
————— Public Announcement —————

————— ———————— —————

ACADEMIA AND
CAREERS IN SCIENCE

SPEAKERS
Dr. Kenneth J. Ragan
Professor
McGill Department of Physics

Dr. Daniel Bernard
Professor
McGill Department of Pharmacology

Bogdan Istrate
Full Stack Java Developer
TickSmith

Victoria Mallet
Product Manager
Ananda Microfluidics

Arjuna Rajakumar
Graduate Student
Abouheif Lab

WEDNESDAY MARCH 327 – 9 4PM AT LEACOCK 1
Unsure of your future with your BSc?
Advice, anecdotes and guidance from
professors, graduate students, and industry
professionals who’ve “been there, done that.”

—
—

—
—

—
 P

ub
lic

 A
nn

ou
nc

em
en

t
—

—
—

—
—

—
—

—
—

—
 —

—
—

—
—

—
—

—
 —

—
—

—
—

2)
Write any algorithm that runs in time 𝛩(n2 log2 n) in worse case.
Explain why this is its running time. I don’t care what it does.
I only care about its running time…

 WhatEver(int n)

 FOR i=1 TO n
 FOR j=1 TO n
 x=n; WHILE x>1 DO { x=x/2; y=n;
 WHILE y>1 DO y=y/2 }

Comment about input size…

2)
Write any algorithm that runs in time 𝛩(n2 log2 n) in worse case.
Explain why this is its running time. I don’t care what it does.
I only care about its running time…

 WhatEver(int[] A)

 n = A.length;
 FOR i=1 TO n
 FOR j=1 TO n
 x=n; WHILE x>1 DO { x=x/2; y=n;
 WHILE y>1 DO y=y/2 }

Comment about input size…

 HI IQR

16 configurations with 0 neighbours
HI IQR

16 configurations with 38 neighbours
HI IQR

—
—

—
—

—
 P

ub
lic

 A
nn

ou
nc

em
en

t
—

—
—

—
—

—
—

—
—

—
 —

—
—

—
—

—
—

—
 —

—
—

—
—

Winter 2016
COMP-250: Introduction 

to Computer Science
Lecture 19, March 22, 2016

1Searching

SEARCHING
• the dictionary ADT

• binary search

• binary search trees

88

44

17 78

32 50

48 62

1Searching

SEARCHING
• the dictionary ADT

• binary search

• binary search trees

88

44

17 78

32 50

48 62

2Searching

The Dictionary ADT
• a dictionary is an abstract model of a database

• like a priority queue, a dictionary stores key-element
pairs

• the main operation supported by a dictionary is
searching by key

• simple container methods:
- size()
- isEmpty()
- elements()

• query methods:
- findElement(k)
- findAllElements(k)

• update methods:
- insertItem(k, e)
- removeElement(k)
- removeAllElements(k)

• special element
- NO_SUCH_KEY, returned by an unsuccessful

search

2Searching

The Dictionary ADT
• a dictionary is an abstract model of a database

• like a priority queue, a dictionary stores key-element
pairs

• the main operation supported by a dictionary is
searching by key

• simple container methods:
- size()
- isEmpty()
- elements()

• query methods:
- findElement(k)
- findAllElements(k)

• update methods:
- insertItem(k, e)
- removeElement(k)
- removeAllElements(k)

• special element
- NO_SUCH_KEY, returned by an unsuccessful

search

2Searching

The Dictionary ADT
• a dictionary is an abstract model of a database

• like a priority queue, a dictionary stores key-element
pairs

• the main operation supported by a dictionary is
searching by key

• simple container methods:
- size()
- isEmpty()
- elements()

• query methods:
- findElement(k)
- findAllElements(k)

• update methods:
- insertItem(k, e)
- removeElement(k)
- removeAllElements(k)

• special element
- NO_SUCH_KEY, returned by an unsuccessful

search

3Searching

Implementing a Dictionary with
a Sequence

• unordered sequence

- searching and removing takes O(n) time
- inserting takes O(1) time
- applications to log files (frequent insertions, rare

searches and removals)

• array-based ordered sequence (assumes keys can be
ordered)

- searching takes O(log n) time (binary search)
- inserting and removing takes O(n) time
- application to look-up tables (frequent searches,

rare insertions and removals)

34 14 12 22 18

12 14 18 22 34

7Searching

Binary Search Trees
• A binary search tree is a binary tree T such that

- each internal node stores an item (k, e) of a
dictionary.

