Winter 2016

COMP-250: Introduction

to Computer Science
Lecture 18, March 17,2016

DEPTH-FIRST SEARCH

e Graph Traversals

e Depth-First Search

Exploring a Labyrinth Without
Getting Lost

e A depth-first search (DFS) in an undirected graph
G 1s like wandering 1n a labyrinth with a string and a
can of red paint without getting lost.

* We start at vertex s, tying the end of our string to the
point and painting s “visited”. Next we label s as our
current vertex called u.

e Now we travel along an arbitrary edge (u,v).

e If edge (u,v) leads us to an already visited vertex v
we return to u.

Exploring a Labyrinth Without
Getting Lost

e If vertex v 1s unvisited, we unroll our string and
move to v, paint v “visited”, set v as our current
vertex, and repeat the previous steps.

e Eventually, we will get to a point where all incident
edges on u lead to visited vertices. We then
backtrack by unrolling our string to a previously
visited vertex v. Then v becomes our current vertex
and we repeat the previous steps.

Exploring a Labyrinth Without
Getting Lost (cont.)

e Then,if all incident edges on v lead to visited
vertices, we backtrack as we did before. We
continue to backtrack along the path we have
traveled, finding and exploring unexplored edges,
and repeating the procedure.

e When we backtrack to vertex s and there are no

more unexplored edges incident on s, we have
finished our DFS search.

Depth-First Search

Algorithm DFS(v);
Input: A vertex v in a graph
Output: A labeling of the edges as “discovery” edges
and “backedges”
for each edge e incident on v do
if edge e 1s unexplored then
let w be the other endpoint of e
if vertex w 1s unexplored then
label e as a discovery edge
recursively call DFS(w)
else

label e as a backedge

visited vertex ——

traversed edge

Depth-First Search

Algorithm DFS(v);
Input: A vertex v in a graph
Output: A labeling of the edges as “discovery” edges
and “backedges”
for each edge e incident on v do
if edge e is unexplored then
let w be the other endpoint of e
if vertex w is unexplored then
label e as a discovery edge
recursively call DFS(w)
else

label e as a backedge

unvisited vertex

\

current Vertex

Determining Incident Edges

* DFS depends on how you obtain the incident edges.

e If we start at A and we examine the edge to F, then
to B, then E, C, and finally G

The resultmg graph 1S: ‘:
— discoveryEdge

--=-# backEdge
- - =9 return from

dead end

N

Determining Incident Edges

 DFS depends on how you obtain the incident edges.

If we 1nstead examine the tree starting at A and
looking atG, the C, then E, B, and finally F,

R s

the resulting set of backEdges, discoveryEdges and
recursion points 1s different.

 Now an example of a DFS.

A
-
KNG
99
So o0Lee®
N S
25399 ¢¢
FE R EE EE

(A~ e e OG0
o]~ &0

]
)
& 0O
bl
ORC
b)
19
[=] [=]

[= Gmmm OmmT
*@"D Step 4: Back Edge
T~®-~0
EIRRCRS
e CagOaglagn
[F]>®>>G>0
[¢]->&=®~D

[A] - O>B>H-O-C~0

[A] > D= B>O=O=O~0

—><“>—>D Step 3:
><I<>—><E>—>|j

l+®+®+®+n
[6]-®=E&~0

R R I S Oa
—><“>—>D Step 9:
IEI+® ~®~0

l+<E>+<1>*<A>+D
[6]-®=E& -0

—><“>—>D Step 10:

l+®*®+<f\>+u
[6]-®=E&~0

[A]-O>B>H-O-C~0
—><“>—>D Step 11:
[c]>~<®=D

Bl &+ ®~0
[E]>O>B>D=O-0
[[] - &= ®=d+0
[6]-®+~®~0

[A]> O+ B>®=O=O~0
[Bl>-&=0 g 12
[c]-&~0
[p]-<®=<®>10
[E}-©=B=D~<+0
[F] =&+ <®+0
[6]-@+-®~D

[A] > &> B>B+O=C~0
—><“>—>D Step 13:
[c]-&=D

[o] > >®--0

[} ©>B-O>E~0
[~ @~ >T
[6]-@®=®+0

[A]l > &> B>D>O=O~0
"><“>—>D Step 14:
[c]=<&~0
Gl~&-~®~0
[E}>©-B==<+0
[~ & OG0
[6]-®=® 0

