Winter 2016
COMP-250: Introduction to Computer Science
Lecture 10, February 11, 2016
A Survey of Common Running Times
Linear Time: $O(n)$

Linear time. Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers a_1, \ldots, a_n.

```
max ← a_1
for i = 2 to n {
    if (a_i > max)
        max ← a_i
}
```
Linear Time: $O(n)$

Merge. Combine two sorted lists $A = a_1, a_2, \ldots, a_n$ with $B = b_1, b_2, \ldots, b_n$ into a sorted whole.

$$i = 1, \quad j = 1$$

while (both lists are nonempty) {

 if ($a_i \leq b_j$) append a_i to output list and increment i

 else append b_j to output list and increment j

} append remainder of nonempty list to output list

Claim. Merging two lists of size n takes $O(n)$ time.

Pf. After each comparison, the length of output list increases by 1.
O(n \log n) Time

\ also referred to as linearithmic time
$O(n \log n)$ Time

$O(n \log n)$ time. Arises in divide-and-conquer algorithms. Also referred to as linearithmic time.
$O(n \log n)$ Time.

Arises in divide-and-conquer algorithms.

Also referred to as linearithmic time.
O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms. Also referred to as linearithmic time.
O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.
\ also referred to as linearithmic time

Sorting. Mergesort and Heapsort are sorting algorithms that perform O(n log n) comparisons.
O(n log n) time. Arises in divide-and-conquer algorithms.

also referred to as linearithmic time

Sorting. Mergesort and Heapsort are sorting algorithms that perform O(n log n) comparisons.
O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.
\[
\text{also referred to as linearithmic time}
\]

Sorting. Mergesort and Heapsort are sorting algorithms that perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps \(x_1, \ldots, x_n\) on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?
O(n log n) Time

\[O(n \log n) \text{ time.} \] Arises in divide-and-conquer algorithms.
also referred to as linearithmic time

Sorting. Mergesort and Heapsort are sorting algorithms that perform O(n log n) comparisons.

Largest empty interval. Given \(n \) time-stamps \(x_1, \ldots, x_n \) on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?
O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms. Also referred to as linearithmic time.

Sorting. Mergesort and Heapsort are sorting algorithms that perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps x₁, …, xₙ on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.
Quadratic Time: $O(n^2)$

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane $(x_1, y_1), \ldots, (x_n, y_n)$, find the pair that is closest.

$O(n^2)$ solution. Try all pairs of points.

```plaintext
min ← (x_1 - x_2)^2 + (y_1 - y_2)^2
for i = 1 to n {
    for j = i+1 to n {
        d ← (x_i - x_j)^2 + (y_i - y_j)^2
        if (d < min)
            min ← d
    }
}
```

Remark. This algorithm is $\Omega(n^2)$ and it seems inevitable in general, but this is just an illusion.
Cubic Time: $O(n^3)$

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S_1, \ldots, S_n each of which is a subset of $1, 2, \ldots, n$, is there some pair of these which are disjoint?

$O(n^3)$ solution. For each pair of sets, determine if they are disjoint.

```plaintext
foreach set $S_i$ {
  foreach other set $S_j$ {
    foreach element $p$ of $S_i$ {
      determine whether $p$ also belongs to $S_j$
    }
    if (no element of $S_i$ belongs to $S_j$) {
      report that $S_i$ and $S_j$ are disjoint
    }
  }
}
```
Polynomial Time: \(O(n^k)\)

Independent set of size \(k\). Given a graph, are there \(k\) nodes such that no two are joined by an edge?

\(k\) is a constant

\(O(n^k)\) solution. Enumerate all subsets of \(k\) nodes.

```plaintext
foreach subset \(S\) of \(k\) nodes {
    check whether \(S\) is an independent set
    if (\(S\) is an independent set)
        report \(S\) is an independent set
}
```

- Check whether \(S\) is an independent set = \(O(k^2)\).
- Number of \(k\) element subsets:
 \[
 \binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots(2)(1)} \leq \frac{n^k}{k!}
 \]
 poly-time for \(k=17\), but not practical
Polynomial Time: $O(n^k)$

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?

$O(n^k)$ solution. Enumerate all subsets of k nodes.

- Check whether S is an independent set = $O(k^2)$.
- Number of k element subsets: $\binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots(2)(1)} \leq \frac{n^k}{k!}$

poly-time for $k=17$, but not practical
Independent set. Given a graph, what is the maximum size of an independent set?

