Winter 2016
COMP-250: Introduction to Computer Science
Lecture 16, March 10, 2016
Graphs

- Definitions
- Examples
- The Graph ADT
What is a Graph?

- A graph $G = (V,E)$ is composed of:
 - V: set of vertices
 - E: set of edges connecting the vertices in V
- An edge $e = (u,v)$ is a pair of vertices
- Example:

 $V = \{a,b,c,d,e\}$

 $E = \{(a,b),(a,c),(a,d), (b,e),(c,d),(c,e), (d,e)\}$
Applications

• electronic circuits

find the path of least resistance to COMP250
Applications

- networks (roads, flights, communications)
• scheduling (project planning)

A typical student day

- wake up
- meditation
- eat
- work
- more work
- play
- program
- make cookies for HTA
- sleep
- dream of
• scheduling (project planning)

A typical student day

- wake up
- eat
- meditation
- work
- more COMP 250
- program
- play
- make cookies for COMP 250 HTA
- sleep
- dream of COMP 250

Hawaii Tourism Authority?
• scheduling (project planning)

A typical student day

wake up

COMP 250 meditation

eat

work

more COMP 250

play

COMP 250 program

FACEBOOK

make cookies for COMP 250 HTA

Hawaii Tourism Authority?
Hunter and Trappers Association?

sleep

dream of COMP 250
- scheduling (project planning)

A typical student day

- wake up
- COMP 250 meditation
- eat
- work
- more COMP 250
- play
- COMP 250 program
- FACEBOOK
- make cookies for COMP 250 HTA
- sleep
- dream of COMP 250

Hawaii Tourism Authority ?
Hunter and Trappers Association ?
History Teachers' Association ?
• scheduling (project planning)

A typical student day

- wake up
- COMP 250 meditation
- eat
- work
- more COMP 250
- play
- COMP 250 program
- FACEBOOK
- make cookies for COMP 250 HTA
- sleep
- dream of COMP 250

Hawaii Tourism Authority?
Hunter and Trappers Association?
History Teachers' Association?
Hierarchical Task Analysis!
Applications

<table>
<thead>
<tr>
<th>Graph</th>
<th>Nodes</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersections</td>
<td>highways</td>
</tr>
<tr>
<td>communication</td>
<td>computers</td>
<td>fiber optic cables</td>
</tr>
<tr>
<td>World Wide Web</td>
<td>web pages</td>
<td>hyperlinks</td>
</tr>
<tr>
<td>social</td>
<td>people</td>
<td>relationships</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey</td>
</tr>
<tr>
<td>software systems</td>
<td>functions</td>
<td>function calls</td>
</tr>
<tr>
<td>scheduling</td>
<td>tasks</td>
<td>precedence constraints</td>
</tr>
<tr>
<td>circuits</td>
<td>gates</td>
<td>wires</td>
</tr>
</tbody>
</table>
Graph Terminology

- **adjacent vertices**: connected by an edge
- **degree** (of a vertex): # of adjacent vertices

\[\sum_{v \in V} \text{deg}(v) = 2(\# \text{ edges}) \]

- Since adjacent vertices each count the adjoining edge, it will be counted twice
Graph Terminology

path: sequence of vertices v_1, v_2, \ldots, v_k such that consecutive vertices v_i and v_{i+1} are adjacent.

\[\sum \deg(v) = 2 \times \text{(# edges)} \quad v \in V \]

Since adjacent vertices each count the adjoining edge, it will be counted twice.
More Graph Terminology

• **simple path**: no repeated vertices

![Graph Diagram]

- a
- b
- c
- d
- e

b e c
More Graph Terminology

- **cycle**: simple path, except that the last vertex is the same as the first vertex

![Graph Diagram]

- simple path: no repeated vertices
- cycle: simple path, except that the last vertex is the same as the first vertex

Diagram shows a graph with vertices labeled a, b, c, d, e and an edge from a to c, c to d, d to e, e to c, and a to d.
Even More Terminology

- **connected graph**: any two vertices are connected by some path

![Connected and Not Connected Graphs](image)

connected

not connected
More Graph Terminology

- **subgraph**: subset of vertices and edges forming a graph

- **connected component**: maximal connected subgraph. E.g., the graph below has 3 connected components.
Yet another Terminology Slide!

- **(free) tree** - connected graph without cycles
- **forest** - collection of trees
Connectivity

Let $n =$ #vertices
$m =$ #edges

- complete graph - all pairs of vertices are adjacent

$$m= (1/2) \sum_{v \in V} \deg(v) = (1/2) \sum_{v \in V} (n - 1) = n(n-1)/2$$

• Each of the n vertices is incident to $n - 1$ edges, however, we would have counted each edge twice!!! Therefore, intuitively, $m = n(n-1)/2$.

