Winter 2016

COMP-250: Introduction

to Computer Science
Lecture 20, March 24,2016

Public Announcement

GETTING YOUR DREAM TECH
INTERNSHIP

MARCH 29™ 6PM-7:30PM
TROTTIER 0070

COME LEARN HOW TO APPLY TO COMPANIES, PREPARE FOR INTERVIEWS, AND WHAT
COURSES TO TAKE! PRESENTED BY SUCCESSFUL INTERNS:

ﬁ m\ ‘ Lucille Hua Michael Ho Kevin Luk
, 2 @ CS U3 ‘ Soft. Eng. U3 CS/Bio U3
gl Airbnb, Facebook, Knewton, SAP,
Google, Sony Apple, CIHR

Ericsson

Microsoft, Yahoo

Public Announcement

Course : ' | T Title: '
COMP 250 Sect: 1 Intro to Computer Science

Exam Date: Exam Time:
4/28/2016 2:00:00 PM

JUSWIddUNOUUY dljignd

HEAPS 1

e Insertion and Deletion

* Heaps
e Properties

600 0

O 0900 ©

o ® o

Jee O .. o)

000 O O

0 oooooooomwoo 00 o
X I 1O OOOO.. O o00’e ©
0..080. o0 %% O

°
OOO OOOAWU O g000® OO
OOOO 0 ~%0 o©
a0 000 0o
O o 0°0®0
O'®g0®0
OO.OO
o ®0
o0 O..O
5009 .0°0-050.00

O 0 ¢2520 ¢® (o)
Oouwooo&woooo %90 00 00q
O TRl 982 o e0064°0
o'e Poesde O oot 0 o008 oo O
oS2,0° 000 O oooopwooo
©0o 000 092986000 ©
0930933
0.00..O% OO.. o)
000 0 09000 00 o
o 0 0000 e® O
(0] Oo
02 0g %% ©

Heaps

* A heap is a binary tree T that stores a collection of

keys (or key-element pairs) at its internal nodes and
that satisfies two additional properties:

- Order Property: key(parent) < key(child)

- Structural Property: all levels are full, except the
last one, which is left-filled (complete binary tree)

Not Heaps

e bottom level is not left-filled

Not Heaps

e key(parent)> key(child)

Height of a Heap

A heap T storing n keys has height h =[log(n + 1) |,
which 1s O(log n)

e n>14+24+4+.. . +2M2 1 =01 _141=2m1

Height of a Heap
en<1+2+4+.. 42 =201

0 (4
1 (5) (6
h—2 (15) (9) (7) (20)

h=1 (@ @& O @ W G 6
h

e Therefore 271 <n<2"-1
e Taking logs, we getlog(n+ 1)<h<logn+ 1
e Which implies & =[log(n+1) |

Heap Insertion

So here we go ...

The key to insert is 6

Heap Insertion

Add the key in the next available position in the
heap.

21 OEENCOEENO

) @) 1) 19C) (6

Now begin Upheap.

Upheap

* Swap parent-child keys out of order

Upheap

* Swap parent-child keys out of order

Upheap Continues

Upheap Continues

End of Upheap

2 @0 19 @
/LN A

e Upheap terminates when new key is greater
than the key of 1ts parent or the top of the heap
1s reached

 (total #swaps) < (h — 1), which 1s O(log n)

Removal From a Heap
RemoveMin()

3
\
@

2 @B O® @

* The removal of the top key leaves a hole
* We need to fix the heap

e First, replace the hole with the last key in
the heap

e Then, begin Downheap

Downheap

Downheap

22 1925

Downheap compares the parent with the smallest
child. If the child 1s smaller, 1t switches the two.

Downheap Continues

Downheap Continues

Downheap Continues

Downheap Continues

End of Downheap

O
(10 O

21 OO O
) @@ O

 Downheap terminates when the key is greater
than the keys of both its children or the bottom
of the heap is reached.

* (total #swaps) < (h— 1), which 1s O(log n)

HEAPS 11

* Implementation

e HeapSort

* Bottom-Up Heap Construction

o O O
)
Ce® 00 o
oo....o. OO mu
0 0030 @ o
o4 Jolor YoleY) 00 o
0 000 00 ® ® o Ole ©
X X J® @ O~ Q85597¢% ©
00 0go0% 00 S5
X Y OOooo@umoooooo
Bt X O~ O 03683%° O
o OOOO O go00® OO
oo o OO ceo OO
0058 °°
C o090
O'®g0®0
OO.OO
O.O
0O O..O
0“ed0, O @2
0O _ 030
Q% 02e05 00
0O 0“00“000 O.® o
o) 0000%000000 wOO
O“Owooonww ooonnuu o0 °° %0005,
000 020 F8° o q0004 0O

e | ocators

0@e0 O 000 (0)
080 Odeeoo e’
OF0coeeege® O
%"ooooooo
oooooo ©000°

o

Implementation of a Heap

public class HeapPriorityQueue implements PriorityQueue
{
BinaryTree T;

Position last;
Comparator comparator;

-
(= (S
heap last

Implementation of a Heap(cont.)

