
Winter 2016
COMP-250: Introduction 

to Computer Science
Lecture 20, March 24, 2016

————— Public Announcement —————

————— ———————— —————

————— Public Announcement —————

————— ———————— —————

 ES EXAM OFFICE: EXAM.ES@MCGILL.CA TEL. 514-398-4209

FINAL EXAMINATION CHECKLIST - April 2016
A signed original plus one copy of the exam is to be delivered to the Exams Office room MS-72 (3415 McTavish).

In order to have your exam printed by the Exam Office, it must be submitted by: March 24th, 2016
Course :
 COMP 250 Sect: 1

Title:
 Intro to Computer Science

Exam Date:
 4/28/2016

Exam Time:
2:00:00 PM

Examiner: Name:
 Prof. C. Crépeau

Office #:

Email:

Examiner’s signature:

Cell #:

Associate
Examiner:

Name: Tel #: Email:

Associate Examiner’s signature:

Cell #:

INFORMATION AND AUTHORIZATION OF MATERIALS:
 1. Is this a CLOSED BOOK or OPEN BOOK exam? CLOSED OPEN

 2. Is this a MULTIPLE-CHOICE Exam? Multiple versions must be submitted, regardless of the number of
 students, questions or whether the exam is only partially multiple-choice (4 versions for enrolments of 200+). YES NO

 3. Is your MULTIPLE-CHOICE exam: ANSWER ON EXAM MACHINE SCORED ON ANSWER SHEETS

 4. If MACHINE-SCORED, number of versions: _______

 5. DICTIONARIES: Translation ONLY Regular ONLY ANY NONE

 6. CALCULATORS: Non-programmable Faculty Standard ANY NONE

 7. RETURN EXAM? If “YES”, include space for Student NAME and Student NUMBER on cover page YES NO

 8. Answer in EXAM BOOKLET YES NO

 9. Answer directly ON EXAM YES NO

10. Specify what materials are permitted (crib
 sheets/textbook/notes etc) or any SPECIAL
 REQUIREMENTS/INSTRUCTIONS
 for the exam.

 If crib sheets are permitted, please specify if they
 are typed or handwritten and if they can be
 double-sided or only single-sided.

(For office use only)

Date received:

OF PAGES:

 V1 __________ V2__________ V3__________ V4__________

 ES EXAM OFFICE: EXAM.ES@MCGILL.CA TEL. 514-398-4209

FINAL EXAMINATION CHECKLIST - April 2016
A signed original plus one copy of the exam is to be delivered to the Exams Office room MS-72 (3415 McTavish).

In order to have your exam printed by the Exam Office, it must be submitted by: March 24th, 2016
Course :
 COMP 250 Sect: 1

Title:
 Intro to Computer Science

Exam Date:
 4/28/2016

Exam Time:
2:00:00 PM

Examiner: Name:
 Prof. C. Crépeau

Office #:

Email:

Examiner’s signature:

Cell #:

Associate
Examiner:

Name: Tel #: Email:

Associate Examiner’s signature:

Cell #:

INFORMATION AND AUTHORIZATION OF MATERIALS:
 1. Is this a CLOSED BOOK or OPEN BOOK exam? CLOSED OPEN

 2. Is this a MULTIPLE-CHOICE Exam? Multiple versions must be submitted, regardless of the number of
 students, questions or whether the exam is only partially multiple-choice (4 versions for enrolments of 200+). YES NO

 3. Is your MULTIPLE-CHOICE exam: ANSWER ON EXAM MACHINE SCORED ON ANSWER SHEETS

 4. If MACHINE-SCORED, number of versions: _______

 5. DICTIONARIES: Translation ONLY Regular ONLY ANY NONE

 6. CALCULATORS: Non-programmable Faculty Standard ANY NONE

 7. RETURN EXAM? If “YES”, include space for Student NAME and Student NUMBER on cover page YES NO

 8. Answer in EXAM BOOKLET YES NO

 9. Answer directly ON EXAM YES NO

10. Specify what materials are permitted (crib
 sheets/textbook/notes etc) or any SPECIAL
 REQUIREMENTS/INSTRUCTIONS
 for the exam.

 If crib sheets are permitted, please specify if they
 are typed or handwritten and if they can be
 double-sided or only single-sided.