$n = 5$
$m = (5 \times 4)/2 = 10$
More Connectivity

\(n = \# \text{vertices} \)
\(m = \# \text{edges} \)

- For a tree \(m = n - 1 \)

\[\begin{align*}
 n &= 5 \\
 m &= 4
\end{align*} \]

- If \(m < n - 1 \), \(G \) is not connected

\[\begin{align*}
 n &= 5 \\
 m &= 3
\end{align*} \]
Spanning Tree

• A **spanning tree** of G is a subgraph which
 - is a tree
 - contains all vertices of G

• Failure on any edge disconnects system (least fault tolerant)
• Roberto wants to call the TA’s to suggest an extension for the next program...

But Plant-Ops ‘accidentally’ cuts a phone cable!!!

• One fault will disconnect part of graph!!

• A cycle would be more fault tolerant and only requires n edges
Consider if you were a UPS driver, and you didn’t want to retrace your steps. In 1736, Euler proved that this is not possible. Can one walk across each bridge exactly once and return at the starting point?

- Consider if you were a UPS driver, and you didn’t want to retrace your steps.
- In 1736, Euler proved that this is not possible.
Graph Model (with parallel edges)

- **Eulerian Tour**: path that traverses every edge exactly once and returns to the first vertex

- **Euler’s Theorem**: A graph has a Eulerian Tour if and only if all vertices have even degree
The Graph ADT

- The **Graph ADT** is a **positional container** whose positions are the vertices and the edges of the graph.

 - **size()** Return the number of vertices plus the number of edges of G.
 - **isEmpty()**
 - **elements()**
 - **positions()**
 - **swap()**
 - **replaceElement()**
The Graph ADT (contd.)

Notation: Graph G; Vertices v, w; Edge e; Object o

- numVertices()

 Return the number of vertices of G.

- numEdges()

 Return the number of edges of G.

- vertices()

 Return an enumeration of the vertices of G.

- edges()

 Return an enumeration of the edges of G.
The Graph ADT (contd.)

- directedEdges()
 Return an enumeration of all directed edges in G.

- undirectedEdges()
 Return an enumeration of all undirected edges in G.

- incidentEdges(v)
 Return an enumeration of all edges incident on v.

- inIncidentEdges(v)
 Return an enumeration of all the incoming edges to v.

- outIncidentEdges(v)
 Return an enumeration of all the outgoing edges from v.
The Graph ADT (contd.)

- opposite(v, e)
 Return an endpoint of e distinct from v
- degree(v)
 Return the degree of v.
- inDegree(v)
 Return the in-degree of v.
- outDegree(v)
 Return the out-degree of v.
More Methods ...

- \texttt{adjacentVertices}(v)

 Return an enumeration of the vertices adjacent to \(v \).

- \texttt{inAdjacentVertices}(v)

 Return an enumeration of the vertices adjacent to \(v \) along incoming edges.

- \texttt{outAdjacentVertices}(v)

 Return an enumeration of the vertices adjacent to \(v \) along outgoing edges.

- \texttt{areAdjacent}(v,w)

 Return whether vertices \(v \) and \(w \) are adjacent.
More Methods ...

- endVertices(e)
 Return an array of size 2 storing the end vertices of e.

- origin(e)
 Return the end vertex from which e leaves.

- destination(e)
 Return the end vertex at which e arrives.

- isDirected(e)
 Return true iff e is directed.
Update Methods

- **makeUndirected**(e)

 Set e to be an undirected edge.

- **reverseDirection**(e)

 Switch the origin and destination vertices of e.

- **setDirectionFrom**(e, v)

 Sets the direction of e away from v, one of its end vertices.

- **setDirectionTo**(e, v)

 Sets the direction of e toward v, one of its end vertices.
Update Methods

- `insertEdge(v, w, o)`
 Insert and return an undirected edge between v and w, storing o at this position.

- `insertDirectedEdge(v, w, o)`
 Insert and return a directed edge between v and w, storing o at this position.

- `insertVertex(o)`
 Insert and return a new (isolated) vertex storing o at this position.

- `removeEdge(e)`
 Remove edge e.
Data Structures for Graphs

- Edge list
- Adjacency lists
- Adjacency matrix
• To start with, we store the **vertices** and the **edges** into two containers, and each edge object has references to the vertices it connects.

• Additional structures can be used to perform efficiently the methods of the Graph ADT.
• The **edge list** structure simply stores the vertices and the edges into unsorted sequences.

• Easy to implement.

