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Adventures in
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1Geometric Algorithms

GEOMETRIC ALGORITHMS
• segment intersection

• orientation

• point inclusion

• simple closed path
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segment: portion of a straight line between two
points

point: defined by a pair of coordinates (x,y)

Basic Geometric Objects
in the Plane

polygon: a circular sequence of points
(vertices) and segments (edges)
between them
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Some Geometric Problems

Segment intersection: Given two segments, do
they intersect?

Simple closed path: Given a set of points, find a
nonintersecting polygon with vertices on the
points.

Inclusion in polygon: Is a point inside or outside
a polygon?

3Geometric Algorithms

Some Geometric Problems

Segment intersection: Given two segments, do
they intersect?

Simple closed path: Given a set of points, find a
nonintersecting polygon with vertices on the
points.

Inclusion in polygon: Is a point inside or outside
a polygon?



3Geometric Algorithms

Some Geometric Problems

Segment intersection: Given two segments, do
they intersect?

Simple closed path: Given a set of points, find a
nonintersecting polygon with vertices on the
points.

Inclusion in polygon: Is a point inside or outside
a polygon?

3Geometric Algorithms

Some Geometric Problems

Segment intersection: Given two segments, do
they intersect?

Simple closed path: Given a set of points, find a
nonintersecting polygon with vertices on the
points.

Inclusion in polygon: Is a point inside or outside
a polygon?



3Geometric Algorithms

Some Geometric Problems

Segment intersection: Given two segments, do
they intersect?

Simple closed path: Given a set of points, find a
nonintersecting polygon with vertices on the
points.

Inclusion in polygon: Is a point inside or outside
a polygon?

3Geometric Algorithms

Some Geometric Problems

Segment intersection: Given two segments, do
they intersect?

Simple closed path: Given a set of points, find a
nonintersecting polygon with vertices on the
points.

Inclusion in polygon: Is a point inside or outside
a polygon?



4Geometric Algorithms

An Apparently Simple Problem:
Segment Intersection

• Test whether segments (a,b) and (c,d) intersect.
How do we do it?

• We could start by writing down the equations of the
lines through the segments, then test whether the
lines intersect, then ...

• An alternative (and simpler) approach is based in the
notion of orientation of an ordered triplet of points
in the plane

a

bc

d
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Orientation in the Plane
• The orientation of an ordered triplet of points in the

plane can be
- counterclockwise (left turn)
- clockwise (right turn)
- collinear (no turn)

• Examples:

a

b

c

counterclockwise (left turn)

a

c

b

clockwise (right turn)

collinear (no turn)

a b c
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Intersection and Orientation
Two segments (p1,q1) and (p2,q2) intersect if and only if
one of the following two conditions is verified

• general case:
- (p1,q1,p2) and (p1,q1,q2) have different

orientations and
- (p2,q2,p1) and (p2,q2,q1) have different

orientations
• special case

- (p1,q1,p2), (p1,q1,q2), (p2,q2,p1), and (p2,q2,q1) are
all collinear and

- the x-projections of (p1,q1) and (p2,q2) intersect
- the y-projections of (p1,q1) and (p2,q2) intersect

p1

q1p2

q2
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Examples (Special Case)
• special case

- (p1,q1,p2), (p1,q1,q2), (p2,q2,p1), and (p2,q2,q1) are
all collinear and

- the x-projections of (p1,q1) and (p2,q2) intersect
- the y-projections of (p1,q1) and (p2,q2) intersect

p1

q1p2
q2

(p1,q1,p2)

(p1,q1,q2)

(p2,q2,p1)

(p2,q2,q1)

p1

q1
p2

q2 (p1,q1,p2)

(p1,q1,q2)
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Examples (General Case)
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- (p1,q1,p2) and (p1,q1,q2) have different
orientations and

- (p2,q2,p1) and (p2,q2,q1) have different
orientations

p1

q1

p2

q2 (p1,q1,p2)

(p1,q1,q2)