- keys stored at nodes in the left subtree of v are less
than or equal to k.

- keys stored at nodes in the right subtree of v are
greater than or equal to k.

- kxternal nodes do not hold elements but serve as
place holders.

97

44

17 88

32 65

54 8228

29 76

80

7Searching

Binary Search Trees
• A binary search tree is a binary tree T such that

- each internal node stores an item (k, e) of a
dictionary.

- keys stored at nodes in the left subtree of v are less
than or equal to k.

- keys stored at nodes in the right subtree of v are
greater than or equal to k.

- kxternal nodes do not hold elements but serve as
place holders.

97

44

17 88

32 65

54 8228

29 76

80

external nodes do not hold elements but serve as
place holders.

7Searching

Binary Search Trees
• A binary search tree is a binary tree T such that

- each internal node stores an item (k, e) of a
dictionary.

- keys stored at nodes in the left subtree of v are less
than or equal to k.

- keys stored at nodes in the right subtree of v are
greater than or equal to k.

- kxternal nodes do not hold elements but serve as
place holders.

97

44

17 88

32 65

54 8228

29 76

80

8Searching

Search
• A binary search tree T is a decision tree, where the

question asked at an internal node v is whether the
search key k is less than, equal to, or greater than the
key stored at v.

• Pseudocode:
Algorithm TreeSearch(k, v):
Input: A search key k and a node v of a binary search

tree T.
Ouput: A node w of the subtree T(v) of T rooted at v,

such that either w is an internal node storing
key k or w is the external node encountered in
the inorder traversal of T(v) after all the inter
nal nodes with keys smaller than k and before
all the internal nodes with keys greater than k.

if v is an external node then
return v

if k = key(v) then
return v

else if k < key(v) then
return TreeSearch(k, T.leftChild(v))

else
{ k > key(v) }
return TreeSearch(k, T.rightChild(v))

8Searching

Search
• A binary search tree T is a decision tree, where the

question asked at an internal node v is whether the
search key k is less than, equal to, or greater than the
key stored at v.

• Pseudocode:
Algorithm TreeSearch(k, v):
Input: A search key k and a node v of a binary search

tree T.
Ouput: A node w of the subtree T(v) of T rooted at v,

such that either w is an internal node storing
key k or w is the external node encountered in
the inorder traversal of T(v) after all the inter
nal nodes with keys smaller than k and before
all the internal nodes with keys greater than k.

if v is an external node then
return v

if k = key(v) then
return v

else if k < key(v) then
return TreeSearch(k, T.leftChild(v))

else
{ k > key(v) }
return TreeSearch(k, T.rightChild(v))

8Searching

Search
• A binary search tree T is a decision tree, where the

question asked at an internal node v is whether the
search key k is less than, equal to, or greater than the
key stored at v.

• Pseudocode:
Algorithm TreeSearch(k, v):
Input: A search key k and a node v of a binary search

tree T.
Ouput: A node w of the subtree T(v) of T rooted at v,

such that either w is an internal node storing
key k or w is the external node encountered in
the inorder traversal of T(v) after all the inter
nal nodes with keys smaller than k and before
all the internal nodes with keys greater than k.

if v is an external node then
return v

if k = key(v) then
return v

else if k < key(v) then
return TreeSearch(k, T.leftChild(v))

else
{ k > key(v) }
return TreeSearch(k, T.rightChild(v))

9Searching

Search Example I
• Successful findElement(76)

• A successful search traverses a path starting at the
root and ending at an internal node

• How about findAllelements(k)?

97

44

17 88

32 65

54 8228

29 76

80

10Searching

Search Example II
• Unsuccessful findElement(25)

• An unsuccessful search traverses a path starting at
the root and ending at an external node

97

44

17 88

32 65

54 8228

29 76

80

11Searching

Insertion
• To perform insertItem(k, e), let w be the node

returned by TreeSearch(k, T.root())

• If w is external, we know that k is not stored in T. We
call expandExternal(w) on T and store (k, e) in w

97

88

65

54 82

76

80

97

88

65

54 82

76

80

78

w

w

insertItem(78, e)

12Searching

Insertion II
• If w is internal, we know another item with key k is

stored at w. We call the algorithm recursively
starting at T.rightChild(w) or T.leftChild(w)

97

88

65

72

54

54
w insertItem(54, e)

