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Unsure of your future with your BSc?
Advice, anecdotes and guidance from
professors, graduate students, and industry
professionals who’ve “been there, done that.”
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2) 
Write any algorithm that runs in time 𝛩(n2 log2 n) in worse case. 
Explain why this is its running time. I don’t care what it does. 
I only care about its running time…

  WhatEver(int n) 

  FOR i=1 TO n 
    FOR j=1 TO n 
        x=n; WHILE x>1 DO { x=x/2; y=n; 
                                            WHILE y>1 DO y=y/2 } 

Comment about input size…



2) 
Write any algorithm that runs in time 𝛩(n2 log2 n) in worse case. 
Explain why this is its running time. I don’t care what it does. 
I only care about its running time…

  WhatEver(int[] A) 

  n = A.length; 
  FOR i=1 TO n 
    FOR j=1 TO n 
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16 configurations with 0 neighbours
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16 configurations with 38 neighbours
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1Searching

SEARCHING
• the dictionary ADT

• binary search

• binary search trees
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2Searching

The Dictionary ADT
• a dictionary is an abstract model of a database

• like a priority queue, a dictionary stores key-element
pairs

• the main operation supported by a dictionary is
searching by key

• simple container methods:
- size()
- isEmpty()
- elements()

• query methods:
- findElement(k)
- findAllElements(k)

• update methods:
- insertItem(k, e)
- removeElement(k)
- removeAllElements(k)

• special element
- NO_SUCH_KEY, returned by an unsuccessful

search
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3Searching

Implementing a Dictionary with
a Sequence

• unordered sequence

- searching and removing takes O(n) time
- inserting takes O(1) time
- applications to log files (frequent insertions, rare

searches and removals)

• array-based ordered sequence (assumes keys can be
ordered)

- searching takes O(log n) time (binary search)
- inserting and removing takes O(n) time
- application to look-up tables (frequent searches,

rare insertions and removals)
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7Searching

Binary Search Trees
• A binary search tree is a binary tree T such that

- each internal node stores an item (k, e) of a
dictionary.

- keys stored at nodes in the left subtree of v are less
than or equal to k.

- keys stored at nodes in the right subtree of v are
greater than or equal to k.

- kxternal nodes do not hold elements but serve as
place holders.
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8Searching

Search
• A binary search tree T is a decision tree, where the

question asked at an internal node v is whether the
search key k is less than, equal to, or greater than the
key stored at v.

• Pseudocode:
Algorithm TreeSearch(k, v):
Input: A search key k and a node v of a binary search

tree T.
Ouput: A node w of the subtree T(v) of T rooted at v,

such that either w is an internal node storing
key k or w is the external node encountered in
the inorder traversal of T(v) after all the inter
nal nodes with keys smaller than k and before
all the internal nodes with keys greater than k.

if v is an external node then
return v

if k = key(v) then
return v

else if k < key(v) then
return TreeSearch(k, T.leftChild(v))

else
{ k > key(v) }
return TreeSearch(k, T.rightChild(v))
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9Searching

Search Example I
• Successful findElement(76)

• A successful search traverses a path starting at the
root and ending at an internal node

• How about findAllelements(k)?
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10Searching

Search Example II
• Unsuccessful findElement(25)

• An unsuccessful search traverses a path starting at
the root and ending at an external node
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11Searching

Insertion
• To perform insertItem(k, e), let w be the node

returned by TreeSearch(k, T.root())

• If w is external, we know that k is not stored in T. We
call expandExternal(w) on T and store (k, e) in w
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12Searching

Insertion II
• If w is internal, we know another item with key k is

stored at w. We call the algorithm recursively
starting at T.rightChild(w) or T.leftChild(w)
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13Searching

Removal I
• We locate the node w where the key is stored with

algorithm TreeSearch

• If w has an external child z, we remove w and z
with removeAboveExternal(z)
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14Searching

Removal II
• If w has an no external children:

- find the internal node y following w in inorder
- move the item at y into w
- perform removeAboveExternal(x), where x is the left

child of y (guaranteed to be external)
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15Searching

Time Complexity
• A search, insertion, or removal, visits the nodes

along a root-to leaf path, plus possibly the siblings
of such nodes

• Time O(1) is spent at each node

• The running time of each operation is O(h), where h
is the height of the tree

• The height of binary serch tree is in n in the worst
case, where a binary search tree looks like a sorted
sequence

• To achive good running time, we need to keep the
tree balanced, i.e., with O(log n) height

• Various balancing schemes will be explored in the
next lectures
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6.1Heaps I

HEAPS I
• Heaps

• Properties

• Insertion and Deletion



6.2Heaps I

Heaps
• A heap is a binary tree T that stores a collection of

keys (or key-element pairs) at its internal nodes and
that satisfies two additional properties:
- Order Property: key(parent) ≤ key(child)
- Structural Property: all levels are full, except the

last one, which is left-filled (complete binary tree)
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6.3Heaps I

Not Heaps
• bottom level is not left-filled

• key(parent)> key(child)
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6.4Heaps I

Height of a Heap
A heap T storing n keys has height h = log(n + 1),
which is O(log n)

• n ≥ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1

• n ≤ 1 + 2 + 4 + ... +2h-1 = 2h - 1

• Therefore 2h-1 ≤ n ≤ 2h - 1

• Taking logs, we get log (n + 1) ≤ h ≤ log n + 1

• Which implies h = log(n+1)
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6.5Heaps I
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Heap Insertion

So here we go ...