$O(n^2 2^n)$ solution. Enumerate all subsets.

```
S* ← ∅
foreach subset S of nodes {
    check whether S in an independent set
    if (S is largest independent set seen so far)
        update S* ← S
}
```
Induction and Recursion
Induction Proofs
Induction Proofs

Predicate.
Induction Proofs

Predicate.
- P(n) : f(n) = some formula in n

Statement.
∀n ≥ 1, P(n) is true.

Proof.
Induction Proofs

Predicate.
- $P(n) : f(n) = \text{some formula in } n$

Statement.
- $\forall n \geq 1, P(n) \text{ is true.}$

Proof.
- Base case: proof that $P(1)$ is true.
Induction Proofs

Predicate.
- $P(n) : f(n) = \text{some formula in n}$

Statement.
- $\forall n \geq 1, P(n) \text{ is true.}$

Proof.
- Base case: proof that $P(1)$ is true.
Induction Proofs

Predicate.
- P(n) : f(n) = some formula in n

Statement.
∀n ≥ 1, P(n) is true.

Proof.
- Base case: proof that P(1) is true.
- Induction step: ∀n ≥ 1, P(n) ⇒ P(n+1).

Let n ≥ 1.
Assume for induction hypothesis that P(n) is true and prove P(n+1) is also true.
Induction Proof (I)
Induction Proof (1)

Predicate.
Induction Proof (1)

Predicate.
- $P(n) : 1 + 2 + \ldots + n = n(n+1)/2$
Induction Proof (I)

Predicate.
- $P(n) : 1+2+\ldots+n = n(n+1)/2$
Induction Proof (1)

Predicate.
- \(P(n) : 1+2+\ldots+n = \frac{n(n+1)}{2} \)
- Base case: when \(n=1 \) we have
 \[
 1+\ldots+n = 1 = \frac{1(2)}{2} = \frac{n(n+1)}{2}.
 \]
P(1) is true.
Induction Proof (1)

Predicate.
- $P(n) : 1+2+\ldots+n = n(n+1)/2$

- Base case: when $n=1$ we have
 $1+\ldots+n = 1 = 1(2)/2 = n(n+1)/2$.
 $P(1)$ is true.
Induction Proof (1)

Predicate.
- P(n) : $1+2+\ldots+n = \frac{n(n+1)}{2}$

- Base case: when $n=1$ we have

 $1+\ldots+n = 1 = 1(2)/2 = n(n+1)/2$.
 P(1) is true.

- Induction step: let $n \geq 1$. Assume for induction hypothesis that P(n) is true. We show P(n+1) is true as well:

 $1+2+\ldots+n+(n+1) = \frac{n(n+1)}{2} + (n+1)$ by I.H.

 $= (n+1)(n/2 + 1)$

 $= (n+1)(n+2)/2$.

 $n \geq 1, P(n) \implies P(n+1)$.
Induction Proof (II)
Induction Proof (II)

Predicate.
Induction Proof (II)

Predicate.
- $P(n) : \sum_{i=1}^{n} i = n(n+1)/2$
Induction Proof (II)

Predicate. \(P(n) : \sum_{i=1}^{n} i = n(n+1)/2 \)
Induction Proof (II)

Predicate. \(P(n) : \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \)

- Base case: when \(n=1, \sum_{i=1}^{1} i = 1 = 1(2)/2 = \frac{n(n+1)}{2} \).

\(P(1) \) is true.
Induction Proof (II)

Predicate.
- $P(n) : \sum_{i=1}^{n} i = n(n+1)/2$
- Base case: when $n=1$, $\sum_{i=1}^{1} i = 1 = 1(2)/2 = n(n+1)/2$.

 $P(1)$ is true.
Induction Proof (II)

Predicate. \(P(n) : \sum_{i=1}^{n} i = n(n+1)/2 \)

- Base case: when \(n=1, \sum_{i=1}^{1} i = 1 = 1(2)/2 = n(n+1)/2. \)

\(P(1) \) is true.

