Winter 2016

COMP-250: Introduction

to Computer Science
Lecture 10, February 11,2016

A Survey of Common
Running Times

Linear Time: O(n)

Linear time. Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers a,, ..., a,.

max < a;
for i = 2 to n {
if (a; > max)

max < a;

Linear Time: O(n)

Merge. Combine two sorted lists A = a|,a,,...,a, with B = b,b,,...,b,
into a sorted whole.

/11177 |G A

Merged result <

/// |bj b

i=1, =1
while (both lists are nonempty) ({
if (a; =b;) append a; to output list and increment i

else append b; to output list and increment j

}

append remainder of nonempty list to output 1list

Claim. Merging two lists of size n takes O(n) time.
Pf. After each comparison, the length of output list increases by |.

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.
\
also referred to as linearithmic time

Sorting. Mergesort and Heapsort are sorting algorithms that perform
O(n log n) comparisons.

Largest empty interval. Given n time-stamps X, ..., X, on which copies of
a file arrive at a server, what is largest interval of time when no copies of the
file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order,
identifying the maximum gap between successive time-stamps.

Quadratic Time: O(n?)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane
(X5 ¥1)s -5 (X, ¥p), find the pair that is closest.

O(n?) solution. Try all pairs of points.

min & (x; - x,)%2 + (y; - ¥,)?
for 1 =1 to n {
for j = i+l to n {
d « (x; - x)2 + (y; - y;)? don't need to
if (d < min) take square roots

min <« d
}

Remark. This algorithm is Q(n?) and it seems inevitable in general,
but this is just an illusion.

Cubic Time: O(n?)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given nsets S, ..., S, each of which is a subset of
l,2,...,n,is there some pair of these which are disjoint?

O(n3) solution. For each pair of sets, determine if they are disjoint.

foreach set S; {
foreach other set S; {
foreach element p of S; {
determine whether p also belongs to S;

}

if (no element of S; belongs to S,)
report that S; and S; are disjoint

Polynomial Time: O(nX)

Independent set of size k. Given a graph, are there k nodes such that no

.. \
two are joined by an edge! k is a constant

O(n") solution. Enumerate all subsets of k nodes.

foreach subset S of k nodes {
check whether S in an independent set
if (S is an independent set)
report S is an independent set

}
}

* Check whether S is an independent set = O(k?).

I — e —

n)_n(n—l)(n—2)---(n—k+1) n

— < —
k

= Number of k element subsets : (
k(k=-1)(k=2)---(2) (1) k!

= O(k? nk/ k') is O(n¥).
\

poly-time for k=17,
but not practical

Polynomial Time: O(nX)

Independent set of size k. Given a graph, are there k nodes such that no

.. \
two are joined by an edge! k is a constant

O(n") solution. Enumerate all subsets of k nodes.

foreach subset S of k nodes {
check whether S in an independent set
if (S is an independent set)
report S is an independent set

}
}

* Check whether S is an independent set = O(k?).

— < —
k

= Number of k element subsets : (
k(k=-1)(k=2)---(2) (1) k!

n)_n(n—l)(n—2)---(n—k+1) n
= O(k? nk/ k') is O(n¥).
\

poly-time for k=17,
but not practical

Exponential Time: O(c")

Independent set. Given a graph, what is the maximum size of an
independent set!?

O(n%2") solution. Enumerate all subsets.

S* « @
foreach subset S of nodes {
check whether S in an independent set
if (S is largest independent set seen so far)

update S* < S

Induction and Recursion

Induction Proofs

Predicate.
= P(n) : f(n) = some formula in n

Statement.
vn= |, P(n) is true.

Proof.
= Base case: proof that P(I) is true.

* |[nduction step: vn=1, P(n) = P(n+1).

Let n> 1.
Assume for induction hypothesis that P(n) is
true and prove P(n+1) is also true.

Induction Proof (1)

Predicate.
= P(n) : I+2+...+n =n(n+1)/2

= Base case: when n=| we have
|+...+n =1 = 1(2)/2 = n(n+1)/2.
P(1) is true.

