DEPTH-FIRST SEARCH

• Graph Traversals

• Depth-First Search
Exploring a Labyrinth Without Getting Lost

- A **depth-first search (DFS)** in an undirected graph G is like wandering in a labyrinth with a string and a can of red paint without getting lost.

- We start at vertex s, tying the end of our string to the point and painting s “visited”. Next we label s as our current vertex called u.

- Now we travel along an arbitrary edge (u,v).

- If edge (u,v) leads us to an already visited vertex v we return to u.
Exploring a Labyrinth Without Getting Lost

• If vertex v is unvisited, we unroll our string and move to v, paint v “visited”, set v as our current vertex, and repeat the previous steps.

• Eventually, we will get to a point where all incident edges on u lead to visited vertices. We then backtrack by unrolling our string to a previously visited vertex v. Then v becomes our current vertex and we repeat the previous steps.
Exploring a Labyrinth Without Getting Lost (cont.)

• Then, if all incident edges on v lead to visited vertices, we backtrack as we did before. We continue to backtrack along the path we have traveled, finding and exploring unexplored edges, and repeating the procedure.

• When we backtrack to vertex s and there are no more unexplored edges incident on s, we have finished our DFS search.
Depth-First Search

Algorithm DFS(ν);

Input: A vertex ν in a graph
Output: A labeling of the edges as “discovery” edges and “backedges”

for each edge e incident on ν do
 if edge e is unexplored then
 let w be the other endpoint of e
 if vertex w is unexplored then
 label e as a discovery edge
 recursively call DFS(w)
 else
 label e as a backedge
Depth-First Search

Algorithm DFS(v);
Input: A vertex v in a graph
Output: A labeling of the edges as “discovery” edges and “backedges”
for each edge e incident on v do
 if edge e is unexplored then
 let w be the other endpoint of e
 if vertex w is unexplored then
 label e as a discovery edge
 recursively call DFS(w)
 else
 label e as a backedge
 end if
end for
Determining Incident Edges

- DFS depends on how you obtain the incident edges.
- If we start at A and we examine the edge to F, then to B, then E, C, and finally G

The resulting graph is:

- discoveryEdge
- backEdge
- return from dead end
Determining Incident Edges

• DFS depends on how you obtain the incident edges.

If we instead examine the tree starting at A and looking at G, the C, then E, B, and finally F,

the resulting set of backEdges, discoveryEdges and recursion points is different.

• Now an example of a DFS.
Step 1:
Depth-First Search

Step 1:

Step 2:
Step 3:
Depth-First Search

Step 3:

Step 4:

Back Edge
Step 5:
Step 5:

Step 6:
Depth-First Search

Step 7:

A → F → B → E → C → G → □
B → A → □
C → A → □
D → F → E → □
E → G → A → D → F → □
F → E → D → A → □
G → A → E → □
Depth-First Search

Step 9:
Depth-First Search

Step 10:
Step 11:

A → F → B → E → C → G → □
B → A → □
C → □
D → F → E → □
E → G → A → D → F → □
F → E → D → A → □
G → A → E → □

Step 12:

A → G → B → C → G → D → E → F → □
B → □
C → □
D → □
E → □
F → □
Step 11:

Step 12:
Step 13:
Step 14:
Step 15:

- A → F → B → E → C → G → ∅
- B → A → ∅
- C → A → ∅
- D → F → E → ∅
- E → G → A → D → F → ∅
- F → E → D → A → ∅
- G → A → E → ∅
Step 16:
Step 18:
Step 19:
DFS Properties

• Proposition 9.12: Let G be an undirected graph on which a DFS traversal starting at a vertex s has been performed. Then:
 1) The traversal visits all vertices in the connected component of s
 2) The discovery edges form a spanning tree of the connected component of s

• Justification of 1):
 - Let’s use a contradiction argument: suppose there is at least one vertex v not visited and let w be the first unvisited vertex on some path from s to v.
 - Because w was the first unvisited vertex on the path, there is a neighbor u that has been visited.
 - But when we visited u we must have looked at edge (u, w). Therefore w must have been visited.
 - And justification
DFS Properties

• Proposition 9.12: Let G be an undirected graph on which a DFS traversal starting at a vertex s has been performed. Then:
 1) The traversal visits all vertices in the connected component of s
 2) The discovery edges form a spanning tree of the connected component of s

• Justification of 2):
 - We only mark edges from when we go to unvisited vertices. So we never form a cycle of discovery edges, i.e. discovery edges form a tree.
 - This is a spanning tree because DFS visits each vertex in the connected component of s
Running Time Analysis