- Induction step: let \(n \geq 1 \). Assume for induction hypothesis that \(P(n) \) is true. We show \(P(n+1) \) is true as well:

\[
\sum_{i=1}^{n+1} i = (n+1) + \sum_{i=1}^{n} i \\
= (n+1) + n(n+1)/2 \quad \text{by I.H.}
\]

\[
= (n+1)(1+n/2) \\
= (n+1)(n+2)/2.
\]

\(n \geq 1, P(n) \implies P(n+1). \)
Iteration vs Recursion

```plaintext
f(n)
sum ← 0
for i = 2 to n {
    sum ← sum + i
}
return sum
```

```plaintext
f(n)
if n = 0 { return 0 }
else { return f(n-1)+n }
```
Iteration vs Recursion

\[f(n) \]
\[
\text{sum} \leftarrow 0 \\
\text{for } i = 2 \text{ to } n \{ \\
 \text{sum} \leftarrow \text{sum} + i \\
\} \\
\text{return sum}
\]
Iteration vs Recursion

- \(f(n) = 1 + 2 + \ldots + n = \sum_{i=1}^{n} i \)

```plaintext
f(n)
sum ← 0
for i = 2 to n {
    sum ← sum + i
}
return sum
```

\[
\begin{cases}
0 & \text{if } n = 0 \\
\end{cases}
\]

```plaintext
f(n)
if n = 0 { return 0 }
else { return f(n-1)+n }
```
Iteration vs Recursion

- \(f(n) = 1 + 2 + \ldots + n = \sum_{i=1}^{n} i \)

\[
\begin{align*}
 f(n) &\left\{ \begin{array}{ll}
 0 & \text{if } n = 0 \\
 f(n-1) + n & \text{if } n > 0
 \end{array} \right.
\end{align*}
\]

```python
f(n)
sum ← 0
for i = 2 to n {
    sum ← sum + i
}
return sum
```

```python
f(n)
if n = 0 { return 0 }
else { return f(n-1)+n }
```
Induction Proof (III)
Induction Proof (III)

Predicate.
Induction Proof (III)

Predicate.
- $P(n) : f(n) = n(n+1)/2$
Induction Proof (III)

Predicate.
 - $P(n) : f(n) = n(n+1)/2$
Induction Proof (III)

Predicate.
- $P(n) : f(n) = n(n+1)/2$
- Base case: when $n=1$, $f(1) = 1 = 1(2)/2 = n(n+1)/2$.

$P(1)$ is true.
Induction Proof (III)

Predicate.
- $P(n) : f(n) = \frac{n(n+1)}{2}$

- Base case: when $n=1$, $f(1) = 1 = 1(2)/2 = \frac{n(n+1)}{2}$.

$P(1)$ is true.
Induction Proof (III)

Predicate.
- $P(n) : f(n) = n(n+1)/2$

- Base case: when $n=1$, $f(1) = 1 = 1(2)/2 = n(n+1)/2$.

 $P(1)$ is true.

- Induction step: let $n \geq 1$. Assume for induction hypothesis that $P(n)$ is true. We show $P(n+1)$ is true as well:

 $f(n+1) = f(n) + (n+1)$ by definition
 $= n(n+1)/2 + (n+1)$ by I.H.
 $= (n+1)(n/2+1)$
 $= (n+1)(n+2)/2$.

 $n \geq 1, P(n) \implies P(n+1)$.
Generalized Induction Proofs
Generalized Induction Proofs

Predicate.
Generalized Induction Proofs

Predicate.

- $P(n) : f(n) = \text{some formula in } n$

Statement.
For all $n \geq 1$, $P(n)$ is true.

Proof.
Generalized Induction Proofs

Predicate.
- \(P(n) : f(n) = \text{some formula in } n \)

Statement.
For all \(n \geq 1 \), \(P(n) \) is true.

Proof.
- Base case: proof that \(P(1) \) is true.
Generalized Induction Proofs

Predicate.
- \(P(n) : f(n) = \text{some formula in } n \)

Statement.
For all \(n \geq 1 \), \(P(n) \) is true.

Proof.
- Base case: proof that \(P(1) \) is true.

Predicate.
- P(n) : f(n) = some formula in n

Statement.
For all \(n \geq 1 \), P(n) is true.