The key to insert is 6

19



6.6Heaps I

3
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Add the key in the next available position in the
heap.

Now begin Upheap.

Heap Insertion

25 6



6.7Heaps I

Upheap
• Swap parent-child keys out of order
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6.8Heaps I

Upheap Continues
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6.9Heaps I

• Upheap terminates when new key is greater
than the key of its parent or the top of the heap
is reached

• (total #swaps)  ≤  (h − 1), which is O(log n)
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End of Upheap



6.10Heaps I

Removal From a Heap
RemoveMin()
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6

• The removal of the top key leaves a hole
• We need to fix the heap
• First, replace the hole with the last key in

the heap
• Then, begin Downheap
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6.11Heaps I

Downheap
20

7
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Downheap compares the parent with the smallest
child.  If the child is smaller, it switches the two.
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Downheap Continues
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6.14Heaps I

End of Downheap
4
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• Downheap terminates when the key is greater
than the keys of both its children or the bottom
of the heap is reached.

• (total #swaps)  ≤  (h − 1), which is O(log n)



6.1Heaps II

HEAPS II
• Implementation

• HeapSort

• Bottom-Up Heap Construction

• Locators



6.2Heaps II

Implementation of a Heap
public class HeapPriorityQueue implements PriorityQueue
{

BinaryTree T;
Position last;
Comparator comparator;
...

}

lastheap

(4,C)

(6,Z)

(20,B)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

comp

<
=
>



6.3Heaps II

Implementation of a Heap(cont.)
• Two ways to find the insertion position z in a heap:

(2,C)

(4,C)

(6,Z)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (20,B) (10,L)

z

(4,C)

(6,Z)

(20,B)(7,Q)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)
w z

u



6.4Heaps II

Vector Based Implementation
• Updates in the underlying tree occur only at the “last

element”

• A heap can be represented by a vector, where the
node at rank i has
- left child at rank 2i and
- right child at rank 2i + 1

• The leaves do no need to be explicitly stored

• Insertion and removals into/from the heap
correspond to insertLast and removeLast on the
vector, respectively
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5 6 7

3
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8 9 10 11 12 13



6.5Heaps II

Heap Sort
• All heap methods run in logarithmic time or better

• If we implement PriorityQueueSort using a heap for
our priority queue, insertItem and removeMin each
take O(log k), k being the number of elements in the
heap at a given time.

• We always have at most n elements in the heap, so
the worst case time complexity of these methods is
O(log n).

• Thus each phase takes O(n log n) time, so the
algorithm runs in O(n log n) time also.

• This sort is known as heap-sort.

• The O(n log n) run time of heap-sort is much better
than the O(n2) run time of selection and insertion
sort.

In-Place Heap-Sort
• Do not use an external heap

• Embed the heap into the sequence, using the vector
representation



6.6Heaps II

Bottom-Up Heap Construction
• build (n + 1)/2 trivial one-element heaps

• now build three-element heaps on top of them

61216 23 204 715
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6.7Heaps II

Bottom-Up Heap Construction
• downheap to preserve the order property

• now form seven-element heaps
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6.8Heaps II

Bottom-Up Heap Construction
(cont.)
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6.9Heaps II

Bottom-Up Heap Construction
(cont.)

The End
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6.10Heaps II

Analysis of Bottom-Up Heap
Construction

• Proposition: Bottom-up heap construction with n
keys takes O(n) time.
- Insert (n + 1)/2 nodes
- Insert (n + 1)/4 nodes and downheap them
- Insert (n + 1)/8 nodes and downheap them
- ...
- visual analysis:

• n inserts, n/2 upheaps with total O(n) running time
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6.11Heaps II

Locators
• Locators can be used to keep track of elements as

they are moved around inside a container.

• A locator sticks with a specific element, even if that
element changes positions in the container.

• The locator ADT supports the following
fundamental methods:
- element(): return the element of the item

associated with the locator.
- key(): return the key of the item assocated with the

locator.

• Using locators, we define additional methods for the
priority queue ADT
- insert(k,e): insert (k,e) into P and return its locator
- min(): return the locator of an element witih

smallest key
- remove(l): remove the element with locator l

• In the stock trading application, we return a locator
when an order is placed. The locator allows to
specify unambiguously an order when a cancellation
is requested



6.12Heaps II

Positions and Locators
• At this point, you may be wondering what the

difference is between locators and positions, and
why we need to distinguish between them.

• It’s true that they have very similar methods

• The difference is in their primary usage

• Positions abstract the specific implementation of
accessors to elements (indices vs. nodes).

• Positions are defined relatively to each other (e.g.,
previous-next, parent-child)

• Locators keep track of where elements are stored. In
the implementation of an ADT withy locators, a
locator typically holds the current position of the
element.

• Locators associate elements with their keys



6.13Heaps II

Locators and Positions at Work
• For example, consider the CS16 Valet Parking

Service (started by the TA staff because they had too
much free time on their hands).

• When they began their business, Andy and Devin
decided to create a data structure to keep track of
where exactly the cars were.

• Andy suggested having a position represent what
parking space the car was in.

• However, Devin knew that the TAs were driving the
customers’ cars around campus and would not
always park them back into the same spot.

• So they decided to install a locator (a wireless
tracking device) in each car. Each locator had a
unique code, which was written on the claim check.

• When a customer demanded her car, the HTAs
activated the locator. The horn of the car would honk
and the lights would flash.

• If the car was parked, Andy and Devin would know
where to retrieve it in the lot.

• Otherwise, the TA driving the car knew it was time
to bring it back.
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