Winter 2016

COMP-250: Introduction

to Computer Science
Lecture 16, March 10,2016



GRAPHS

e Definitions

 Examples

 The Graph ADT




What is a Graph?
A graph G = (V,E) 1s composed of:

V: set of vertices
E: set of edges connecting the vertices in 'V
e An edge e = (u,v) 1s a pair of vertices

 Example:

1(a,b),(a,c),(a,d),
(b,e),(c,d),(c.e),
(d,e)}




Applications

COMP250

e clectronic circuits

find the path of least resistance to COMP250




Applications

e networks (roads, flights, communications)




* scheduling (project planning)

wake up ‘ A typical student day

COMP o
55, meditation V

work

cat

more S50

¥ program
] FACEBOOK

make cookies
for 7 HTA
sleep

COMP
dream of s




* scheduling (project planning)

wake up ‘ A typical student day

COMP s
- meditation V

work

cat

more O

COF® program
] FACEBOOK

make cookies
for 20" HTA

Hawaii Tourism Authority ?

sleep

COMP
dream of 5




* scheduling (project planning)

wake up ‘ A typical student day

COMP o
- meditation V

work

cat

more O

O program

]

make cookies
for 20" HTA

Hawaii Tourism Authority ?
Hunter and Trappers Association ? Sleep

FACEBOOK

COMP
dream of Hzg




* scheduling (project planning)

A typical student day

wake up

COMP s
- meditation V

work

cat

more O

S program

]

make cookies
for 20" HTA

Hawaii Tourism Authority ?
Hunter and Trappers Association ? Sleep
History Teachers' Association ?

FACEBOOK

COMP
dream of 5




* scheduling (project planning)

wake up A typical student day

COMP s
- meditation V

work

cat

more O

S program

]

make cookies
for 20" HTA

FACEBOOK

Hawaii Tourism Authority ?

Hunter and Trappers Association ? Sleep

History Teachers' Association ?
Hierarchical Task Analysis !

COMP
dream of 5




Applications




Graph Terminology

e adjacent vertices: connected by an edge

e degree (of a vertex): # of adjacent vertices

> deg(v) = 2(# edges)
veV

* Since adjacent vertices
each count the
adjoining edge, it will
be counted twice




Graph Terminology

path: sequence of vertices v{,V,,. . .V, such that
consecutive vertices v; and v;,; are adjacent.




More Graph Terminology

e simple path: no repeated vertices

bec




More Graph Terminology

e cycle: simple path, except that the last vertex 1s the
same as the first vertex




Even More Terminology

e connected graph: any two vertices are connected by
some path

[
I
I
I
I
I
I
I
I
I
I

— — — — — — — — — — — — — —

. — — — — — — — — — — — — —

connected

[
I
I
I
I
I
I
I
I
I
I

— — — — — — — — — — — — — —

N — — — — — — — — — — — — —

not connected




More Graph Terminology

e subgraph: subset of vertices and edges forming a
graph

e connected component: maximal connected
subgraph. E.g., the graph below has 3 connected
components.

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

O@
pe
<z

. — — — — — — — — — — — — — — — — — — — — — — — — — — — — —




Yet another| Terminology Slide!

* (free) tree - connected graph without cycles

e forest - collection of trees

{ree

{ree

forest

@ tree

{ree




Connectivity

Let n = #vertices

m = #edges

- complete graph - all pairs of vertices are adjacent

m= (1/2)22deg(v) = (1/2)22(n - 1) = n(n-1)/2

veV

veV

e Each of the n vertices 1s incident to n - 1 edges,
however, we would have counted each edge twice!!!
Therefore, intuitively, m = n(n-1)/2.

n=>5
m=(5%4)/2=10




More Connectivity

n = #vertices
m = #edges

e Foratreem=n-1

e [fm<n-1, Gisnot connected




Spanning Tree

e A spanning tree of G 1s a subgraph which
- 1S a tree
- contains all vertices of G

G spanning tree of G

e Failure on any edge disconnects system (least fault
tolerant)




e Roberto wants to call the TA’s to suggest an
extension for the next program...

But Plant-Oj 7 4
‘accidentally’ cuts \
e!!! | \

e One fault wil

- ] 1
L

a phone cab]

e A cycle wou

requires n ec

eiF (14)

DS

1 disconnect part of graph!!

be more fault tolerant and only

ges




Koenigsberg

| - \ %
C

Gilligan’s Isle”

—

Pregal River @

|

Can one walk across each bridge
exactly once and return at the
starting point?