Proof.
- Base case: proof that P(1) is true.
- Induction step: let \(n \geq 1 \). Assume for induction hypothesis that P(1)…P(n) are all true. We show P(n+1) is also true.
Recursion
Recursion: Fibonacci Sequence
Recursion: Fibonacci Sequence

\{
\begin{align*}
\text{if } n &\leq 1 \\
n &
\end{align*}
\}
Recursion: Fibonacci Sequence

- $\text{fib}(n) = \begin{cases}
 n & \text{if } n \leq 1 \\
 \text{fib}(n-1) + \text{fib}(n-2) & \text{if } n > 1
\end{cases}$

Fibonacci sequence:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …
Recursion: Fibonacci Sequence

- fib(n) = \begin{cases}
 n & \text{if } n \leq 1 \\
 fib(n-1) + fib(n-2) & \text{if } n > 1
\end{cases}

Fibonacci sequence:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …
Recursion: Fibonacci Sequence

- \(\text{fib}(n) = \begin{cases}
 n & \text{if } n \leq 1 \\
 \text{fib}(n-1) + \text{fib}(n-2) & \text{if } n > 1
\end{cases} \)

Fibonacci sequence:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …
Recursion: Fibonacci Sequence

- $\text{fib}(n) = \begin{cases}
 n & \text{if } n \leq 1 \\
 \text{fib}(n-1) + \text{fib}(n-2) & \text{if } n > 1
\end{cases}$

Fibonacci sequence:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

- NOT so easy to define iteratively…
Recursion vs Iteration

\{
\begin{align*}
\text{fib}(n) & \quad \text{if } n < 2 \{ \text{return } n \} \\
\text{else} & \quad \{ \text{return } \text{fib}(n-1) + \text{fib}(n-2) \} \\
\text{fib}(n) & \quad a \leftarrow 0 \\
& \quad b \leftarrow 1 \\
& \quad \text{for } i = 1 \text{ to } n \{ \\
& \quad \quad b \leftarrow a + b \\
& \quad \quad a \leftarrow b - a \\
& \quad \} \\
& \quad \text{return } a
\end{align*}
\}
Recursion vs Iteration

\[
\begin{align*}
\text{fib}(n) \\
\text{if } n < 2 \{ \text{ return } n \} \\
\text{else } \{ \text{ return fib}(n-1) + \text{fib}(n-2) \}
\end{align*}
\]

\[
\begin{align*}
\text{fib}(n) \\
a & \leftarrow 0 \\
b & \leftarrow 1 \\
\text{for } i = 1 \text{ to } n \{ \\
& \quad b \leftarrow a + b \\
& \quad a \leftarrow b - a \\
\} \\
\text{return } a
\end{align*}
\]
Recursion vs Iteration

- fib(n) = \begin{cases}
 n & \text{if } n \leq 1 \\
 \text{fib}(n-1) + \text{fib}(n-2) & \text{if } n > 1
\end{cases}

fib(n)
if n < 2 { return n }
else { return fib(n-1)+ fib(n-2) }

fib(n)
a ← 0
b ← 1
for i = 1 to n {
 b ← a + b
 a ← b - a
}
return a
Generalized Induction Proofs
Generalized Induction Proofs

Statement.
For all \(n \geq 0 \), \(P(n) : \text{fib}(n) \leq 2^n \) is true.

Proof.
Generalized Induction Proofs

Statement.
For all \(n \geq 0 \), \(P(n) : \text{fib}(n) \leq 2^n \) is true.

Proof.
- Base case: \(P(0) : \text{fib}(0) = 0 \leq 2^0 \) is true.
 \(P(1) : \text{fib}(1) = 1 \leq 2^1 \) is true.
Statement.
For all \(n \geq 0 \), \(P(n) : \text{fib}(n) \leq 2^n \) is true.

Proof.
- Base case: \(P(0) : \text{fib}(0) = 0 \leq 2^0 \) is true.
 \(P(1) : \text{fib}(1) = 1 \leq 2^1 \) is true.
Generalized Induction Proofs

Statement.
For all $n \geq 0$, $P(n) : \text{fib}(n) \leq 2^n$ is true.

Proof.
- Base case: $P(0): \text{fib}(0) = 0 \leq 2^0$ is true.
 $P(1): \text{fib}(1) = 1 \leq 2^1$ is true.

- Induction step: let $n \geq 1$. Assume for induction hypothesis that $P(0) \ldots P(n)$ are all true. We show $P(n+1)$ is also true:

$$
\text{fib}(n+1) = \text{fib}(n) + \text{fib}(n-1) \text{ by definition}
\leq 2^n + 2^{n-1} \text{ by gen. I. H.}
\leq 2^{n-1} \cdot 3 < 2^{n+1}
$$
Generalized Induction Proofs
Generalized Induction Proofs

Statement.
For all \(n \geq 1 \), \(P(n) : \text{fib}(n) \leq \varphi^n \) is true.