._'@*D Step 15:
l*@*@*@*@

[A]-<® >0*<E>*©*©+D
._'@*D Step 17:
]~ &+0

Bl &~ G0
[E]>~©-+<B-+=D+<+0
&> &

[A]-<> *0*@*@*@*!3
><“>>D Step 18:

[D]-®=® -0
[E]-©=B=D=<B~+0
l+®+<n>+<A>+D

S

._'@*D Step 19:
[E]>©+B>O-O~0

DFS Properties

e Proposition 9.12 : Let G be an undirected graph on
which a DFES traversal starting at a vertex s has been
preformed. Then:

1) The traversal visits all vertices in the
connected component of s

2) The discovery edges form a spanning tree of
the connected component of s

e Justification of 1):

- Let’s use a contradiction argument: suppose there
1s at least on vertex v not visited and let w be the
first unvisited vertex on some path from s to v.

- Because w was the first unvisited vertex on the
path, there 1s a neighbor u that has been visited.

- But when we visited # we must have looked at
edge(u, w). Therefore w must have been visited.

- and justification

DFS Properties

e Proposition 9.12 : Let G be an undirected graph on
which a DFES traversal starting at a vertex s has been
preformed. Then:

1) The traversal visits all vertices in the
connected component of s

2) The discovery edges form a spanning tree of
the connected component of s

e Justification of 2):

- We only mark edges from when we go to unvisited
vertices. SO we never form a cycle of discovery
edges, 1.e. discovery edges form a tree.

- This 1s a spanning tree because DFES visits each
vertex in the connected component of s

Running Time Analysis

 Remember:
- DFS 1s called on each vertex exactly once.

- Every edge 1s examined exactly twice, once from
each of its vertices

 For n, vertices and m edges in the connected
component of the vertex s, a DES starting at s runs in
O(ng +my) time 1f:
- The graph 1s represented in a data structure, like
the adjacency list, where vertex and edge methods
take constant time

- Marking a vertex as explored and testing to see if a
vertex has been explored takes O(degree)

- By marking visited nodes, we can systematically
consider the edges incident on the current vertex
so we do not examine the same edge more than
once.

Breadth-First Search

0 1 2 3

Breadth-First Search

e[1ke DFS, a Breadth-First Search (BFS) traverses a
connected component of a graph, and in doing so
definesaspanningtreewithseveralusefulproperties

-The starting vertex s has level O, and, as in DFS,
defines that point as an “anchor.”

-In the first round, the string 1s unrolled the length
of one edge, and all of the edges that are only one
edge away from the anchor are visited.

-These edges are placed into level 1

-In the second round, all the new edges that can be
reached by unrolling the string 2 edges are visited
and placed in level 2.

-This continues until every vertex has been
assigned a level.

-The label of any vertex v corresponds to the length
of the shortest path from s to v.

BES - A Graphical
Representation

BES - A Graphical
Representation

BES - A Graphical
Representation

BES - A Graphical
Representation

BES - A Graphical
Representation

BES - A Graphical
Representation

BFS Pseudo-Code

Algorithm BFS(s):
Input: A vertex s 1n a graph
Output: Alabelingoftheedgesas*“discovery’edges
and “‘cross edges”
initialize container L to contain vertex s
1 <0
while L; is not empty do
create container L, ; to initially be empty
for each vertex vin L; do
for eachedge e incident on v do
if edge e 1s unexplored then
let w be the other endpoint of e
if vertex w 1s unexplored then
label e as a discovery edge
insert w into L ¢
else
label e as a cross edge
[— 1+ 1

Properties of BFS

e Proposition:Let G be an undirected graph on which
a BFS traversal starting at vertex s has been
performed. Then

-The traversal visits all vertices in the connected
component of s.

-The discovery-edges form a spanning tree 7,
which we call the BES tree, of the connected
component of s

-For each vertex v at leveli,the path of the BFS tree
T between s and v has i edges, and any other path
of G between s and v has at least i edges.

- I f{u, v) 1s an edge that 1s not in the BES tree, then
the level numbers of u and v differ by at most one.

Properties of BFS

e Proposition: Let G be a graph with n vertices and m
edges. A BES traversal of G takes time O(n + m).
Also, there exist O(n + m) time algorithms based on
BFS for the following problems:

-Testing whether G is connected.
-Computing a spanning tree of G
-Computing the connected components of G

-Computing, for every vertex v of GG, the minimum
number of edges of any path between s and v.

Winter 2016

COMP-250: Introduction

to Computer Science
Lecture 18, March 17,2016