(p2,q2,p1)

(p2,q2,q1)

p1

q1

p2

q2

(p1,q1,p2)

(p1,q1,q2)

(p2,q2,p1)

(p2,q2,q1)

7Geometric Algorithms

Examples (General Case)
• general case:

- (p1,q1,p2) and (p1,q1,q2) have different
orientations and

- (p2,q2,p1) and (p2,q2,q1) have different
orientations

p1

q1

p2

q2 (p1,q1,p2)

(p1,q1,q2)

(p2,q2,p1)

(p2,q2,q1)

p1

q1

p2

q2

(p1,q1,p2)

(p1,q1,q2)

(p2,q2,p1)

(p2,q2,q1)

7Geometric Algorithms

Examples (General Case)
• general case:

- (p1,q1,p2) and (p1,q1,q2) have different
orientations and

- (p2,q2,p1) and (p2,q2,q1) have different
orientations

p1

q1

p2

q2 (p1,q1,p2)

(p1,q1,q2)

(p2,q2,p1)

(p2,q2,q1)

p1

q1

p2

q2

(p1,q1,p2)

(p1,q1,q2)

(p2,q2,p1)

(p2,q2,q1)



7Geometric Algorithms

Examples (General Case)
• general case:

- (p1,q1,p2) and (p1,q1,q2) have different
orientations and

- (p2,q2,p1) and (p2,q2,q1) have different
orientations

p1

q1

p2

q2 (p1,q1,p2)

(p1,q1,q2)

(p2,q2,p1)

(p2,q2,q1)

p1

q1

p2

q2

(p1,q1,p2)

(p1,q1,q2)

(p2,q2,p1)

(p2,q2,q1)

8Geometric Algorithms

Examples (General Case)
• general case:

- (p1,q1,p2) and (p1,q1,q2) have different
orientations and

- (p2,q2,p1) and (p2,q2,q1) have different
orientations

p1

q1

p2
q2 (p1,q1,p2)

(p1,q1,q2)

(p2,q2,p1)

(p2,q2,q1)

p1

q1

p2
q2

(p1,q1,p2)

(p1,q1,q2)

(p2,q2,p1)

(p2,q2,q1)



10Geometric Algorithms

How to Compute the Orientation
• slope of segment (p1,p2): σ = (y2−y1) / (x2−x1)

• slope of segment (p2,p3): τ = (y3−y2) / (x3−x2)

• Orientation test
- counterclockwise (left turn): σ < τ
- clockwise (right turn): σ > τ
- collinear (left turn): σ = τ

• The orientation depends on whether the expression
(y2−y1) (x3−x2) − (y3−y2) (x2−x1)
is positive, negative, or zero.

p1

p2

p3

x2−x1

x3−x2

y 3
−y
2

y 2
−y
1
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Point Inclusion
• given a polygon and a point, is the point inside or

outside the polygon?

• orientation helps solving this problem in linear time
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Point Inclusion — Part II
• Draw a horizontal line to the right of each point and

extend it to infinity

• Count the number of times a line  intersects the
polygon.  We have:
- even number ⇒   point is outside
- odd number ⇒   point is inside

• Why?

• What about points d and g ??  Degeneracy!

a

c

e

f

g

b

d
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Degeneracy
• Degeneracies are input configurations that involve

tricky special cases.

• When implementing an algorithm, degeneracies
should be taken care of separately -- the general
algorithm might fail to work.

• For example, in the previous example where we had
to determine whether two segments intersect, we
have degeneracy if two segments are collinear.

• The general algorithm of checking for orientation
would fail to distinguish whether the two segments
intersect. Hence, this case should be dealt with
separately.

p1

q1p2
q2
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Simple Closed Path — Part I
• Problem: Given a set of points ...

• “Connect the dots” without crossings
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Simple Closed Path — Part II
• Pick the bottommost point a as the anchor point

• For each point p, compute the angle q(p) of the
segment (a,p) with respect to the x-axis:

a

p

a
θ(p)

17Geometric Algorithms

Simple Closed Path — Part IV
• Orientation can be used to compare angles without

actually computing them ...  Cool!