Proof.
Generalized Induction Proofs

Statement.
For all \(n \geq 1 \), \(P(n) : \text{fib}(n) \leq \varphi^n \) is true.

Proof.
- Base case: \(P(1) : \text{fib}(1) = 1 \leq \varphi^1 \) is true (if \(\varphi \geq 1 \)).
 - \(P(2) : \text{fib}(2) = 1 \leq \varphi^2 \) is true (if \(\varphi \geq 1 \)).
Statement.
For all $n \geq 1$, $P(n) : \text{fib}(n) \leq \phi^n$ is true.

Proof.
- Base case: $P(1): \text{fib}(1) = 1 \leq \phi^1$ is true (if $\phi \geq 1$).
 $P(2): \text{fib}(2) = 1 \leq \phi^2$ is true (if $\phi \geq 1$).
Generalized Induction Proofs

Statement.
For all $n \geq 1$, $P(n) : \text{fib}(n) \leq \varphi^n$ is true.

Proof.
- Base case: $P(1)$: $\text{fib}(1) = 1 \leq \varphi^1$ is true (if $\varphi \geq 1$).
 $P(2)$: $\text{fib}(2) = 1 \leq \varphi^2$ is true (if $\varphi \geq 1$).

- Induction step: let $n \geq 1$. Assume for induction hypothesis that $P(1)\ldots P(n)$ are all true. We show $P(n+1)$ is also true:

$$
\text{fib}(n+1) = \text{fib}(n) + \text{fib}(n-1) \quad \text{by definition}
\leq \varphi^n + \varphi^{n-1} \quad \text{by gen. I. H.}
\leq \varphi^{n-1} (\varphi+1) \leq \varphi^{n+1}
\text{whenever } (\varphi+1) \leq \varphi^2 \\
\text{whenever } 0 \leq \varphi^2-\varphi-1.
$$
Generalized Induction Proofs
Generalized Induction Proofs

Statement.
For all $n \geq 1$, $P(n) : \text{fib}(n) \geq \varphi^{n-2}$ is true.

Proof.
Generalized Induction Proofs

Statement.
For all \(n \geq 1 \), \(P(n) : \text{fib}(n) \geq \phi^{n-2} \) is true.

Proof.
- Base case: \(P(1) : \text{fib}(1) = 1 \geq \phi^{-1} \) is true (if \(\phi \geq 1 \)).
 \(P(2) : \text{fib}(2) = 1 = \phi^{0} \) is true.
Generalized Induction Proofs

Statement.
For all $n \geq 1$, $P(n) : \text{fib}(n) \geq \varphi^{n-2}$ is true.

Proof.
- Base case: $P(1) : \text{fib}(1) = 1 \geq \varphi^{-1}$ is true (if $\varphi \geq 1$).
- $P(2) : \text{fib}(2) = 1 = \varphi^0$ is true.
Generalized Induction Proofs

Statement.
For all $n \geq 1$, $P(n) : \text{fib}(n) \geq \varphi^{n-2}$ is true.

Proof.
- Base case: $P(1) : \text{fib}(1) = 1 \geq \varphi^{-1}$ is true (if $\varphi \geq 1$).
 $P(2) : \text{fib}(2) = 1 = \varphi^0$ is true.

- Induction step: let $n \geq 1$. Assume for induction hypothesis that $P(1) \ldots P(n)$ are all true. We show $P(n+1)$ is also true:

\[
\text{fib}(n+1) = \text{fib}(n) + \text{fib}(n-1) \quad \text{by definition}
\geq \varphi^{n-2} + \varphi^{n-3} \quad \text{by gen. I. H.}
\geq \varphi^{n-3} (\varphi + 1) \geq \varphi^{n-1}
\text{whenever } (\varphi + 1) \geq \varphi^2
\text{whenever } 0 \geq \varphi^2 - \varphi - 1.
\]
Weak Binet Formula
Weak Binet Formula

Statements.
For all \(n \geq 1 \), \(\text{fib}(n) \leq \varphi^n \) is true.
whenever \(0 \leq \varphi^2 - \varphi - 1 \) and \(\varphi \geq 1 \).
Weak Binet Formula

Statements.
For all \(n \geq 1 \), \(\text{fib}(n) \leq \varphi^n \) is true. whenever \(0 \leq \varphi^2 - \varphi - 1 \) and \(\varphi \geq 1 \).
Weak Binet Formula

Statements.
For all $n \geq 1$, $\text{fib}(n) \leq \varphi^n$ is true.
whenever $0 \leq \varphi^2 - \varphi - 1$ and $\varphi \geq 1$.