(For office use only)

Date received:

OF PAGES:

 V1 __________ V2__________ V3__________ V4__________

—
—

—
—

—
 P

ub
lic

 A
nn

ou
nc

em
en

t
—

—
—

—
—

—
—

—
—

—
 —

—
—

—
—

—
—

—
 —

—
—

—
—

6.1Heaps I

HEAPS I
• Heaps

• Properties

• Insertion and Deletion

6.2Heaps I

Heaps
• A heap is a binary tree T that stores a collection of

keys (or key-element pairs) at its internal nodes and
that satisfies two additional properties:
- Order Property: key(parent) ≤ key(child)
- Structural Property: all levels are full, except the

last one, which is left-filled (complete binary tree)

4

6

207

811

5

9

1214

15

2516

6.3Heaps I

Not Heaps
• bottom level is not left-filled

• key(parent)> key(child)

4

6

207

811

5

9

1214

15

2516

4

6

207

811

9

5

1214

15

2516

6.3Heaps I

Not Heaps
• bottom level is not left-filled

• key(parent)> key(child)

4

6

207

811

5

9

1214

15

2516

4

6

207

811

9

5

1214

15

2516

6.3Heaps I

Not Heaps
• bottom level is not left-filled

• key(parent)> key(child)

4

6

207

811

5

9

1214

15

2516

4

6

207

811

9

5

1214

15

2516

6.4Heaps I

Height of a Heap
A heap T storing n keys has height h = log(n + 1),
which is O(log n)

• n ≥ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1

• n ≤ 1 + 2 + 4 + ... +2h-1 = 2h - 1

• Therefore 2h-1 ≤ n ≤ 2h - 1

• Taking logs, we get log (n + 1) ≤ h ≤ log n + 1

• Which implies h = log(n+1)

4

6

207

5

915

16h − 1

0
1

h − 2

h

h − 1

0
1

h − 2

h

4

6

207

811

5

9

1214

15

2516 2231

6.4Heaps I

Height of a Heap
A heap T storing n keys has height h = log(n + 1),
which is O(log n)

• n ≥ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1

• n ≤ 1 + 2 + 4 + ... +2h-1 = 2h - 1

• Therefore 2h-1 ≤ n ≤ 2h - 1

• Taking logs, we get log (n + 1) ≤ h ≤ log n + 1

• Which implies h = log(n+1)

4

6

207

5

915

16h − 1

0
1

h − 2

h

h − 1

0
1

h − 2

h

4

6

207

811

5

9

1214

15

2516 2231

6.4Heaps I

Height of a Heap
A heap T storing n keys has height h = log(n + 1),
which is O(log n)

• n ≥ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1

• n ≤ 1 + 2 + 4 + ... +2h-1 = 2h - 1

• Therefore 2h-1 ≤ n ≤ 2h - 1

• Taking logs, we get log (n + 1) ≤ h ≤ log n + 1

• Which implies h = log(n+1)

4

6

207

5

915

16h − 1

0
1

h − 2

h

h − 1

0
1

h − 2

h

4

6

207

811

5

9

1214

15

2516 2231

6.5Heaps I

3

74

21 10 20 8

22 28 13 25

Heap Insertion

So here we go ...

The key to insert is 6

19

6.6Heaps I

3

74

21 10 20 8

22 28 13 19

Add the key in the next available position in the
heap.

Now begin Upheap.

Heap Insertion

25 6

6.7Heaps I

Upheap
• Swap parent-child keys out of order

3
74

21 10 20 8

22 28 13 19 25 6

3
74

21 10 6 8

22 28 13 19 25 20

6.7Heaps I

Upheap
• Swap parent-child keys out of order

3
74

21 10 20 8

22 28 13 19 25 6

3
74

21 10 6 8

22 28 13 19 25 20

6.7Heaps I

Upheap
• Swap parent-child keys out of order

3
74

21 10 20 8

22 28 13 19 25 6

3
74

21 10 6 8

22 28 13 19 25 20

6.8Heaps I

Upheap Continues

3
74

21 10

20

8

22 28 13 19 25

6

3
64

21 10

20

8

22 28 13 19 25

7

6.8Heaps I

Upheap Continues

3
74

21 10

20

8

22 28 13 19 25

6

3
64

21 10

20

8

22 28 13 19 25

7

6.8Heaps I

Upheap Continues

3
74

21 10

20

8

22 28 13 19 25

6

3
64

21 10

20

8

22 28 13 19 25

7

6.9Heaps I

• Upheap terminates when new key is greater
than the key of its parent or the top of the heap
is reached

• (total #swaps) ≤ (h − 1), which is O(log n)

3

7

4

21 10

20

8

22 28 13 19 25

6

End of Upheap

6.10Heaps I

Removal From a Heap
RemoveMin()

7

4

21 10 8

22 28 13 19 25

6

• The removal of the top key leaves a hole
• We need to fix the heap
• First, replace the hole with the last key in

the heap
• Then, begin Downheap

3

20

6.10Heaps I

Removal From a Heap
RemoveMin()

7

4

21 10 8

22 28 13 19 25

6

• The removal of the top key leaves a hole
• We need to fix the heap
• First, replace the hole with the last key in

the heap
• Then, begin Downheap

3

20

6.11Heaps I

Downheap
20

7

4

21 10 8

22 28 13 19 25

6

Downheap compares the parent with the smallest
child. If the child is smaller, it switches the two.

