Winter 2016

COMP-250: Introduction

to Computer Science
Lecture 21, March 29,2016

INTRODUCTION TO

ALGORITHMS

THOMAS H. CORMEN

CHARLES E. LEISERSON

REOONVA N LD L RPNV RS SR

CEL IR MIOTR D TS T B SINN

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COUNTING-SORT(A, B, k)

| fori <~ 0Otok

2 do Cli] < 0

3 for j < 1tolength|A]

4 do C[A[/]] < C[A[/]] + |

5 > C[i] now contains the number of elements equal to 7.
6 fori <« ltok

7 do Cli] < Clil+C[i — 1]

8 > C|i] now contains the number of elements less than or equal to i.
9 for j < length|A] downto 1
10 do B[C[A[j]]] < A[/]
Il ClALj]] <« C[A[j]] — 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COUNTING-SORT(A, B, k)
| fori < Qtok

2 do Cli] < 0

3 for j < 1tolength|A]

4 do C[A[/]] < C[A[/]] + |

5 > C[i] now contains the number of elements equal to 7.

6 fori <« ltok

7 do Cli] < Clil+C[i — 1]

8 > C|i] now contains the number of elements less than or equal to i.
9 for j < length|A] downto 1

10 do B[C[A[j]]] < A[/]

L] CLALJ]] < Cl[A[j]] =1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COUNTING-SORT(A, B, k)

| fori <~ 0Otok

2 do Cli] < 0

3 for j < 1tolength|A]

4 do C[A[/]] < C[A[/]] + |

5 > C[i] now contains the number of elements equal to 7.
6 fori <« ltok

7 do Cli] < Clil+C[i — 1]

8 > C|i] now contains the number of elements less than or equal to i.
9 for j < length|A] downto 1
10 do B[C[A[j]]] < A[/]
Il ClALj]] <« C[A[j]] — 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COUNTING-SORT(A, B, k)

| fori < Qtok

2 do Cli] < 0

3 for j < 1tolength|A]
4
5

do C[A[j]] < C[A[j]] + |
> C[i] now contains the number of elements equal to ;.

6 fori <« ltok

7 do Cli] < Clil+C[i — 1]

8 > C|i] now contains the number of elements less than or equal to i.
9 for j < length|A] downto 1

10 do BIC[A[j]]] < A[/]

L1 ClALj]] <« C[A[j]] — 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COUNTING-SORT(A, B, k)

| fori <~ 0Otok

2 do Cli] < 0

3 for j < 1tolength|A]

4 do C[A[/]] < C[A[/]] + |

5 > C[i] now contains the number of elements equal to 7.
6 fori <« ltok

7 do Cli] < Clil+C[i — 1]

8 > C|i] now contains the number of elements less than or equal to i.
9 for j < length|A] downto 1
10 do B[C[A[j]]] < A[/]
Il ClALj]] <« C[A[j]] — 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COUNTING-SORT(A, B, k)

| fori < QOtok

2 do Cli] < 0

3 for j < 1tolength|A]

4 do C[A[/]] < C[A[/]] + |

5 © Cli] now contains the number of elements equal to /.
6 fori «— 1tok

7 do Cli] < Clil+C[i — 1]

8 > C[i] now contains the number of elements less than or equal to i.
) for j < length| A] downto |
10 do B[C[A[j]]] < A[/]
L1 ClALj]] <« C[A[j]] — 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COUNTING-SORT(A, B, k)

| fori <~ 0Otok

2 do Cli] < 0

3 for j < 1tolength|A]

4 do C[A[/]] < C[A[/]] + |

5 > C[i] now contains the number of elements equal to 7.
6 fori <« ltok

7 do Cli] < Clil+C[i — 1]

8 > C|i] now contains the number of elements less than or equal to i.
9 for j < length|A] downto 1
10 do B[C[A[j]]] < A[/]
Il ClALj]] <« C[A[j]] — 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COUNTING-SORT(A, B, k)

fori < Otok
do Cli] « 0
for j < 1 to length[A]
do C[A[j]] < C[A[j]] + |
> C[i] now contains the number of elements equal to ;.
fori <« ltok
do Cli] < Clil+C[i — 1]
> C|i] now contains the number of elements less than or equal to ;.
for j < length[A] downto 1
do B[C[A[}]]] < A[/]

|
2
3
4
5
6
7
8
9
0
|

ClALJ]] < CIA[/]] — 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COUNTING-SORT(A, B, k)

| fori <~ 0Otok

2 do Cli] < 0

3 for j < 1tolength|A]

4 do C[A[/]] < C[A[/]] + |

5 > C[i] now contains the number of elements equal to 7.
6 fori <« ltok

7 do Cli] < Clil+C[i — 1]

