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2Graphs

What is a Graph?
• A graph G = (V,E) is composed of:

V: set of vertices

E: set of edges connecting the vertices in V

• An edge e = (u,v) is a pair of vertices

• Example:

a b

c

d e

V= {a,b,c,d,e}

E=
{(a,b),(a,c),(a,d),
(b,e),(c,d),(c,e),
(d,e)}
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Applications
• electronic circuits

find the path of least resistance to CS16

• networks (roads, flights, communications)

CS16

start

LAX

PVD

LAX

DFW
FTL

STL
HNL

COMP250

COMP250



3Graphs

Applications
• electronic circuits

find the path of least resistance to CS16

• networks (roads, flights, communications)

CS16

start

LAX

PVD

LAX

DFW
FTL

STL
HNL

3Graphs

Applications
• electronic circuits

find the path of least resistance to CS16

• networks (roads, flights, communications)

CS16

start

LAX

PVD

LAX

DFW
FTL

STL
HNL



4Graphs

mo’ better examples
A Spike Lee Joint Production

• scheduling (project planning)

wake up
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more cs16
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A typical student day
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mo’ better examples
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Hawaii Tourism Authority ?
Hunter and Trappers Association ?

History Teachers' Association ?
Hierarchical Task Analysis !



3Graphs

Applications
• electronic circuits

find the path of least resistance to CS16

• networks (roads, flights, communications)

CS16

start

LAX

PVD

LAX

DFW
FTL

STL
HNL

transportation

Graph

street intersections

Nodes Edges

highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires



5Graphs

Graph Terminology
• adjacent vertices:  connected by an edge

• degree (of a vertex):   # of adjacent vertices

path:   sequence of vertices v1,v2,. . .vk  such that
consecutive vertices vi and vi+1 are adjacent.
a b

c

d e
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3
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2
Σ deg(v) = 2(# edges)
v∈V

• Since adjacent vertices
each count the
adjoining edge, it will
be counted twice
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6Graphs

More Graph Terminology
• simple path:  no repeated vertices

• cycle: simple path, except that the last vertex is the
same as the first vertex
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7Graphs

Even More Terminology
• connected graph: any two vertices are connected by

some path

• subgraph: subset of vertices and edges forming a
graph

• connected component: maximal connected
subgraph. E.g., the graph below has 3 connected
components.

connected not connected
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¡Caramba! Another
Terminology Slide!

• (free) tree - connected graph without cycles

• forest - collection of trees

tree

forest

tree

tree

tree

Yet another
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Connectivity
Let n = #vertices
m = #edges

- complete graph - all pairs of vertices are adjacent

m= (1/2)Σdeg(v) = (1/2)Σ(n - 1) = n(n-1)/2
v∈V v∈V

• Each of the n vertices is incident to n - 1 edges,
however, we would have counted each edge twice!!!
Therefore, intuitively, m = n(n-1)/2.

• Therefore, if a graph is not complete,
m < n(n-1)/2

n = 5
m = (5 ∗ 4)/2 = 10
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More Connectivity
n = #vertices
m = #edges

• For a tree m = n - 1

• If m < n - 1, G is not connected

n = 5
m = 4

n = 5
m = 3
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Spanning Tree
• A spanning tree of G is a subgraph which

- is a tree
- contains all vertices of G

• Failure on any edge disconnects system (least fault
tolerant)

G spanning tree of G
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AT&T vs. RT&T
(Roberto Tamassia & Telephone)

• Roberto wants to call the TA’s to suggest an
extension for the next program...

• One fault will disconnect part of graph!!

• A cycle would be more fault tolerant and only
requires n edges

TA

TA

TA

TA

TA

But Plant-Ops
‘accidentally’ cuts
a phone cable!!!
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13Graphs

Euler and the Bridges of
Koenigsberg

• Consider if you were a UPS driver, and you didn’t
want to retrace your steps.

• In 1736, Euler proved that this is not possible

A

B

C

DPregal River

Can one walk across each bridge
exactly once and return at the
starting point?

Gilligan’s Isle?
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14Graphs

Graph Model(with parallel
edges)

• Eulerian Tour:  path that traverses every edge
exactly once and returns to the first vertex

• Euler’s Theorem: A graph has a Eulerian Tour if and
only if all vertices have even degree

C

A

B

D
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The Graph ADT
• The Graph ADT is a positional container whose

positions are the vertices and the edges of the graph.

- size() Return the number of vertices plus the
number of edges of G.

- isEmpty()
- elements()
- positions()
- swap()
- replaceElement()

Notation: Graph G; Vertices v, w; Edge e; Object o
- numVertices()

Return the number of vertices of G.
- numEdges()

Return the number of edges of G.
- vertices() Return an enumeration of the vertices

of G.
- edges() Return an enumeration of the edges of

G.
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The Graph ADT (contd.)
- directedEdges()

Return an enumeration of all directed
edges in G.

- undirectedEdges()
Return an enumeration of all
undirected edges in G.

- incidentEdges(v)
Return an enumeration of all edges
incident on v.

- inIncidentEdges(v)
Return an enumeration of all the
incoming edges to v.

- outIncidentEdges(v)
Return an enumeration of all the
outgoing edges from v.

- opposite(v, e)
Return an endpoint of e distinct from v

- degree(v)
Return the degree of v.

- inDegree(v)
Return the in-degree of v.

- outDegree(v)
Return the out-degree of v.
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The Graph ADT (contd.)
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17Graphs

More Methods ...
- adjacentVertices(v)

Return an enumeration of the vertices
adjacent to v.

- inAdjacentVertices(v)
Return an enumeration of the vertices
adjacent to v along incoming edges.

- outAdjacentVertices(v)
Return an enumeration of the vertices
adjacent to v along outgoing edges.