For all $n \geq 1$, $\text{fib}(n) \geq \varphi^{n-2}$ is true.
whenever $0 \geq \varphi^2 - \varphi - 1$ and $\varphi \geq 1$.
Weak Binet Formula

Statements.

For all \(n \geq 1 \), \(\text{fib}(n) \leq \varphi^n \) is true.
whenver \(0 \leq \varphi^2 - \varphi - 1 \) and \(\varphi \geq 1 \).

For all \(n \geq 1 \), \(\text{fib}(n) \geq \varphi^{n-2} \) is true.
whenver \(0 \geq \varphi^2 - \varphi - 1 \) and \(\varphi \geq 1 \).
Weak Binet Formula

Statements.
For all \(n \geq 1 \), \(\text{fib}(n) \leq \varphi^n \) is true.
whenever \(0 \leq \varphi^2 - \varphi - 1 \) and \(\varphi \geq 1 \).

For all \(n \geq 1 \), \(\text{fib}(n) \geq \varphi^{n-2} \) is true.
whenever \(0 \geq \varphi^2 - \varphi - 1 \) and \(\varphi \geq 1 \).

Therefore:
Weak Binet Formula

Statements.
For all $n \geq 1$, $\text{fib}(n) \leq \varphi^n$ is true.
whenever $0 \leq \varphi^2 - \varphi - 1$ and $\varphi \geq 1$.

For all $n \geq 1$, $\text{fib}(n) \geq \varphi^{n-2}$ is true.
whenever $0 \geq \varphi^2 - \varphi - 1$ and $\varphi \geq 1$.

Therefore:
For all $n \geq 1$, $\varphi^n / \varphi^2 \leq \text{fib}(n) \leq \varphi^n$ is true.
whenever $0 = \varphi^2 - \varphi - 1$ and $\varphi \geq 1$.
Weak Binet Formula

Statements.
For all $n \geq 1$, $\text{fib}(n) \leq \varphi^n$ is true.
whenever $0 \leq \varphi^2 - \varphi - 1$ and $\varphi \geq 1$.

For all $n \geq 1$, $\text{fib}(n) \geq \varphi^{n-2}$ is true.
whenever $0 \geq \varphi^2 - \varphi - 1$ and $\varphi \geq 1$.

Therefore:
For all $n \geq 1$, $\varphi^n/\varphi^2 \leq \text{fib}(n) \leq \varphi^n$ is true.
whenever $0 = \varphi^2 - \varphi - 1$ and $\varphi \geq 1$.
Only solution $\varphi = \text{golden ratio} = (1 + \sqrt{5})/2$.
Weak Binet Formula

Statements.
For all $n \geq 1$, $\text{fib}(n) \leq \varphi^n$ is true.
whenever $0 \leq \varphi^2 - \varphi - 1$ and $\varphi \geq 1$.

For all $n \geq 1$, $\text{fib}(n) \geq \varphi^{n-2}$ is true.
whenever $0 \geq \varphi^2 - \varphi - 1$ and $\varphi \geq 1$.

Therefore:
For all $n \geq 1$, $\varphi^n / \varphi^2 \leq \text{fib}(n) \leq \varphi^n$ is true.
whenever $0 = \varphi^2 - \varphi - 1$ and $\varphi \geq 1$.
Only solution $\varphi = \text{golden ration} = (1+\sqrt{5})/2$.
Weak Binet Formula

Statements.

For all $n \geq 1$, $\text{fib}(n) \leq \varphi^n$ is true. Whenever $0 \leq \varphi^2 - \varphi - 1$ and $\varphi \geq 1$.

For all $n \geq 1$, $\text{fib}(n) \geq \varphi^{n-2}$ is true. Whenever $0 \geq \varphi^2 - \varphi - 1$ and $\varphi \geq 1$.

