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6.1Heaps I

HEAPS I
• Heaps

• Properties

• Insertion and Deletion



6.2Heaps I

Heaps
• A heap is a binary tree T that stores a collection of

keys (or key-element pairs) at its internal nodes and
that satisfies two additional properties:
- Order Property: key(parent) ≤ key(child)
- Structural Property: all levels are full, except the

last one, which is left-filled (complete binary tree)
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6.3Heaps I

Not Heaps
• bottom level is not left-filled

• key(parent)> key(child)
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6.3Heaps I

Not Heaps
• bottom level is not left-filled

• key(parent)> key(child)
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6.4Heaps I

Height of a Heap
A heap T storing n keys has height h = log(n + 1),
which is O(log n)

• n ≥ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1

• n ≤ 1 + 2 + 4 + ... +2h-1 = 2h - 1

• Therefore 2h-1 ≤ n ≤ 2h - 1

• Taking logs, we get log (n + 1) ≤ h ≤ log n + 1

• Which implies h = log(n+1)
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6.5Heaps I

3

74

21 10 20 8

22 28 13 25

Heap Insertion

So here we go ...

The key to insert is 6

19



6.6Heaps I
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Add the key in the next available position in the
heap.

Now begin Upheap.

Heap Insertion

25 6



6.7Heaps I

Upheap
• Swap parent-child keys out of order
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6.8Heaps I

Upheap Continues
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6.8Heaps I

Upheap Continues
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6.9Heaps I

• Upheap terminates when new key is greater
than the key of its parent or the top of the heap
is reached

• (total #swaps)  ≤  (h − 1), which is O(log n)
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End of Upheap



6.10Heaps I

Removal From a Heap
RemoveMin()
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6

• The removal of the top key leaves a hole
• We need to fix the heap
• First, replace the hole with the last key in

the heap
• Then, begin Downheap
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6.11Heaps I

Downheap
20
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Downheap compares the parent with the smallest
child.  If the child is smaller, it switches the two.
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6.11Heaps I
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6.12Heaps I

Downheap Continues
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6.12Heaps I

Downheap Continues
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6.13Heaps I

Downheap Continues
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6.13Heaps I
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6.14Heaps I

End of Downheap
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• Downheap terminates when the key is greater
than the keys of both its children or the bottom
of the heap is reached.

• (total #swaps)  ≤  (h − 1), which is O(log n)



6.1Heaps II

HEAPS II
• Implementation

• HeapSort

• Bottom-Up Heap Construction

• Locators



6.2Heaps II

Implementation of a Heap
public class HeapPriorityQueue implements PriorityQueue
{

BinaryTree T;
Position last;
Comparator comparator;
...

}

lastheap

(4,C)
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<
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6.3Heaps II

Implementation of a Heap(cont.)
• Two ways to find the insertion position z in a heap:
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6.3Heaps II

Implementation of a Heap(cont.)
• Two ways to find the insertion position z in a heap:

(2,C)

(4,C)

(6,Z)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (20,B) (10,L)

z

(4,C)

(6,Z)

(20,B)(7,Q)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)
w z

u
6.3Heaps II

Implementation of a Heap(cont.)
• Two ways to find the insertion position z in a heap:

(2,C)

(4,C)

(6,Z)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (20,B) (10,L)

z

(4,C)

(6,Z)

(20,B)(7,Q)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)
w z

u



6.4Heaps II

Vector Based Implementation
• Updates in the underlying tree occur only at the “last

element”

• A heap can be represented by a vector, where the
node at rank i has
- left child at rank 2i and
- right child at rank 2i + 1

• The leaves do no need to be explicitly stored

• Insertion and removals into/from the heap
correspond to insertLast and removeLast on the
vector, respectively
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6.5Heaps II

Heap Sort
• All heap methods run in logarithmic time or better

• If we implement PriorityQueueSort using a heap for
our priority queue, insertItem and removeMin each
take O(log k), k being the number of elements in the
heap at a given time.

• We always have at most n elements in the heap, so
the worst case time complexity of these methods is
O(log n).

• Thus each phase takes O(n log n) time, so the
algorithm runs in O(n log n) time also.

• This sort is known as heap-sort.

• The O(n log n) run time of heap-sort is much better
than the O(n2) run time of selection and insertion
sort.

In-Place Heap-Sort
• Do not use an external heap

• Embed the heap into the sequence, using the vector
representation



6.6Heaps II

Bottom-Up Heap Construction
• build (n + 1)/2 trivial one-element heaps

• now build three-element heaps on top of them
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6.7Heaps II

Bottom-Up Heap Construction
• downheap to preserve the order property

• now form seven-element heaps
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6.8Heaps II

Bottom-Up Heap Construction
(cont.)
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6.8Heaps II

Bottom-Up Heap Construction
(cont.)
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Bottom-Up Heap Construction
(cont.)
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6.9Heaps II

Bottom-Up Heap Construction
(cont.)

The End

4

6

207

811

5

9

1214

15

2516 23 27



6.10Heaps II

Analysis of Bottom-Up Heap
Construction

• Proposition: Bottom-up heap construction with n
keys takes O(n) time.
- Insert (n + 1)/2 nodes
- Insert (n + 1)/4 nodes and downheap them
- Insert (n + 1)/8 nodes and downheap them
- ...
- visual analysis:

• n inserts, n/2 upheaps with total O(n) running time
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Chapter 8
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