-1

 |H,•,•,T,⊠,⊠,⊠,⊠|

 |•,•,T,H|

array size length

|•,4,4|

head = 0
tail = small.length-1
size = small.length

small.length-1

 |H,•,•,T,⊠,⊠,⊠,⊠|

 |•,•,T,H|

array size length

|•,4,4|

head = 0
tail = small.length-1
size = small.length

small.length-1

 |H,•,•,T,⊠,⊠,⊠,⊠|

 |•,•,T,H|

array size length

|•,4,4|

head = 0
tail = small.length-1
size = small.length

small.length-1

 |H,•,•,T,⊠,⊠,⊠,⊠|

 |•,•,T,H|

array size length

|•,4,4|

head = 0
tail = small.length-1
size = small.length

small.length-1

 |H,•,•,T,⊠,⊠,⊠,⊠|

 |•,•,T,H|

array size length

|•,4,4|

head = 0
tail = small.length-1
size = small.length

small.length-1

 |H,•,•,T,⊠,⊠,⊠,⊠|

array size length

|•,4,4|

head = 0
tail = small.length-1
size = small.length

small.length-1

 |H,•,•,T,⊠,⊠,⊠,⊠|

array size length

|•,4,4|

head = 0
tail = small.length-1
size = small.length

small.length-1

 |H,•,•,T,⊠,⊠,⊠,⊠|

array size length

|•,4,4|

head = 0
tail = small.length-1
size = small.length

small.length-1

8
 |H,•,•,T,⊠,⊠,⊠,⊠|

Running Times and
Asymptotic Notation

Charles Babbage (1864)

As soon as an Analytic Engine exists, it will necessarily guide the
future course of the science. Whenever any result is sought by its
aid, the question will arise - By what course of calculation can
these results be arrived at by the machine in the shortest time?

- Charles Babbage

Analytic Engine (schematic)

Computational Tractability

Brute force. For many non-trivial problems, there is a natural brute force
search algorithm that tries every possible solution.
■ Typically takes 2N time or worse for inputs of size N.
■ Unacceptable in practice.

Desirable scaling property. When the input size doubles, the algorithm
should only slow down by some constant factor C.

Def. An algorithm is poly-time if the above scaling property holds.

There exists constants a > 0 and d > 0 such that on every
input of size N, its running time is bounded by a Nd steps.

choose C = 2d

even worse : N ! for some problems

Computational Tractability

Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.

Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.
■ Generally captures efficiency in practice.

Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.
■ Generally captures efficiency in practice.
■ Draconian view, but hard to find effective alternative.

Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.
■ Generally captures efficiency in practice.
■ Draconian view, but hard to find effective alternative.

Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.
■ Generally captures efficiency in practice.
■ Draconian view, but hard to find effective alternative.

Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.
■ Generally captures efficiency in practice.
■ Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on
random input as a function of input size N.

Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.
■ Generally captures efficiency in practice.
■ Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on
random input as a function of input size N.
■ Hard (or impossible) to accurately model real instances by random

distributions.

Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.
■ Generally captures efficiency in practice.
■ Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on
random input as a function of input size N.
■ Hard (or impossible) to accurately model real instances by random

distributions.
■ Algorithm tuned for a certain distribution may perform poorly on other

inputs.

Worst Case Analysis

Winter 2016
COMP-250: Introduction 

to Computer Science
Lecture 8, February 4, 2016