4

7

20

21 10 8

22 28 13 19 25

6

6.11Heaps I

Downheap
20

7

4

21 10 8

22 28 13 19 25

6

Downheap compares the parent with the smallest
child. If the child is smaller, it switches the two.

4

7

20

21 10 8

22 28 13 19 25

6
6.11Heaps I

Downheap
20

7

4

21 10 8

22 28 13 19 25

6

Downheap compares the parent with the smallest
child. If the child is smaller, it switches the two.

4

7

20

21 10 8

22 28 13 19 25

6

6.12Heaps I

Downheap Continues

4

7

20

21 10 8

22 28 13 19 25

6

4

7

10

21 20 8

22 28 13 19 25

6

6.12Heaps I

Downheap Continues

4

7

20

21 10 8

22 28 13 19 25

6

4

7

10

21 20 8

22 28 13 19 25

6

6.12Heaps I

Downheap Continues

4

7

20

21 10 8

22 28 13 19 25

6

4

7

10

21 20 8

22 28 13 19 25

6

6.13Heaps I

Downheap Continues

4

7

10

21 20 8

22 28 13 19 25

6

4

7

10

21 13 8

22 28 20 19 25

6

6.13Heaps I

Downheap Continues

4

7

10

21 20 8

22 28 13 19 25

6

4

7

10

21 13 8

22 28 20 19 25

6

6.13Heaps I

Downheap Continues

4

7

10

21 20 8

22 28 13 19 25

6

4

7

10

21 13 8

22 28 20 19 25

6

6.14Heaps I

End of Downheap
4

7

10

21 13 8

22 28 20 19 25

6

• Downheap terminates when the key is greater
than the keys of both its children or the bottom
of the heap is reached.

• (total #swaps) ≤ (h − 1), which is O(log n)

6.1Heaps II

HEAPS II
• Implementation

• HeapSort

• Bottom-Up Heap Construction

• Locators

6.2Heaps II

Implementation of a Heap
public class HeapPriorityQueue implements PriorityQueue
{

BinaryTree T;
Position last;
Comparator comparator;
...

}

lastheap

(4,C)

(6,Z)

(20,B)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

comp

<
=
>

6.3Heaps II

Implementation of a Heap(cont.)
• Two ways to find the insertion position z in a heap:

(2,C)

(4,C)

(6,Z)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (20,B) (10,L)

z

(4,C)

(6,Z)

(20,B)(7,Q)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)
w z

u

6.3Heaps II

Implementation of a Heap(cont.)
• Two ways to find the insertion position z in a heap:

(2,C)

(4,C)

(6,Z)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (20,B) (10,L)

z

(4,C)

(6,Z)

(20,B)(7,Q)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)
w z

u
6.3Heaps II

Implementation of a Heap(cont.)
• Two ways to find the insertion position z in a heap:

(2,C)

(4,C)

(6,Z)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (20,B) (10,L)

z

(4,C)

(6,Z)

(20,B)(7,Q)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)
w z

u

6.4Heaps II

Vector Based Implementation
• Updates in the underlying tree occur only at the “last

element”

• A heap can be represented by a vector, where the
node at rank i has
- left child at rank 2i and
- right child at rank 2i + 1

• The leaves do no need to be explicitly stored

• Insertion and removals into/from the heap
correspond to insertLast and removeLast on the
vector, respectively

1

2

5 6 7

3

4

8 9 10 11 12 13

6.4Heaps II

Vector Based Implementation
• Updates in the underlying tree occur only at the “last

element”

• A heap can be represented by a vector, where the
node at rank i has
- left child at rank 2i and
- right child at rank 2i + 1

• The leaves do no need to be explicitly stored

• Insertion and removals into/from the heap
correspond to insertLast and removeLast on the
vector, respectively

1

2

5 6 7

3

4

8 9 10 11 12 13

6.4Heaps II

Vector Based Implementation
• Updates in the underlying tree occur only at the “last

element”

• A heap can be represented by a vector, where the
node at rank i has
- left child at rank 2i and
- right child at rank 2i + 1

• The leaves do no need to be explicitly stored

• Insertion and removals into/from the heap
correspond to insertLast and removeLast on the
vector, respectively

1

2

5 6 7

3

4

8 9 10 11 12 13

6.5Heaps II

Heap Sort
• All heap methods run in logarithmic time or better

• If we implement PriorityQueueSort using a heap for
our priority queue, insertItem and removeMin each
take O(log k), k being the number of elements in the
heap at a given time.