54
w

w

w
97

88

65

72

54

54

54

w
54

13Searching

Removal I
• We locate the node w where the key is stored with

algorithm TreeSearch

• If w has an external child z, we remove w and z
with removeAboveExternal(z)

44

17 88

32 65

5428

29

w
z

44

17 88

65

54

28

29

removeElement(32)

14Searching

Removal II
• If w has an no external children:

- find the internal node y following w in inorder
- move the item at y into w
- perform removeAboveExternal(x), where x is the left

child of y (guaranteed to be external)
32

17 88

65

54

29

w

x
removeElement(32)

y

54

17 88

65
29

w

15Searching

Time Complexity
• A search, insertion, or removal, visits the nodes

along a root-to leaf path, plus possibly the siblings
of such nodes

• Time O(1) is spent at each node

• The running time of each operation is O(h), where h
is the height of the tree

• The height of binary serch tree is in n in the worst
case, where a binary search tree looks like a sorted
sequence

• To achive good running time, we need to keep the
tree balanced, i.e., with O(log n) height

• Various balancing schemes will be explored in the
next lectures

10

20

30

40

6.1Heaps I

HEAPS I
• Heaps

• Properties

• Insertion and Deletion

6.2Heaps I

Heaps
• A heap is a binary tree T that stores a collection of

keys (or key-element pairs) at its internal nodes and
that satisfies two additional properties:
- Order Property: key(parent) ≤ key(child)
- Structural Property: all levels are full, except the

last one, which is left-filled (complete binary tree)

4

6

207

811

5

9

1214

15

2516

6.3Heaps I

Not Heaps
• bottom level is not left-filled

• key(parent)> key(child)

4

6

207

811

5

9

1214

15

2516

4

6

207

811

9

5

1214

15

2516

6.3Heaps I

Not Heaps
• bottom level is not left-filled

• key(parent)> key(child)

4

6

207

811

5

9

1214

15

2516

4

6

207

811

9

5

1214

15

2516

6.3Heaps I

Not Heaps
• bottom level is not left-filled

• key(parent)> key(child)

4

6

207

811

5

9

1214

15

2516

4

6

207

811

9

5

1214

15

2516

6.4Heaps I

Height of a Heap
A heap T storing n keys has height h = log(n + 1),
which is O(log n)

• n ≥ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1

• n ≤ 1 + 2 + 4 + ... +2h-1 = 2h - 1

• Therefore 2h-1 ≤ n ≤ 2h - 1

• Taking logs, we get log (n + 1) ≤ h ≤ log n + 1

• Which implies h = log(n+1)

4

6

207

5

915

16h − 1

0
1

h − 2

h

h − 1

0
1

h − 2

h

4

6

207

811

5

9

1214

15

2516 2231

6.4Heaps I

Height of a Heap
A heap T storing n keys has height h = log(n + 1),
which is O(log n)

• n ≥ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1

• n ≤ 1 + 2 + 4 + ... +2h-1 = 2h - 1

• Therefore 2h-1 ≤ n ≤ 2h - 1

• Taking logs, we get log (n + 1) ≤ h ≤ log n + 1

• Which implies h = log(n+1)

4

6

207

5

915

16h − 1

0
1

h − 2

h

h − 1

0
1

h − 2

h

4

6

207

811

5

9

1214

15

2516 2231

6.4Heaps I

Height of a Heap
A heap T storing n keys has height h = log(n + 1),
which is O(log n)

• n ≥ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1

• n ≤ 1 + 2 + 4 + ... +2h-1 = 2h - 1

• Therefore 2h-1 ≤ n ≤ 2h - 1

• Taking logs, we get log (n + 1) ≤ h ≤ log n + 1

• Which implies h = log(n+1)

4

6

207

5

915

16h − 1

0
1

h − 2

h

h − 1

0
1

h − 2

h

4

6

207

811

5

9

1214

15

2516 2231

6.5Heaps I

3

74

21 10 20 8

22 28 13 25

Heap Insertion

So here we go ...

The key to insert is 6

19

6.6Heaps I

3

74

21 10 20 8

22 28 13 19

Add the key in the next available position in the
heap.

Now begin Upheap.