" Induction step:let n=1. Assume for
induction hypothesis that P(n) is true.
We show P(n+1) is true as well :
|+2+...+n+(n+l) = n(n+1)/2 + (n+1) by |.H.

= (n+1)(n/2 + 1)
= (n+1)(n+2)/2.
n=1,P(n) = P(n+1).

Induction Proof (ll)

Predicate. |
= P(n) : Z-=|i = n(n+1)/2

= Base case: when n=I,ZI=Ii =1 =1(2)/2 = n(n+1)/2.
P(1) is true.

" Induction step: let n>1. Assume for induction
hypothesis that P(n) is true.
We show P(n+1) is true as well :

n+

S =) +3 |
= (n+l) + n(n+1)/2 by IL.H.
= (n+t1)(1+n/2)
= (n+1)(n+2)/2.

n=|,P(n) = P(n+l).

lteration vs Recursion

"fn)=1+2+...+n=2_ i
f(n)
sum < O

for 1i = 2 to n {
sum < sum + 1

}

return sum

{ 0 if n=0
= f(n)z
f(n-1)+n ifn>0

f(n)
if n=0 { return 0 }
else { return f£(n-1)+n }

Induction Proof (lll)

Predicate.
= P(n) : f(n) = n(n+1)/2

= Base case: when n=1,f(l) = | = 1(2)/2 = n(n+1)/2.
P(l) is true.

" Induction step: let n=1. Assume for induction
hypothesis that P(n) is true.
We show P(n+1) is true as well :

f(n+1) = f(n) + (n+1) by definition
=n(n+l)/2 + (n+1) by l.H.
= (n+1)(n/2+1)
= (n+1)(n+2)/2.

n=|,P(n) = P(n+1).

Generalized Induction Proofs

Predicate.
= P(n) : f(n) = some formula in n

Statement.
For all n> 1, P(n) is true.

Proof.
= Base case: proof that P(I) is true.

" Induction step: let n> 1. Assume for
induction hypothesis that P(1)...P(n) are all
true.We show P(n+1) is also true.

G

35

QO LA

N

0N

D
.oo¢o

RO

o,vor

R
AR
Zhﬂﬁ

SR NN
g
Nl o

A
AL
A

Seve s coma ¥

WL

e
RATALO
¢ M

N,

O

:/,.c... '~
DO

.

B
PRROAR)

AR
DN

if n> |

fib(n-1) + fib(n-2)

ib(n)

= f

ibonacci sequence:

F

1,1,2,3,5,8,13,21,34,55,89,144,...

iteratively...

ine |

= NOT so easy to def

Recursion vs lteration

{ n ifn < |
= fib(n)=
fib(n-1) + fib(n-2) ifn> |

fib (n)
if n < 2 { return n }
else { return fib(n-1)+ fib(n-2) }

fib (n)

a < 0

b <1

for 1 =1 to n {
b a+b

a < b - a

}

return a

Generalized Induction Proofs

Statement.
For all n=0, P(n) : fib(n) < 2" is true.

Proof.
= Base case: P(0):fib(0) = 0 < 20 is true.
P(1):fib(l) =1 < 2'is true.

" Induction step:let n=1. Assume for
induction hypothesis that P(0)...P(n) are all
true.We show P(n+1) is also true:

fib(n+1) = fib(n) + fib(n-1) by definition
< 2"+ 2n! by gen. I. H.
< 2™l e 3 <2l

Generalized Induction Proofs

Statement.
For all n>1,P(n) : fib(n) < ¢" is true.

Proof.
" Base case: P(l):fib(l) =1 < ga is true (if =1).
P(2):fib(2) = | < ¢?is true (if p=1).

" Induction step: let n>1. Assume for induction
hypothesis that P(l)...P(n) are all true.VVe
show P(n+1) is also true:

fib(n+1) = fib(n) + fib(n-1) by definition
< "+ ™! by gen. I. H.
< "' (p*]) < o™
whenever (<p+l) < cp
whenever 0 < cp --1.

Generalized Induction Proofs

Statement.
For all n>1,P(n) : fib(n) = ¢"*is true.