- areAdjacent(v,w)
Return whether vertices v and w are
adjacent.

- endVertices(e)
Return an array of size 2 storing the
end vertices of e.

- origin(e)
Return the end vertex from which e
leaves.

- destination(e)
Return the end vertex at which e
arrives.

- isDirected(e)
Return true iff e is directed.
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Update Methods
- makeUndirected(e)

Set e to be an undirected edge.
- reverseDirection(e)

Switch the origin and destination
vertices of e.

- setDirectionFrom(e, v)
Sets the direction of e away from v, one
of its end vertices.

- setDirectionTo(e, v)
Sets the direction of e toward v, one of
its end vertices.

- insertEdge(v, w, o)
Insert and return an undirected edge
between v and w, storing o at this
position.

- insertDirectedEdge(v, w, o)
Insert and return a directed edge
between v and w, storing o at this
position.

- insertVertex(o)
Insert and return a new (isolated)
vertex storing o at this position.

- removeEdge(e)
Remove edge e.
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1Data Structures for Graphs

DATA STRUCTURES FOR
GRAPHS

• Edge list

• Adjacency lists

• Adjacency matrix

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 411 TW 45UA 120AA 49 AA 903AA 1387

E

V



2Data Structures for Graphs

Data Structures for Graphs
• A Graph! How can we represent it?

• To start with, we store the vertices and the edges into
two containers, and each edge object has references
to the vertices it connects.

• Additional structures can be used to perform
efficiently the methods of the Graph ADT

JFK
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3Data Structures for Graphs

Edge List
• The edge list structure simply stores the vertices and

the edges into unsorted sequences.

• Easy to implement.

• Finding the edges incident on a given vertex is
inefficient since it requires examining the entire
edge sequence

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 411 TW 45UA 120AA 49 AA 903AA 1387

E

V

E
dg

e 
L
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t



4Data Structures for Graphs

Performance of the Edge List
Structure

Operation Time
size, isEmpty, replaceElement, swap O(1)
numVertices, numEdges O(1)
vertices O(n)
edges, directedEdges, undirectedEdges O(m)
elements, positions O(n+m)
endVertices, opposite, origin, destination,
isDirected

O(1)

incidentEdges, inIncidentEdges, outInci-
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacentVertices,
areAdjacent, degree, inDegree, outDegree

O(m)

insertVertex, insertEdge, insertDirected-
Edge, removeEdge, makeUndirected,
reverseDirection, setDirectionFrom, setDi-
rectionTo

O(1)

removeVertex O(m)
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5Data Structures for Graphs

Adjacency List
(traditional)

• adjacency list of a vertex v:
sequence of vertices adjacent to v

• represent the graph by the adjacency lists of all the
vertices

• Space = Θ(N + Σdeg(v)) = Θ(N + M)

a b
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6Data Structures for Graphs

Adjacency List
(modern)

• The adjacency list structure extends the edge list
structure by adding incidence containers to each
vertex.

• The space requirement is O(n + m).

in out in out in out in out in out in out in out

NW 35

DL 247

AA 49

AA 411

UA 120 AA1387

AA 523

UA 877

DL335
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TW 45
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AA 903

AA523

AA 411
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7Data Structures for Graphs

Performance of the Adjacency
List Structure

Operation Time
size, isEmpty, replaceElement, swap O(1)
numVertices, numEdges O(1)
vertices O(n)
edges, directedEdges, undirectedEdges O(m)
elements, positions O(n+m)
endVertices, opposite, origin, destina-
tion, isDirected, degree, inDegree, out-
Degree

O(1)

incidentEdges(v), inIncidentEdges(v),
outIncidentEdges(v), adjacentVerti-
ces(v), inAdjacentVertices(v), outAdja-
centVertices(v)

O(deg(v))

areAdjacent(u, v) O(min(deg(u),
deg(v)))

insertVertex, insertEdge, insertDirected-
Edge, removeEdge, makeUndirected,
reverseDirection,

O(1)

removeVertex(v) O(deg(v))Pe
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8Data Structures for Graphs

Adjacency Matrix
(traditional)

• matrix M with entries for all pairs of vertices

• M[i,j] = true means that there is an edge (i,j) in the
graph.

• M[i,j] = false means that there is no edge (i,j) in the
graph.

• There is an entry for every possible edge, therefore:
Space = Θ(N2)

F T T T F
T F F F T
T F F T T
T F T F T
F T T T F

a b

c

d e

a b c d e
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9Data Structures for Graphs

Adjacency Matrix
(modern)

• The adjacency matrix structures augments the edge
list structure with a matrix where each row and
column corresponds to a vertex.

BOS DFW JFK LAX MIA ORD SFO
0 1 2 3 4 5 6

• The space requirement is O(n2 + m)

0 1 2 3 4 5 6
0 Ø Ø NW
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Ø Ø

1 Ø Ø Ø AA
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Ø

2 Ø AA
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Ø Ø AA
903

Ø TW
45

3 Ø Ø Ø Ø Ø UA
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Ø
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877

Ø Ø Ø Ø Ø
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10Data Structures for Graphs

Performance of the Adjacency
Matrix Structure
Operation Time

size, isEmpty, replaceElement, swap O(1)
numVertices, numEdges O(1)
vertices O(n)
edges, directedEdges, undirectedEdges O(m)
elements, positions O(n+m)
endVertices, opposite, origin, destination,
isDirected, degree, inDegree, outDegree

O(1)

incidentEdges, inIncidentEdges, outInci-
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacentVertices,

O(n)

areAdjacent O(1)
insertEdge, insertDirectedEdge, remov-
eEdge, makeUndirected, reverseDirection,
setDirectionFrom, setDirectionTo

O(1)

insertVertex, removeVertex O(n2)

Performance of the Adjacency Matrix Structure
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