Heap Insertion

25 6

6.7Heaps I

Upheap
• Swap parent-child keys out of order

3
74

21 10 20 8

22 28 13 19 25 6

3
74

21 10 6 8

22 28 13 19 25 20

6.7Heaps I

Upheap
• Swap parent-child keys out of order

3
74

21 10 20 8

22 28 13 19 25 6

3
74

21 10 6 8

22 28 13 19 25 20

6.7Heaps I

Upheap
• Swap parent-child keys out of order

3
74

21 10 20 8

22 28 13 19 25 6

3
74

21 10 6 8

22 28 13 19 25 20

6.8Heaps I

Upheap Continues

3
74

21 10

20

8

22 28 13 19 25

6

3
64

21 10

20

8

22 28 13 19 25

7

6.8Heaps I

Upheap Continues

3
74

21 10

20

8

22 28 13 19 25

6

3
64

21 10

20

8

22 28 13 19 25

7

6.8Heaps I

Upheap Continues

3
74

21 10

20

8

22 28 13 19 25

6

3
64

21 10

20

8

22 28 13 19 25

7

6.9Heaps I

• Upheap terminates when new key is greater
than the key of its parent or the top of the heap
is reached

• (total #swaps) ≤ (h − 1), which is O(log n)

3

7

4

21 10

20

8

22 28 13 19 25

6

End of Upheap

6.10Heaps I

Removal From a Heap
RemoveMin()

7

4

21 10 8

22 28 13 19 25

6

• The removal of the top key leaves a hole
• We need to fix the heap
• First, replace the hole with the last key in

the heap
• Then, begin Downheap

3

20

6.10Heaps I

Removal From a Heap
RemoveMin()

7

4

21 10 8

22 28 13 19 25

6

• The removal of the top key leaves a hole
• We need to fix the heap
• First, replace the hole with the last key in

the heap
• Then, begin Downheap

3

20

6.11Heaps I

Downheap
20

7

4

21 10 8

22 28 13 19 25

6

Downheap compares the parent with the smallest
child. If the child is smaller, it switches the two.

4

7

20

21 10 8

22 28 13 19 25

6

6.11Heaps I

Downheap
20

7

4

21 10 8

22 28 13 19 25

6

Downheap compares the parent with the smallest
child. If the child is smaller, it switches the two.

4

7

20

21 10 8

22 28 13 19 25

6
6.11Heaps I

Downheap
20

7

4

21 10 8

22 28 13 19 25

6

Downheap compares the parent with the smallest
child. If the child is smaller, it switches the two.

4

7

20

21 10 8

22 28 13 19 25

6

6.12Heaps I

Downheap Continues

4

7

20

21 10 8

22 28 13 19 25

6

4

7

10

21 20 8

22 28 13 19 25

6

6.12Heaps I

Downheap Continues

4

7

20

21 10 8

22 28 13 19 25

6

4

7

10

21 20 8

22 28 13 19 25

6

6.12Heaps I

Downheap Continues

4

7

20

21 10 8

22 28 13 19 25

6

4

7

10

21 20 8

22 28 13 19 25

6

6.13Heaps I

Downheap Continues

4

7

10

21 20 8

22 28 13 19 25

6

4

7

10

21 13 8

22 28 20 19 25

6

6.13Heaps I

Downheap Continues

4

7

10

21 20 8

22 28 13 19 25

6

4

7

10

21 13 8

22 28 20 19 25

6

6.13Heaps I

Downheap Continues

4

7

10

21 20 8

22 28 13 19 25

6

4

7

10

21 13 8

22 28 20 19 25

6

6.14Heaps I

End of Downheap
4

7

10

21 13 8

22 28 20 19 25

6

• Downheap terminates when the key is greater
than the keys of both its children or the bottom
of the heap is reached.

• (total #swaps) ≤ (h − 1), which is O(log n)

6.1Heaps II

HEAPS II
• Implementation

• HeapSort

• Bottom-Up Heap Construction

• Locators

6.2Heaps II

Implementation of a Heap
public class HeapPriorityQueue implements PriorityQueue
{

BinaryTree T;
Position last;
Comparator comparator;
...