* Consider if you were a UPS driver, and you didn’t
want to retrace your steps.

B

e In 1736, Euler proved that this 1s not possible




Graph Model(with parallel
edges)

e Hulerian Tour: path that traverses every edge
exactly once and returns to the first vertex

e Huler’s Theorem: A graph has a Eulerian Tour if and
only if all vertices have even degree




The Graph ADT

* The Graph ADT 1s a positional container whose
positions are the vertices and the edges of the graph.

- s1ze() Return the number of vertices plus the
number of edges of G.

- 1ISEmpty()
- elements()
- positions()

- swap()
- replaceElement()




The Graph ADT (contd.)

Notation: Graph G; Vertices v, w; Edge e; Object o
- num Vertices()
Return the number of vertices of G.

- numEdges()
Return the number of edges of G.

- vertices() Return an enumeration of the vertices
of G.

- edges()  Return an enumeration of the edges of
G.




The Graph ADT (contd.)

directedEdges()
Return an enumeration of all directed
edges 1n G.

undirectedEdges()
Return an enumeration of all
undirected edges in G.
incidentEdges(v)
Return an enumeration of all edges
incident on v.

inIncidentEdges(v)
Return an enumeration of all the
incoming edges to v.

outlncidentEdges(v)
Return an enumeration of all the
outgoing edges from v.




The Graph ADT (contd.)

opposite(v, e)

Return an endpoint of e distinct from v
degree(v)

Return the degree of v.
inDegree(v)

Return the in-degree of v.

outDegree(v)
Return the out-degree of v.




More Methods ...

adjacentVertices(v)
Return an enumeration of the vertices
adjacent to v.

inAdjacentVertices(v)
Return an enumeration of the vertices
adjacent to v along incoming edges.

outAdjacentVertices(v)
Return an enumeration of the vertices
adjacent to v along outgoing edges.

areAdjacent(v,w)
Return whether vertices v and w are
adjacent.




More Methods ...

end Vertices(e)
Return an array of size 2 storing the
end vertices of e.

origin(e)
Return the end vertex from which e
leaves.

destination(e)
Return the end vertex at which e
arrives.

1sDirected(e)

Return true iff e 1s directed.




Update Methods

makeUndirected(e)
Set e to be an undirected edge.

reverseDirection(e)
Switch the origin and destination
vertices of e.

setDirectionFrom(e, v)
Sets the direction of e away from v, one
of 1ts end vertices.

setDirectionTo(e, v)
Sets the direction of e toward v, one of
1ts end vertices.




Update Methods

insertEdge(v, w, 0)
Insert and return an undirected edge
between v and w, storing o at this
position.

insertDirectedEdge(v, w, 0)
Insert and return a directed edge
between v and w, storing o at this
position.

insertVertex(o)
Insert and return a new (isolated)
vertex storing o at this position.

removeEdge(e)
Remove edge e.




DATA STRUCTURES FOR

GRAPHS

e Edge list

* Adjacency lists

e Adjacency matrix

TW 45
|

i

3UUA 87

OUAA 90

/\//I//L
\/ /

\V

NW 35 UDL 247F AA 49 UDL 335FQA 138'”AA 523”AA 411pUA 12

\I\I\\’\J\\I\I
TN\

7 )
C

2N TS 1
Cal

S

-l




Data Structures for Graphs

» To start with, we store the vertices and the edges 1nto
two containers, and each edge object has references
to the vertices 1t connects.

TW 45
(BOSS

-
D K -
N Co ~J N
@ N < Q \ o N
- \"5% -
N o) IS
<<
@ AA 49 @
A4

* Additional structures can be used to perform
efficiently the methods of the Graph ADT




Edge List

e The edge list structure simply stores the vertices and
the edges into unsorted sequences.

e Easy to implement.