8 > C|i] now contains the number of elements less than or equal to i.
9 for j < length|A] downto 1
10 do B[C[A[j]]] < A[/]
Il ClALj]] <« C[A[j]] — 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1 2 3 4

Al2]s]3]0

Figure 8.2 ((The operation of COUNTING-SORT on an input array A[l..8], where each element
of A is a nonnegative integer no larger than k = 5.)(a) The array A and the auxiliary array C after
ine 4. (b) The array C after line 7. (¢)—(e) The output array B and the auxiliary array C after one,
two, and three iterations of the loop in lines 9-11, respectively. Only the lightly shaded elements of
array B have been filled in. (f) The final sorted output array B.

dpyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

fori < Otok
do C[i] < 0

for j < 1to length[A]
do C[A[j]] < C[A[j]] + 1

> C[i] now contains the number of elements equal to

4
do Cli] < Cl[i]l+C[i — 1]
& C[i] now contains the number of elements less than or equal to ;.
for j < length[A] downto 1
do BC[ALj]]] < A[/]
CIA[j]] < CIA[j]] -1

- - --- - — —

cl2]of2]3|o]1

(a)

Figure 8.2 The operation of COUNTING-SORT on an input arrav A[l ..
I§ a nonnegative integer no larger than k = 5.((a) The array A and the auxiliary array C after
line 4. Jb) The array C after line 7. (¢)—(e) The output array ¢ auxiliary array C after one,
two, and three iterations of the loop in lines 9-11, respectively. Only the lightly shaded elements of
array B have been filled in. (f) The final sorted output array B.

COU":""NG'SORT(A' Bk Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
I fori < Otok
do C[i] < 0
for j < 1to length[A]
do C[A[/j]] < C[A[j]] + 1

~

2
3
4

fori < ltok
do Cli] < Cl[i]l+C[i — 1]
> C[i] now contains the number of elements less than or equal to ;.

10 do B[C[ALj]]] < A[/]
11 ClA[j]] < CIA[j]] =1

O 1 2 3 4 35

cl2]2]a]7]7]8

Figure 8.2 The operation of COUNTING-SORT on an input array A[l..8], where each element
of A is jeeative nteoer arger than k = 5. (a) The array A and the auxiliary array C after
line 4((b) The array C after line 7. fc)—(e) The output array B and the auxiliary array C after one,
two, and three iterations of the loop in lines 9-11, respectively. Only the lightly shaded elements of
array B have been filled in. (f) The final sorted output array B.

COUNTING-SORT(4, B, k) Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 4 5

fori <~ Otok
do C[i] < 0
for j < 1to length[A]
do C[A[j]] <« C[A[/]] + 1
> C[i] now contains the number of elements|
fori <« ltok
do Cli] < Clil|+C[i — 1]

1
2
3
4
5
6
7

for j - length[A] downto 1
do B[C[AL[j]]] < Al/]

CIA[j]] < CIA[j]]) -1

Figure 8.2 The operation of COUNTING-SORT on an input array A[l..8], where each element
of A is a nonnegative integer no larger than k = 5. (a) The array A and the auxiliarv array C after
line 4. (b) The array C after line 7.((¢)—=(e) The output array B and the auxiliary array C after one
two, and three iterations of the loop in lines 9-11, respectively. Only the lightly shaded elements of
array B have been filled . ¢ final sorted output array B.

-

-

COUNTING-SORT(4, B, k) Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 4 5 6

fori <~ Otok
do C[i] < 0
for j < 1to length[A]
do C[A[j]] <« C[A[/]] + 1
> C[i] now contains the number of elements|
fori <« ltok
do Cli] < Clil|+C[i — 1]

1
2
3
4
5
6
7

for j - length[A] downto 1
do B[C[A[j]]] < A[/]

CIA[j]] < CIA[j]]) -1

Figure 8.2 The operation of COUNTING-SORT on an input array A[l..8], where each element
of A is a nonnegative integer no larger than k = 5. (a) The array A and the auxiliary array C after
line 4. (b) The array C after line 7.((c)—(e) The output array B and the auxiliary array C after one
two, and three iterations of the loop in lines 9-11, respectively. Only the lightly shaded elements of
array ave been filled in. ¢ final sorted output array B.

-

-

COUNTING-SORT(4, B, k) Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 4 5 6

do C[i] < 0
for j < 1to length[A]
do C[A[j]] <« C[A[/]] + 1
> C[i] now contains the number of elementf
fori <« ltok
do Cli] < Clil|+C[i — 1]

1
2
3
4
5
6
7

for j - length[A] downto 1
do B[C[A[j]]] < A[/]

CIA[j]] < CIA[j]]) -1

Figure 8.2 The operation of COUNTING-SORT on an input array A[l..8], where each element
of A is a nonnegative integer no larger than k = 5. (a) The array A and the auxiliary array C after
line 4. (b) The array C after line 7.((c)—(e) The output array B and the auxiliary array C after one
two, and three iterations of the loop in lines 9-11, respectively. Only the lightly shaded elements of
array ave been filled in. ¢ final sorted output array B.

