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HEAPS 1

e Insertion and Deletion

* Heaps
e Properties
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Heaps

* A heap is a binary tree T that stores a collection of

keys (or key-element pairs) at its internal nodes and
that satisfies two additional properties:

- Order Property: key(parent) < key(child)

- Structural Property: all levels are full, except the
last one, which is left-filled (complete binary tree)




Not Heaps

e bottom level is not left-filled




Not Heaps

e key(parent)> key(child)




Height of a Heap

A heap T storing n keys has height h =[log(n + 1) |,
which 1s O(log n)

e n>14+24+4+.. . +2M2 1 =01 _141=2m1




Height of a Heap
en<1+2+4+.. 42 =201
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e Therefore 271 <n<2"-1
e Taking logs, we getlog(n+ 1)<h<logn+ 1
e Which implies & =[log(n+1) |




Heap Insertion

So here we go ...

The key to insert is 6




Heap Insertion

Add the key in the next available position in the
heap.
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Now begin Upheap.




Upheap

* Swap parent-child keys out of order




Upheap

* Swap parent-child keys out of order




Upheap Continues




Upheap Continues




End of Upheap
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e Upheap terminates when new key is greater
than the key of 1ts parent or the top of the heap
1s reached

 (total #swaps) < (h — 1), which 1s O(log n)




Removal From a Heap
RemoveMin()
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* The removal of the top key leaves a hole
* We need to fix the heap

e First, replace the hole with the last key in
the heap

e Then, begin Downheap




Downheap




Downheap

22 1925

Downheap compares the parent with the smallest
child. If the child 1s smaller, 1t switches the two.




Downheap Continues




Downheap Continues




Downheap Continues




Downheap Continues




End of Downheap
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 Downheap terminates when the key is greater
than the keys of both its children or the bottom
of the heap is reached.

* (total #swaps) < (h— 1), which 1s O(log n)
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* Implementation

e HeapSort

* Bottom-Up Heap Construction
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Implementation of a Heap

public class HeapPriorityQueue implements PriorityQueue
{
BinaryTree T;

Position last;
Comparator comparator;

-
(= (S
heap last




Implementation of a Heap(cont.)

* Two ways to find the insertion position z in a heap:




Implementation of a Heap(cont.)

e Two ways to find the insertion position z in a heap:




Vector Based Implementation

e Updates in the underlying tree occur only at the “last
element”

* A heap can be represented by a vector, where the
node at rank 7 has

- left child at rank 2 and

- right child at rank 27 + 1
1




Vector Based Implementation

3 9 10 11 12 13

* The leaves do no need to be explicitly stored

e Insertion and removals into/from the heap
correspond to insertLast and removelLast on the
vector, respectively




Heap Sort

e All heap methods run in logarithmic time or better

e If we implement PriorityQueueSort using a heap for
our priority queue, insertltem and removeMin each
take O(log k), k being the number of elements in the
heap at a given time.

* We always have at most n elements in the heap, so

the worst case time complexity of these methods 1s
O(log n).

e Thus each phase takes O(n log n) time, so the
algorithm runs in O(n log n) time also.

e This sort 1s known as heap-sort.

e The O(n log n) run time of heap-sort 1s much better
than the O(n ) run time of selection and insertion
sort.

In-Place Heap-Sort

* Do not use an external heap

 Embed the heap into the sequence, using the vector
representation




Bottom-Up Heap Construction

e build (n + 1)/2 trivial one-element heaps
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Bottom-Up Heap Construction

* now build three-element heaps on top of them
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Bottom-Up Heap Construction

e downheap to preserve the order property
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Bottom-Up Heap Construction

* now form seven-element heaps




Bottom-Up Heap Construction
(cont.)




Bottom-Up Heap Construction
(cont.)
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Bottom-Up Heap Construction
(cont.)
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The End




Analysis of Bottom-Up Heap
Construction

* Proposition: Bottom-up heap construction with n
keys takes O(n) time.

- Insert (n +
- Insert (n +

1)/2 nod
)/4 noc

- Insert (n +

es
es and downheap them

)/8 nod

es and downheap them

* n 1nserts, n/2 upheaps with total O(n) running time
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Figure 8.1 The decision tree for insertion sort operating on three elements. An internal node an-
notated by i:j indicates a comparison between «; and a j- A leaf annotated by the permutation
(r(1), m(2), ..., m(n)) indicates the ordering a(j) < Ax(2) < -+ =< Az(p)- The shaded path indi-
cates the decisions made when sorting the input sequence (a; = 6, a) = 8, a3 = 5); the permutation
(3, 1, 2) at the leaf indicates that the sorted orderingisaz =5 <a) =6 <ay = 8. Thereare 3! = 6
possible permutations of the input elements, so the decision tree must have at least 6 leaves.
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