* Finding the edges incident on a given vertex 1S
inefficient since it requires examining the entire
edge sequence

E

NW 35 DL 247 f AA 49 DL 335JAA 138k AA 523kdAA 411 |dUA IZOLAA 903k UA 87 7fud TW 45

k
<
=
\
N
\\
i:
|




Performance of the Edge List Structure

Operation Time
size, ISEmpty, replaceElement, swap O(1)
num Vertices, numEdges O(1)
vertices O(n)
edges, directedEdges, undirectedEdges O(m)
elements, positions O(n+m)
end Vertices, opposite, origin, destination, |O(1)
1sDirected
incidentEdges, inIncidentEdges, outlnci- | O(m)
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacentVertices,
areAdjacent, degree, inDegree, outDegree
insertVertex, insertEdge, insertDirected- O(1)

Edge, removeEdge, makeUndirected,
reverseDirection, setDirectionFrom, setDi-
rectionTo

remove Vertex

O(m)




Adjacency List (traditional)

* adjacency list of a vertex v:
sequence of vertices adjacent to v

e represent the graph by the adjacency lists of all the
vertices

e Space = O(N + 2udeg(v)) = O(N + M)




Adjacency List (modern)

e The adjacency list structure extends the edge list
structure by adding incidence containers to each

vertex.
4 )

NW 35 [ DL 247 fed AA 49 DL 335JAA 138k AA 523kdAA 4] 1(dUA IZOLAA 903 fdUA 877 fud TW 45

G\ N Y ?Q/ NP

VY V4 WYY, BUTANIZA

LAX DF JFK MIA ORD @
\_/ / |

(o i A A A b

NW 35 AA 491 UA 120§ JAAI138Y DL335) | NW 35]AA1387 | DL 247} AA523 | JUA 120QUA 877} | TW 45

DL 247}y | AA 41} UA 874 AA 49 AA 9031 fAA903J AA 411] | DL 335

AA 523 TW 45

HZ N 70 N\ B N B0 N 7 N 7 N

e The space requirement 1S O(n + m).




Performance of the Adjacency List Structure

Operation Time
size, ISEmpty, replaceElement, swap O(1)
num Vertices, numEdges O(1)
vertices O(n)
edges, directedEdges, undirectedEdges | O(m)
elements, positions O(n+m)
end Vertices, opposite, origin, destina- O(1)
tion, 1sDirected, degree, inDegree, out-
Degree
incidentEdges(v), inIncidentEdges(v), |O(deg(v))
outIncidentEdges(v), adjacentVerti-
ces(v), inAdjacentVertices(v), outAdja-
centVertices(v)
areAdjacent(u, v) O(min(deg(u),
deg(v)))
insertVertex, insertEdge, insertDirected- |O(1)

Edge, removeEdge, makeUndirected,
reverseDirection,

remove Vertex(v)

O(deg(v))




Adjacency Matrix (traditional)

O 06 o .

* matrix M with entries for all pairs of vertices

 M[1,j] = true means that there 1s an edge (1,)) in the
graph.

* M[1,)] = false means that there 1s no edge (i,)) in the
graph.

e There 1s an entry for every possible edge, therefore:
Space = O(N?)




Adjacency Matrix (modern)

* The adjacency matrix structures augments the edge
list structure with a matrix where each row and
column corresponds to a vertex.

0 1 2 3 4 5 6
0 D @ | NW DL | @ D
35 247
1 ) ) ) AA ) DL %)
49 335
2 @ | AA | O @ | AA| @ | TW
1387 903 45
3 0 7 % & @ | UA | O
120
4 @ | AA| @ | AA | O %, %,
523 411
5 @ | UA | O 1, %, %, %,
877
6 ) %, %, ) %, %, %,

BOS DFW JFK LAX MIA ORD SFO

0 1

2
e The space requirement 1s O(n2 + m)

3

4

5

6




Performance of the Adjacency Matrix Structure

Operation Time
size, 1ISEmpty, replaceElement, swap O(1)
num Vertices, numEdges O(1)
vertices O(n)

edges, directedEdges, undirectedEdges O(m)

elements, positions O(n+m)

endVertices, opposite, origin, destination, |O(1)
1sDirected, degree, inDegree, outDegree

incidentEdges, inIncidentEdges, outlnci- | O(n)
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacentVertices,

areAdjacent O(1)

insertEdge, insertDirectedEdge, remov- O(1)
cEdge, makeUndirected, reverseDirection,
setDirectionFrom, setDirectionTo

insertVertex, remove Vertex O(n?)




Winter 2016

COMP-250: Introduction

to Computer Science
Lecture 16, March 10,2016