• We always have at most n elements in the heap, so
the worst case time complexity of these methods is
O(log n).

• Thus each phase takes O(n log n) time, so the
algorithm runs in O(n log n) time also.

• This sort is known as heap-sort.

• The O(n log n) run time of heap-sort is much better
than the O(n2) run time of selection and insertion
sort.

In-Place Heap-Sort
• Do not use an external heap

• Embed the heap into the sequence, using the vector
representation

6.6Heaps II

Bottom-Up Heap Construction
• build (n + 1)/2 trivial one-element heaps

• now build three-element heaps on top of them

61216 23 204 715

27

612

25

16 23 204

5

7

11

15

6.6Heaps II

Bottom-Up Heap Construction
• build (n + 1)/2 trivial one-element heaps

• now build three-element heaps on top of them

61216 23 204 715

27

612

25

16 23 204

5

7

11

15

6.6Heaps II

Bottom-Up Heap Construction
• build (n + 1)/2 trivial one-element heaps

• now build three-element heaps on top of them

61216 23 204 715

27

612

25

16 23 204

5

7

11

15

6.7Heaps II

Bottom-Up Heap Construction
• downheap to preserve the order property

• now form seven-element heaps

20

1112

15

2516 23 275

4

7

6

20

8

1112

15

2516 23 275

9

4

7

6

6.7Heaps II

Bottom-Up Heap Construction
• downheap to preserve the order property

• now form seven-element heaps

20

1112

15

2516 23 275

4

7

6

20

8

1112

15

2516 23 275

9

4

7

6

6.7Heaps II

Bottom-Up Heap Construction
• downheap to preserve the order property

• now form seven-element heaps

20

1112

15

2516 23 275

4

7

6

20

8

1112

15

2516 23 275

9

4

7

6

6.8Heaps II

Bottom-Up Heap Construction
(cont.)

6

207

81112

15

2516 23 27

5

9

4

6

207

81112

14

15

2516 23 27

5

9

4

6.8Heaps II

Bottom-Up Heap Construction
(cont.)

6

207

81112

15

2516 23 27

5

9

4

6

207

81112

14

15

2516 23 27

5

9

4
6.8Heaps II

Bottom-Up Heap Construction
(cont.)

6

207

81112

15

2516 23 27

5

9

4

6

207

81112

14

15

2516 23 27

5

9

4

6.9Heaps II

Bottom-Up Heap Construction
(cont.)

The End

4

6

207

811

5

9

1214

15

2516 23 27

6.10Heaps II

Analysis of Bottom-Up Heap
Construction

• Proposition: Bottom-up heap construction with n
keys takes O(n) time.
- Insert (n + 1)/2 nodes
- Insert (n + 1)/4 nodes and downheap them
- Insert (n + 1)/8 nodes and downheap them
- ...
- visual analysis:

• n inserts, n/2 upheaps with total O(n) running time

4

6

207

811

5

9

1214

15

2516 23 27

6.10Heaps II

Analysis of Bottom-Up Heap
Construction

• Proposition: Bottom-up heap construction with n
keys takes O(n) time.
- Insert (n + 1)/2 nodes
- Insert (n + 1)/4 nodes and downheap them
- Insert (n + 1)/8 nodes and downheap them
- ...
- visual analysis:

• n inserts, n/2 upheaps with total O(n) running time

4

6

207

811

5

9

1214

15

2516 23 27

Chapter 8

⟨a1,a2,a3⟩

⟨a3,a1,a2⟩
⟨a1,a3,a2⟩
⟨a1,a2,a3⟩

⟨a1,a3,a2⟩ ⟨a3,a1,a2⟩

⟨a3,a1,a2⟩
⟨a1,a3,a2⟩

⟨a3,a1,a2⟩
⟨a2,a1,a3⟩
⟨a1,a2,a3⟩

⟨a3,a2,a1⟩
⟨a2,a3,a1⟩
⟨a1,a3,a2⟩

⟨a2,a1,a3⟩

⟨a3,a2,a1⟩
⟨a2,a3,a1⟩

⟨a2,a1,a3⟩

⟨a3,a2,a1⟩
⟨a2,a3,a1⟩

⟨a2,a3,a1⟩ ⟨a3,a2,a1⟩

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

N!

N!/2 N!/2

N!/4 N!/4 N!/4 N!/4

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

log N! ∈ 𝜽(N log N)

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩ ⟨a1,a2,a3⟩
⟨a1,a2,a3⟩

⟨a1,a2,a3⟩ ⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

Winter 2016
COMP-250: Introduction 

to Computer Science
Lecture 20, March 24, 2016

Hardik Omar Faiz

Faizy Chris David B. David B.R.

Lekan

DoYeon