Therefore:

For all $n \geq 1$, $\varphi^n / \varphi^2 \leq \text{fib}(n) \leq \varphi^n$ is true. Whenever $0 = \varphi^2 - \varphi - 1$ and $\varphi \geq 1$.

Only solution $\varphi = \text{golden ratio} = (1 + \sqrt{5})/2$.

$\text{fib}(n)$ is $\Theta(\varphi^n)$.

Generalized Induction Proofs
Generalized Induction Proofs

\[
\begin{cases}
 n & \text{if } n \leq 1
\end{cases}
\]
Generalized Induction Proofs

\[f(n) = \begin{cases}
 n & \text{if } n \leq 1 \\
 f^2(n + \frac{1}{2}) + f^2(n - \frac{1}{2}) & \text{if odd } n > 1 \\
 f^2(n/2 + 1) - f^2(n/2 - 1) & \text{if even } n > 1
\end{cases} \]

f-sequence:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …
Generalized Induction Proofs

\[f(n) = \begin{cases}
 n & \text{if } n \leq 1 \\
 f^2(n+1/2) + f^2(n-1/2) & \text{if odd } n > 1 \\
 f^2(n/2+1) - f^2(n/2-1) & \text{if even } n > 1
\end{cases} \]

f-sequence:
\[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots \]
Generalized Induction Proofs

\[
\begin{align*}
\text{f}(n) &= \begin{cases}
n & \text{if } n \leq 1 \\
n^2 + 2(n-1)(n-2) & \text{if odd } n > 1 \\
n^2 - 2(n-1)(n-2) & \text{if even } n > 1
\end{cases}
\end{align*}
\]

f-sequence:
\[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots\]

Statement.
For all \(n \geq 0\), \(\text{fib}(n) = f(n)\).
Generalized Induction Proofs

\[f(n) = \begin{cases}
 n & \text{if } n \leq 1 \\
 f^2(n+1/2) + f^2(n-1/2) & \text{if odd } n > 1 \\
 f^2(n/2+1) - f^2(n/2-1) & \text{if even } n > 1
\end{cases} \]

f-sequence:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Statement.
For all \(n \geq 0 \), \(\text{fib}(n) = f(n) \).
Generalized Induction Proofs

\[f(n) = \begin{cases}
 n & \text{if } n \leq 1 \\
 f^2\left(\frac{n+1}{2}\right) + f^2\left(\frac{n-1}{2}\right) & \text{if odd } n > 1 \\
 f^2\left(\frac{n}{2}+1\right) - f^2\left(\frac{n}{2}-1\right) & \text{if even } n > 1
\end{cases} \]

f-sequence:

\[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots \]

Statement.

For all \(n \geq 0 \), \(\text{fib}(n) = f(n) \).

Left as an exercise…
Recursive Algorithms
Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Merge Sort

Jon von Neumann (1945)

- **divide** \(O(1)\)
- **sort** \(2T(n/2)\)
- **merge** \(O(n)\)
Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

- Linear number of comparisons.
- Use temporary array.

Challenge for the bored. In-place merge. [Kronrod, 1969]

using only a constant amount of extra storage
Merging.
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.
Merging.
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

```
Merging.
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.
```
Merging

Merge

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

```plaintext
<table>
<thead>
<tr>
<th>A</th>
<th>G</th>
<th>L</th>
<th>O</th>
<th>R</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>H</th>
<th>I</th>
<th>M</th>
<th>S</th>
<th>T</th>
</tr>
</thead>
</table>

auxiliary array
```
Merging

Merging.
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.
Merging.
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

auxiliary array
Merging.
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

 auxiliary array
Merge

Merging.
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

![Diagram](image-url)
Merging.
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.
Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

The diagram illustrates the process of merging two sorted lists into an auxiliary array. The smallest elements from each list are selected and inserted into the auxiliary array, ensuring the final result is sorted.
Merging.
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge

\[\text{smallest}\]
\[
\begin{array}{cccc}
A & G & L & O & R \\
\end{array}
\]

\[\text{smallest}\]
\[
\begin{array}{cccc}
H & I & M & S & T \\
\end{array}
\]

\[
\begin{array}{cccc}
A & G & H & I & L \\
\end{array}
\]

auxiliary array
Merging.
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

```
AGLOR
```
```
HIMS
```
```
AGHIL
```
```
```
```
Merging.
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

**Merge**