* Two ways to find the insertion position z in a heap:

Implementation of a Heap(cont.)

e Two ways to find the insertion position z in a heap:

Vector Based Implementation

e Updates in the underlying tree occur only at the “last
element”

* A heap can be represented by a vector, where the
node at rank 7 has

- left child at rank 2 and

- right child at rank 27 + 1
1

Vector Based Implementation

3 9 10 11 12 13

* The leaves do no need to be explicitly stored

e Insertion and removals into/from the heap
correspond to insertLast and removelLast on the
vector, respectively

Heap Sort

e All heap methods run in logarithmic time or better

e If we implement PriorityQueueSort using a heap for
our priority queue, insertltem and removeMin each
take O(log k), k being the number of elements in the
heap at a given time.

* We always have at most n elements in the heap, so

the worst case time complexity of these methods 1s
O(log n).

e Thus each phase takes O(n log n) time, so the
algorithm runs in O(n log n) time also.

e This sort 1s known as heap-sort.

e The O(n log n) run time of heap-sort 1s much better
than the O(n) run time of selection and insertion
sort.

In-Place Heap-Sort

* Do not use an external heap

 Embed the heap into the sequence, using the vector
representation

Bottom-Up Heap Construction

e build (n + 1)/2 trivial one-element heaps

¢~ D
\ \

/’ \\
\ \)
/ /
P REN AN
/ \ /7 N
/7 \ /7 S
<7 /7
¢ VA e~ s ‘
\ \ \
> - ~. > -
/ \ \ / \ /

ReERAREq

Bottom-Up Heap Construction

* now build three-element heaps on top of them

A B 4

Bottom-Up Heap Construction

e downheap to preserve the order property

-~

\N_ / A\ 4
7 = N\ AN
/7 \ 7/ \
/7 \ 7/ N\
I/ \I I/ ?I

Bottom-Up Heap Construction

* now form seven-element heaps

Bottom-Up Heap Construction
(cont.)

Bottom-Up Heap Construction
(cont.)

(15, (50 (74 20
19 @ () @ W &) @ @

Bottom-Up Heap Construction
(cont.)

(15, (9 (74 20
19 @ W @ W &) @ @

The End

Analysis of Bottom-Up Heap
Construction

* Proposition: Bottom-up heap construction with n
keys takes O(n) time.

- Insert (n +
- Insert (n +

1)/2 nod
)/4 noc

- Insert (n +

es
es and downheap them

)/8 nod

es and downheap them

* n 1nserts, n/2 upheaps with total O(n) running time

INTRODUCTION TO

ALGORITHMS

THOMAS H. CORMEN

CHARLES E. LEISERSON

R ORNTA LD T REENVEE=-S T E

CHLLE7RT M EOTR DT ST T OB EINN

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 8.1 The decision tree for insertion sort operating on three elements. An internal node an-
notated by i:j indicates a comparison between «; and a j- A leaf annotated by the permutation
(r(1), m(2), ..., m(n)) indicates the ordering a(j) < Ax(2) < -+ =< Az(p)- The shaded path indi-
cates the decisions made when sorting the input sequence (a; = 6, a) = 8, a3 = 5); the permutation
(3, 1, 2) at the leaf indicates that the sorted orderingisaz =5 <a) =6 <ay = 8. Thereare 3! = 6
possible permutations of the input elements, so the decision tree must have at least 6 leaves.

(a1,a2,a3) (ai,a3,a2)
(a2,a1,a3) (a2,a3,ar)
(a3z,a1,22) (az,az,a1)

(31,32,33) @ (32,31,33)
(a1,a3,a2) (a2,a3,a1)
(as,a1,a2) > (as,az,ai)

(23 =D

< . (a1,a3,a2) < (a2,33,a1)
~ (a3,ai,az) — (a3,a2,a1)
(a1,a2,a3) @ (a2,a1,a3) m

N

>

> =~

<

(ara2.23)

{an.aa3)

(a,2,05))

(ara2,23)

(an,az,a3) N ' (an,a2,33) (an,az,a3)
.
(arazas)
(an,a2,a3)
(ana2,23) (an,aza3)

" N!/2
N!/2 ‘

log N! € B(N log N) \

{an,azas)
S

/ (@ nz.m)/ (anaras)
(a1a2.a3) (a1,a2,a3) {a1,22,3) N » —
.
— . - \

(aranas) (ananas) (@anay (an.anas)
(a1,a2,a3) (a,a2,a3)
— ~ S~— — - - —

/

/)
/ {ar,a2,a3) (@) P
a.3)
/ (ana2,23) (T ors |
) (araz,a3) (an,az,as)
— — - -
—

13
=
(araz,23)
(an,azaz)
) (an,az,a3) (arazas) (a,az,a3)
Ja2,83) [CIREXD L
(ana,

(ara2.a3)
S—

S S— S

S—

Winter 2016

COMP-250: Introduction

to Computer Science
Lecture 20, March 24,2016

Hardik Omar Faiz Lekan

Faizy Chris David B. David B.R.
DoYeon