θ(p) < θ(q) ⇔  orientation of (a,p,q) is
counterclockwise

• We can sort the points by angle by using any
“sorting-by-comparison” algorithm (e.g., heapsort
or merge-sort) and replacing angle comparisons with
orientation tests

• We obtain an O(N log N)-time algorithm for the
simple closed path problem on N points

p

a

q
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Simple Closed Path — Part III
• Traversing the points by increasing angle yields a

simple closed path:

• The question is: how do we compute angles?
- We could use trigonometry (e.g., arctan).
-  However,  the computation would be inefficient

since trigonometric functions are not in the normal
instruction set of a computer and need a call to a
math-library routine.

- Observation:, we don’t care about the actual
values of the angles. We just want to sort by angle.

- Idea: use orientation to compare angles without
actually computing them!!

a
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Welcome to...

Convex Hell
er, that’s

Convex HULL
• Convexivity
• Package-Wrap Algorithm
• Graham Scan
• Dynamic Convex Hull
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What is the Convex Hull?
Let S be a set of points in the plane.

Intuition: Imagine the points of S as being
pegs; the convex hull of S is the shape of a rub-
ber-band stretched around the pegs.

Formal definition: the convex hull of S is the
smallest convex polygon that contains all the
points of S
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Convexity

You know what convex means, right?

A polygon P is said to be convex if:
1. P is non-intersecting; and
2. for any two points p and q on the boundary

of P, segment pq lies entirely inside P

Eh? What’s
convex?

convex

non convex
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Why Convex Hulls?

Who cares about
convex hulls?

I don’t ...
... but robots do!

obstacle

start end

shortest path
avoiding the
obstacle
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The Package Wrapping
Algorithm
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Package Wrap
• given the current point, how do we compute

the next point?
• set up an orientation tournament using the

current point as the anchor-point...
• the next point is selected as the point that

beats all other points at CCW orientation,
i.e., for any other point, we have

orientation(c, p, q) = CCW

c

q

p
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Time Complexity of
Package Wrap

• For every point on the hull we examine all
the other points to determine the next point

• Notation:
• N: number of points
• M: number of hull points (M ≤ N)

• Time complexity:
• Θ(MN)

• Worst case: Θ(N2)
• all the points are on the hull (M=N)

• Average case: Θ(N log N)  —  Θ(N4/3)
• for points randomly distributed inside

a square,M = Θ(log N) on average
• for points randomly distributed inside

a circle,M = Θ(N1/3) on average
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Package Wrap has worst-case
time complexity O( N2 )

Which is bad...

N2

But in 1972,
Nabisco needed a
better cookie - so

they hired R. L.
Graham, who

came up with...
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Graham Scan

• Form a simple polygon (connect the dots as
before)

• Remove points at concave angles
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Graham Scan
How Does it Work?

Start with the lowest point (anchor point)
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Graham Scan: Phase 1

Now, form a closed simple path traversing the
points by increasing angle with respect to the an-
chor point
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Graham Scan: Phase 2

The anchor point and the next
point on the path must be on the
hull (why?)
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Graham Scan: Phase 2

• keep the path and the hull points in two se-
quences

• elements are removed from the beginning
of the path sequence and are inserted and
deleted from the end of the hull sequence

• orientation is used to decide whether to ac-
cept or reject the next point

cur
prev

next
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c
p

n

right turn!

Discard c

(p,c,n) is a

c
p

n
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c
pn

right turn!
(p,c,n) is a

c
pn

right turn!
(p,c,n) is a

c
p

n
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Time Complexity of
Graham Scan

• Phase 1 takes time O(N logN)
• points are sorted by angle around the

anchor
• Phase 2 takes time O(N)

• each point is inserted into the sequence
exactly once, and

• each point is removed from the
sequence at most once

• Total time complexity O(N log N)
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