}

lastheap

(4,C)

(6,Z)

(20,B)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

comp

<
=
>

6.3Heaps II

Implementation of a Heap(cont.)
• Two ways to find the insertion position z in a heap:

(2,C)

(4,C)

(6,Z)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (20,B) (10,L)

z

(4,C)

(6,Z)

(20,B)(7,Q)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)
w z

u

6.4Heaps II

Vector Based Implementation
• Updates in the underlying tree occur only at the “last

element”

• A heap can be represented by a vector, where the
node at rank i has
- left child at rank 2i and
- right child at rank 2i + 1

• The leaves do no need to be explicitly stored

• Insertion and removals into/from the heap
correspond to insertLast and removeLast on the
vector, respectively

1

2

5 6 7

3

4

8 9 10 11 12 13

6.5Heaps II

Heap Sort
• All heap methods run in logarithmic time or better

• If we implement PriorityQueueSort using a heap for
our priority queue, insertItem and removeMin each
take O(log k), k being the number of elements in the
heap at a given time.

• We always have at most n elements in the heap, so
the worst case time complexity of these methods is
O(log n).

• Thus each phase takes O(n log n) time, so the
algorithm runs in O(n log n) time also.

• This sort is known as heap-sort.

• The O(n log n) run time of heap-sort is much better
than the O(n2) run time of selection and insertion
sort.

In-Place Heap-Sort
• Do not use an external heap

• Embed the heap into the sequence, using the vector
representation

6.6Heaps II

Bottom-Up Heap Construction
• build (n + 1)/2 trivial one-element heaps

• now build three-element heaps on top of them

61216 23 204 715

27

612

25

16 23 204

5

7

11

15

6.7Heaps II

Bottom-Up Heap Construction
• downheap to preserve the order property

• now form seven-element heaps

20

1112

15

2516 23 275

4

7

6

20

8

1112

15

2516 23 275

9

4

7

6

6.8Heaps II

Bottom-Up Heap Construction
(cont.)

6

207

81112

15

2516 23 27

5

9

4

6

207

81112

14

15

2516 23 27

5

9

4

6.9Heaps II

Bottom-Up Heap Construction
(cont.)

The End

4

6

207

811

5

9

1214

15

2516 23 27

6.10Heaps II

Analysis of Bottom-Up Heap
Construction

• Proposition: Bottom-up heap construction with n
keys takes O(n) time.
- Insert (n + 1)/2 nodes
- Insert (n + 1)/4 nodes and downheap them
- Insert (n + 1)/8 nodes and downheap them
- ...
- visual analysis:

• n inserts, n/2 upheaps with total O(n) running time

4

6

207

811

5

9

1214

15

2516 23 27

6.11Heaps II

Locators
• Locators can be used to keep track of elements as

they are moved around inside a container.

• A locator sticks with a specific element, even if that
element changes positions in the container.

• The locator ADT supports the following
fundamental methods:
- element(): return the element of the item

associated with the locator.
- key(): return the key of the item assocated with the

locator.

• Using locators, we define additional methods for the
priority queue ADT
- insert(k,e): insert (k,e) into P and return its locator
- min(): return the locator of an element witih

smallest key
- remove(l): remove the element with locator l

• In the stock trading application, we return a locator
when an order is placed. The locator allows to
specify unambiguously an order when a cancellation
is requested

6.12Heaps II

Positions and Locators
• At this point, you may be wondering what the

difference is between locators and positions, and
why we need to distinguish between them.

• It’s true that they have very similar methods

• The difference is in their primary usage

• Positions abstract the specific implementation of
accessors to elements (indices vs. nodes).

• Positions are defined relatively to each other (e.g.,
previous-next, parent-child)

• Locators keep track of where elements are stored. In
the implementation of an ADT withy locators, a
locator typically holds the current position of the
element.

• Locators associate elements with their keys

6.13Heaps II

Locators and Positions at Work
• For example, consider the CS16 Valet Parking

Service (started by the TA staff because they had too
much free time on their hands).

• When they began their business, Andy and Devin
decided to create a data structure to keep track of
where exactly the cars were.

• Andy suggested having a position represent what
parking space the car was in.

• However, Devin knew that the TAs were driving the
customers’ cars around campus and would not
always park them back into the same spot.

• So they decided to install a locator (a wireless
tracking device) in each car. Each locator had a
unique code, which was written on the claim check.

• When a customer demanded her car, the HTAs
activated the locator. The horn of the car would honk
and the lights would flash.

• If the car was parked, Andy and Devin would know
where to retrieve it in the lot.

• Otherwise, the TA driving the car knew it was time
to bring it back.

Winter 2016
COMP-250: Introduction 

to Computer Science
Lecture 19, March 22, 2016

Hardik Omar Faiz

Faizy Chris David B. David B.R.

Lekan

DoYeon