```
AGLOR

HIMST

AGHILMauxiliary array
```
Merge

Merging.
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.
Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Auxiliary array
Merging.
• Keep track of smallest element in each sorted half.
• Insert smallest of two elements into auxiliary array.
• Repeat until done.
Merge

Merging.
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

```
AGLOR
```
```
HIMST
```

```
AGHILMOR
```

auxiliary array
Merge

Merging.
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

first half exhausted

smallest

AGLOR

HIIMST

AGHILMOR

auxiliary array
Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

First half exhausted

Smallest

Auxiliary array
Merging.
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

```
| A | G | L | O | R |
```

```
| H | I | M | S | T |
```

```
| A | G | H | I | L | M | O | R | S |
```

auxiliary array
Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

**Merge**

```
AGLOR

HIMS

AGHILMORS
```

auxiliary array
Merging.
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

```
first half exhausted

AGLOR HIMST

second half exhausted

AGHILMORSST

auxiliary array
```
Recurrence Relation

**Def.** \( T(n) = \) number of comparisons to mergesort an input of size \( n \).

**Mergesort recurrence.**

\[
T(n) \leq \begin{cases} 
0 & \text{if } n = 1 \\
T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + n & \text{otherwise}
\end{cases}
\]

**Solution.** \( T(n) \) is \( O(n \log_2 n) \).

**Assorted proofs.** We describe several ways to prove this recurrence. Initially we assume \( n \) is a power of 2 and replace \( \leq \) with \( = \).
Telescoping Proof

**Claim.** If \( T(n) \) satisfies this recurrence, then \( T(n) = n \log_2 n \).

\[ T(n) = \begin{cases} 0 & \text{if } n = 1 \\ \frac{2T(n/2)}{n} + \frac{n}{n} & \text{otherwise} \end{cases} \]

**Pf.** For \( n > 1 \):

\[
\begin{align*}
\frac{T(n)}{n} &= \frac{2T(n/2)}{n} + 1 \\
&= \frac{T(n/2)}{n/2} + 1 \\
&= \frac{T(n/4)}{n/4} + 1 + 1 \\
&\vdots \\
&= \frac{T(n/n)}{n/n} + 1 + \cdots + 1 \\
&= \log_2 n
\end{align*}
\]

assumes \( n \) is a power of 2
**Claim.** If $T(n)$ satisfies this recurrence, then $T(n) = n \log_2 n$.

**Pf.** (by induction on $k$ such that $n=2^k$)

- **Base case:** $n = 2^0 = 1$.
- **Inductive hypothesis:** $T(n) = T(2^k) = n \log_2 n$.
- **Goal:** show that $T(2n) = T(2^{k+1}) = 2n \log_2 (2n)$.

\[
T(2n) = 2T(n) + 2n \\
= 2n\log_2 n + 2n \\
= 2n(\log_2 (2n)-1) + 2n \\
= 2n\log_2 (2n)
\]
Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n \lceil \lg n \rceil$.

$$T(n) \leq \begin{cases} 
0 & \text{if } n = 1 \\
T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \frac{n}{\log_2 n} & \text{otherwise}
\end{cases}$$

Pf. (by induction on $n$)

- Base case: $n = 1. T(1) = 0 = 1 \lceil \lg 1 \rceil$.
- Define $n_1 = \lceil n / 2 \rceil$, $n_2 = \lfloor n / 2 \rfloor$. (note $1 \leq n_1 < n$, $1 \leq n_2 < n$)
- Induction step: Let $n \geq 2$, assume true for $1, 2, \ldots, n-1$.

\[
T(n) \leq T(n_1) + T(n_2) + n \\
\leq n_1 \lceil \lg n_1 \rceil + n_2 \lceil \lg n_2 \rceil + n \\
\leq n_1 \lceil \lg n_2 \rceil + n_2 \lceil \lg n_2 \rceil + n \\
= n \lceil \lg n_2 \rceil + n \\
\leq n(\lceil \lg n \rceil - 1) + n \\
= n \lceil \lg n \rceil
\]

\[
n_2 = \lceil n/2 \rceil \\
\leq 2\lceil \lg n \rceil / 2 \\
= 2^{\lceil \lg n \rceil} / 2 \\
\Rightarrow \ \lg n_2 \leq \lceil \lg n \rceil - 1
\]