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2) 
Write any algorithm that runs in time 𝛩(n2 log2 n) in worse case. 
Explain why this is its running time. I don’t care what it does. 
I only care about its running time…

  WhatEver(int m) 

  FOR i=1 TO m 
    FOR j=1 TO m 
        x=m; WHILE x>1 DO { x=x/2; y=m; 
                                            WHILE y>1 DO y=y/2 } 

n = |m| ~ log m. Therefore running time is 𝛩(m2 log2 m)= 𝛩(22n n2)

Comment about input size…
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1Strings and Pattern Matching

STRINGS AND PATTERN
MATCHING

• Brute Force,Rabin-Karp, Knuth-Morris-Pratt

• Regular Expressions

What’s up?

I’m looking for some string.

That’s quite a trick considering
that you have no eyes.

Oh yeah?  Have you seen your writing?
It looks like an EKG!
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The Knuth-Morris-Pratt
Algorithm

• The Knuth-Morris-Pratt (KMP) string searching
algorithm differs from the brute-force algorithm by
keeping track of information gained from previous
comparisons.

• A failure function (f) is computed that indicates how
much of the last comparison can be reused if it fails.

• Specifically, f is defined to be the longest prefix of
the pattern P[0,..,j] that is also a suffix of P[1,..,j]
- Note: not a suffix of P[0,..,j]

• Example:
- value of the KMP failure function:

• This shows how much of the beginning of the string
matches up to the portion immediately preceding a
failed comparison.
- if the comparison fails at (4), we know the a,b in

positions 2,3 is identical to positions 0,1

j 0 1 2 3 4 5
P[j] a b a b a c
f(j) 0 0 1 2 3 0
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The KMP Algorithm (contd.)
• the KMP string matching algorithm: Pseudo-Code

Algorithm KMPMatch(T,P)
Input: Strings T (text) with n characters and P

(pattern) with m characters.
Output: Starting index of the first substring of T

matching P, or an indication that P is not a
substring of T.

f ← KMPFailureFunction(P) {build failure function}
i ← 0
j ← 0
while i < n do

if P[j] = T[i] then
if j = m - 1 then

return i - m - 1 {a match}
i ← i + 1
j ← j + 1

else if j > 0 then {no match, but we have advanced}
j ← f(j-1) {j indexes just after matching prefix in P}

else
i ← i + 1

return “There is no substring of T matching P”
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The KMP Algorithm (contd.)
•The KMP failure function: Pseudo-Code

Algorithm KMPFailureFunction(P);
Input: String P (pattern) with m characters
Ouput: The faliure function f for P, which maps j to
the length of the longest prefix of P that is a suffix
of P[1,..,j]

i ← 1
j ← 0
while i ≤ m-1 do
if P[j] = P[i] then
{we have matched j + 1 characters}
f(i) ← j + 1
i ← i + 1
j ← j + 1

else if j > 0 then
{j indexes just after a prefix of P that matches}
j ← f(j-1)

else
{there is no match}
f(i) ← 0
i ← i + 1
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The KMP Algorithm (contd.)
• A graphical representation of the KMP string

searching algorithm

baaa b c

aaaaaaaa bbbb cccc aa

1 2 3 4 5 6

7

8 9 10 11 12

13

14 15 16 17 18

baaa b c

baaa b c

baaa b c

baaa b c
19

no comparison
needed here
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The KMP Algorithm (contd.)
• Time Complexity Analysis

• define k = i - j

• In every iteration through the while loop, one of
three things happens.
- 1) if T[i] = P[j], then i increases by 1, as does j

k remains the same.
- 2) if T[i] != P[j] and j > 0, then i does not change

and k increases by at least 1, since k changes
from i - j to i - f(j-1)

- 3) if T[i] != P[j] and j = 0, then i increases by 1 and
k increases by 1 since j remains the same.

• Thus, each time through the loop, either i or k
increases by at least 1, so the greatest possible
number of loops is 2n

• This of course assumes that f has already been
computed.

• However, f is computed in much the same manner as
KMPMatch so the time complexity argument is
analogous. KMPFailureFunction is O(m)

• Total Time Complexity: O(n + m)
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Regular Expressions
• notation for describing a set of strings, possibly of

infinite size

• ε denotes the empty string

• ab + c denotes the set {ab, c}

• a* denotes the set {ε, a, aa, aaa, ...}

• Examples
- (a+b)* all the strings from the alphabet {a,b}
- b*(ab*a)*b* strings with an even number of a’s
- (a+b)*sun(a+b)* strings containing the pattern

“sun”
- (a+b)(a+b)(a+b)a 4-letter strings ending in a
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Finite State Automaton
• “machine” for processing strings
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Composition of FSA’s
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