• Finding the edges incident on a given vertex is inefficient since it requires examining the entire edge sequence.
<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>size, isEmpty, replaceElement, swap</td>
<td>O(1)</td>
</tr>
<tr>
<td>numVertices, numEdges</td>
<td>O(1)</td>
</tr>
<tr>
<td>vertices</td>
<td>O(n)</td>
</tr>
<tr>
<td>edges, directedEdges, undirectedEdges</td>
<td>O(m)</td>
</tr>
<tr>
<td>elements, positions</td>
<td>O(n+m)</td>
</tr>
<tr>
<td>endVertices, opposite, origin, destination, isDirected</td>
<td>O(1)</td>
</tr>
<tr>
<td>incidentEdges, inIncidentEdges, outIncidentEdges, adjacentVertices, inAdjacentVertices, outAdjacentVertices, areAdjacent, degree, inDegree, outDegree</td>
<td>O(m)</td>
</tr>
<tr>
<td>insertVertex, insertEdge, insertDirectedEdge, removeEdge, makeUndirected, reverseDirection, setDirectionFrom, setDirectionTo</td>
<td>O(1)</td>
</tr>
<tr>
<td>removeVertex</td>
<td>O(m)</td>
</tr>
</tbody>
</table>
Data Structures for Graphs

• Adjacency List (traditional)

 - Adjacency list of a vertex v: sequence of vertices adjacent to v
 - Represent the graph by the adjacency lists of all the vertices
 - Sequence of vertices adjacent to a vertex

 Space = $\Theta(N + \sum_{v} \text{deg}(v)) = \Theta(N + M)$
The adjacency list structure extends the edge list structure by adding incidence containers to each vertex.

- The space requirement is $O(n + m)$.
<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>size, isEmpty, replaceElement, swap</td>
<td>O(1)</td>
</tr>
<tr>
<td>numVertices, numEdges</td>
<td>O(1)</td>
</tr>
<tr>
<td>vertices</td>
<td>O(n)</td>
</tr>
<tr>
<td>edges, directedEdges, undirectedEdges</td>
<td>O(m)</td>
</tr>
<tr>
<td>elements, positions</td>
<td>O(n+m)</td>
</tr>
<tr>
<td>endVertices, opposite, origin, destination, isDirected, degree, inDegree, outDegree</td>
<td>O(1)</td>
</tr>
<tr>
<td>incidentEdges(v), inIncidentEdges(v), outIncidentEdges(v), adjacentVertices(v), inAdjacentVertices(v), outAdjacentVertices(v)</td>
<td>O(deg(v))</td>
</tr>
<tr>
<td>areAdjacent(u, v)</td>
<td>O(min(deg(u), deg(v)))</td>
</tr>
<tr>
<td>insertVertex, insertEdge, insertDirectedEdge, removeEdge, makeUndirected, reverseDirection</td>
<td>O(1)</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>O(deg(v))</td>
</tr>
</tbody>
</table>
- matrix M with entries for all pairs of vertices
- $M[i,j] = \text{true}$ means that there is an edge (i,j) in the graph.
- $M[i,j] = \text{false}$ means that there is no edge (i,j) in the graph.
- There is an entry for every possible edge, therefore:
 \[\text{Space} = \Theta(N^2) \]
- The adjacency matrix structures augments the edge list structure with a matrix where each row and column corresponds to a vertex.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ø</td>
<td>Ø</td>
<td>NW 35</td>
<td>Ø</td>
<td>DL 247</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>1</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>AA 49</td>
<td>Ø</td>
<td>DL 335</td>
<td>Ø</td>
</tr>
<tr>
<td>2</td>
<td>Ø</td>
<td>AA 1387</td>
<td>Ø</td>
<td>Ø</td>
<td>AA 903</td>
<td>Ø</td>
<td>TW 45</td>
</tr>
<tr>
<td>3</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>UA 120</td>
<td>Ø</td>
</tr>
<tr>
<td>4</td>
<td>Ø</td>
<td>AA 523</td>
<td>Ø</td>
<td>AA 411</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>5</td>
<td>Ø</td>
<td>UA 877</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>6</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
</tbody>
</table>

- The space requirement is $O(n^2 + m)$
Performance of the Adjacency Matrix Structure

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>size, isEmpty, replaceElement, swap</td>
<td>O(1)</td>
</tr>
<tr>
<td>numVertices, numEdges</td>
<td>O(1)</td>
</tr>
<tr>
<td>vertices</td>
<td>O(n)</td>
</tr>
<tr>
<td>edges, directedEdges, undirectedEdges</td>
<td>O(m)</td>
</tr>
<tr>
<td>elements, positions</td>
<td>O(n+m)</td>
</tr>
<tr>
<td>endVertices, opposite, origin, destination, isDirected, degree, inDegree, outDegree</td>
<td>O(1)</td>
</tr>
<tr>
<td>incidentEdges, inIncidentEdges, outIncidentEdges, adjacentVertices, inAdjacentVertices, outAdjacentVertices, areAdjacent</td>
<td>O(n)</td>
</tr>
<tr>
<td>insertEdge, insertDirectedEdge, removeEdge, makeUndirected, reverseDirection, setDirectionFrom, setDirectionTo</td>
<td>O(1)</td>
</tr>
<tr>
<td>insertVertex, removeVertex</td>
<td>O(n^2)</td>
</tr>
</tbody>
</table>