-

-

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 8.2 The operation of (‘OUNTING-SOR‘I‘ on an input array A[l..8], where each element
of A is a nonnegative integer no larger than k£ = 5. (a) The array A and the auxiliary array C after
line 4. (b) The array C after line 7. (c)—(e) The output array B and the auxiliary array C after one,

two, and three iterations of Ee Only the lightly shaded elements of
(f) The final sorted output array B.

array B have been filled in

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Radix sort

How IBM made its money. Punch card readers for census tabulation in early
1900’s. Card sorters, worked on one column at a time. It’s the algorithm for
using the machine that extends the technique to multi-column sorting. The human
operator was part of the algorithm!

Key idea: Sort least significant digits first.

329 720 720 329
457 359 329 355
657 436 436 436
839 wnuiin: 457 s e 839 e e 457
436 657 355 657
720 329 457 720
355 839 657 839

Figure 8.3 The operation of radix sort on a list of seven 3-digit numbers. The leftmost column is
the input. The remaining columns show the list after successive sorts on increasingly significant digit
positions. Shading indicates the digit position sorted on to produce each list from the previous one.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

RADIX-SORT(A, d)

| fori < 1tod
2 do use a stable sort to sort array A on digit i

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Correctness:

* Induction on number of passes (i in pseudocode).
* Assume digits 1,2, ...,7 — 1 are sorted.
* Show that a stable sort on digit i leaves digits 1, ..., i sorted:

« If 2 digits 1n position ; are different, ordering by position 7 1s correct, and
positions 1, ...,i — 1 are irrelevant.

« If 2 digits in position i are equal, numbers are already 1n the right order (by
inductive hypothesis). The stable sort on digit i leaves them in the right
order.

This argument shows why it’s so important to use a stable sort for intermediate
SOrt.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

RADIX-SORT(A, d)

| fori <« 1tod
2 do use a stable sort to sort array A on digit i

Analysis: Assume that we use counting sort as the intermediate sort.

* ©O(n+ k) per pass (digits in range O, ..., k)
* d passes

* O+ k)) total

« Iftk=0(n), time = O(dn).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

How to break each key into digits?

n words.

b bits/word.

Break into r-bit digits. Have d = [b/r].

Use counting sort, k = 2" — 1.

Example: 32-bit words, 8-bit digits. b = 32, r = 8,d = [32/8] = 4,k =
28 — 1 = 255,

Time = ©(2 (n +2")).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

How to break each key into digits?

n words.

b bits/word.

Break into r-bit digits. Have d = [b/r].

Use counting sort, k = 2" — 1.

Example: 32-bit words, 8-bit digits. b = 32, r = 8,d = [32/8] = 4,k =
28 — 1 = 255,

Time = ©(2 (n +2")).

How to choose r? Balance b/r and n + 2'. Choosing r =~ lIgn gives us

O (55 (n+n)) = O(bn/Ign).

¢

« If wechooser <lgn,thenb/r > b/lgn, and n 4+ 2" term doesn’t improve.

- If we choose r > lgn, then n 4+ 2" term gets big. Example: r = 2lgn =
gL 22lgn — (2lgn)2 — n2.

So, to sort 2! 32-bit numbers, use r = 1g2!® = 16 bits. [b/r] = 2 passes.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Compare radix sort to merge sort and quicksort:
- 1 million (2%°) 32-bit integers.

« Radix sort: [32/20] = 2 passes.

* Merge sort/quicksort: lg n = 20 passes.

* Remember, though, that each radix sort “pass”™ 1s really 2 passes—one to take
census, and one to move data.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Compare radix sort to merge sort and quicksort:
- 1 million (2%°) 32-bit integers.

« Radix sort: [32/20] = 2 passes.

* Merge sort/quicksort: lg n = 20 passes.

* Remember, though, that each radix sort “pass”™ 1s really 2 passes—one to take
census, and one to move data.

Uses 65536 memory cells, however...

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Compare radix sort to merge sort and quicksort:
- 1 million (2%°) 32-bit integers.

« Radix sort: [32/20] = 2 passes.

* Merge sort/quicksort: lg n = 20 passes.

* Remember, though, that each radix sort “pass”™ 1s really 2 passes—one to take
census, and one to move data.

Uses 65536 memory cells, however...

How does radix sort violate the ground rules for a comparison sort?

« Using counting sort allows us to gain information about keys by means other
than directly comparing 2 keys.

* Used keys as array indices.

Winter 2016

COMP-250: Introduction

to Computer Science
Lecture 21, March 29,2016