• Remember:
 - **DFS** is called on each vertex exactly once.
 - Every edge is examined exactly twice, once from each of its vertices

• For \(n_s \) vertices and \(m_s \) edges in the connected component of the vertex \(s \), a **DFS** starting at \(s \) runs in \(O(n_s + m_s) \) time if:
 - The graph is represented in a data structure, like the adjacency list, where vertex and edge methods take constant time
 - Marking a vertex as explored and testing to see if a vertex has been explored takes \(O(\text{degree}) \)
 - By marking visited nodes, we can systematically consider the edges incident on the current vertex so we do not examine the same edge more than once.
Breadth-First Search

• Like DFS, a Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so defines a spanning tree with several useful properties.

- The starting vertex s has level 0, and, as in DFS, defines that point as an “anchor.”
- In the first round, the string is unrolled the length of one edge, and all of the edges that are only one edge away from the anchor are visited.
- These edges are placed into level 1.
- In the second round, all the new edges that can be reached by unrolling the string 2 edges are visited and placed in level 2.
- This continues until every vertex has been assigned a level.
- The label of any vertex v corresponds to the length of the shortest path from s to v.
Breadth-First Search

• Like DFS, a Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so defines as spanning tree with several useful properties

 - The starting vertex \(s \) has level 0, and, as in DFS, defines that point as an “anchor.”
 - In the first round, the string is unrolled the length of one edge, and all of the edges that are only one edge away from the anchor are visited.
 - These edges are placed into level 1
 - In the second round, all the new edges that can be reached by unrolling the string 2 edges are visited and placed in level 2.
 - This continues until every vertex has been assigned a level.
 - The label of any vertex \(v \) corresponds to the length of the shortest path from \(s \) to \(v \).
BFS - A Graphical Representation

a)

0

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P
BFS - A Graphical Representation

b)
BFS - A Graphical Representation

c)

0 1 2

A → B → C
E → F
I
BFS - A Graphical Representation

d)

A → B → C → D
E → F → I
I → J → K → L → O → P
M → N → G → H

Levels:
0 1 2 3
BFS - A Graphical Representation

e)

A -> B -> C -> D
E -> F
I -> J -> K
M -> N

0 1 2 3

4

O -> P
BFS Pseudo-Code

Algorithm \text{BFS}(s):

\textbf{Input:} A vertex \(s\) in a graph
\textbf{Output:} A labeling of the edges as "discovery" edges and "cross edges"
initialize container \(L_0\) to contain vertex \(s\)
\(i \leftarrow 0\)

\textbf{while} \(L_i\) is not empty \textbf{do}

\hspace{1em} create container \(L_{i+1}\) to initially be empty
\hspace{1em} for each vertex \(v\) in \(L_i\) do

\hspace{2em} for each edge \(e\) incident on \(v\) do

\hspace{3em} if edge \(e\) is unexplored then

\hspace{4em} let \(w\) be the other endpoint of \(e\)

\hspace{4em} if vertex \(w\) is unexplored then

\hspace{5em} label \(e\) as a discovery edge

\hspace{5em} insert \(w\) into \(L_{i+1}\)

\hspace{4em} else

\hspace{5em} label \(e\) as a cross edge

\hspace{3em} \(i \leftarrow i + 1\)
Properties of BFS

• **Proposition:** Let G be an undirected graph on which a BFS traversal starting at vertex s has been performed. Then
 - The traversal visits all vertices in the connected component of s.
 - The discovery-edges form a spanning tree T, which we call the BFS tree, of the connected component of s.
 - For each vertex v at level i, the path of the BFS tree T between s and v has i edges, and any other path of G between s and v has at least i edges.
 - If (u, v) is an edge that is not in the BFS tree, then the level numbers of u and v differ by at most one.

• Proposition: Let G be a graph with n vertices and m edges. A BFS traversal of G takes time $O(n + m)$. Also, there exist $O(n + m)$ time algorithms based on BFS for the following problems:
 - Testing whether G is connected.
 - Computing a spanning tree of G.
 - Computing the connected components of G.
 - Computing, for every vertex v of G, the minimum number of edges of any path between s and v.
Properties of BFS

• Proposition: Let G be a graph with n vertices and m edges. A BFS traversal of G takes time $O(n + m)$. Also, there exist $O(n + m)$ time algorithms based on BFS for the following problems:
 - Testing whether G is connected.
 - Computing a spanning tree of G
 - Computing the connected components of G
 - Computing, for every vertex v of G, the minimum number of edges of any path between s and v.