Proof.
" Base case: P(1): fib(|l

)= 1 = @ is true (if p=1).
P(2): fib(2) =

= <p is true.

" Induction step: let n> 1. Assume for induction
hypothesis that P(I)...P(n) are all true.VVe
show P(n+1) is also true:

fib(n+1) = fib(n) + flbgn |) by definition
> @+ " by gen.|. H.
> " (1) = o™
whenever ((p+|) > ?
whenever 0 > @?-@-1.

Weak Binet Formula

Statements.
For all n> 1, fib(n) < ¢" is true.
whenever 0 < @?%-@-l and @ > |.

For all n> 1, fib(n) = @™ is true.
whenever 0 > @?-¢-1 and @ > |.

Therefore:

For all n>1, ¢"/¢? < fib(n) < ¢" is true.
whenever 0 = @%-@-l and ¢ > I.

Only solution ¢ = golden ratio = (1++/5)/2.

fib(n) is O (¢").

Generalized Induction Proofs

ifn < |
= f(n)= f2(“+'/2) + f2(™!/;) if odd n>I

f2("2+1) - f2("/2-1) if even n>1

f-sequence:
0,1,1,2,3,58,13,21,34,55,89,144,...

Statement.
For all n=0, fib(n) = f(n).

Left as an exercise...

Recursive Algorithms

Merge Sort

Mergesort.

* Divide array into two halves.
= Recursively sort each half.

= Merge two halves to make sorted whole.

Jon von Neumann

(1945)
A L G O R I T H M s
A L G O R I T H M S divide O(l)
A G L O R H I M S T sort 2T(n/2)

A G H I L M O R s T merge O(n)

Merging. Combine two pre-sorted lists into a sorted whole.
How to merge efficiently!?

* Linear number of comparisons.
= Use temporary array.

o
A G H I -

sl s v

Challenge for the bored. In-place merge. [Kronrod, 1969]
I

using only a constant amount of extra storage

Merge

Merging.
= Keep track of smallest element in each sorted half.
= |nsert smallest of two elements into auxiliary array.

= Repeat until done.

smallest smallest
A G| L| O R H I M| S| T

auxiliary array

Merge

Merging.
= Keep track of smallest element in each sorted half.
= |nsert smallest of two elements into auxiliary array.

= Repeat until done.

smallest smallest
A G| L| O R H I M| S| T

n auxiliary array

Merging
Merge

Merging.
= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

smallest smallest
A G| L| O R H I M| S| T

A auxiliary array

Merging
Merge

Merging.
= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

smallest smallest
A G| L| O R H I M| S| T

Eﬂ auxiliary array

Merge

Merging.
= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

smallest smallest
A G| L| O R H I M| S| T

Al G auxiliary array

Merging.

= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

smallest

!]

A|lG| L|O

Merge

smallest

! 1

H

Al c I3

auxiliary array

Merge

Merging.
= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

smallest smallest
A G| L| O R H I M| S| T

Al G H auxiliary array

Merging.

= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

smallest

Merge

smallest

! 1

I

auxiliary array

Merge

Merging.
= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

smallest smallest
A G| L| O R H I M| S| T

Al G H I auxiliary array

Merge

Merging.
= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

smallest smallest
A G| L| O R H I M| S| T

A G H | I auxiliary array

Merge

Merging.
= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

smallest smallest
A G| L| O R H I M| S| T

A G H I | L auxiliary array

Merge

Merging.
= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

smallest smallest
A G| L| O R H I M| S| T

A|lG H I | L m auxiliary array

Merging.

Merge

= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

smallest

! 1

O

smallest

]

M

S

auxiliary array

Merging.

Merge

= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

smallest

! 1

O

smallest

]

M

S

auxiliary array

Merging.

Merge

= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

smallest

! 1

R

smallest

]

M

S

auxiliary array

Merging.

Merge

= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

smallest

! 1

R

smallest

]

S

auxiliary array

Merging.

Merge

= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

first half
exhausted

]

smallest

]

M

S

auxiliary array

Merge

Merging.
= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

first half
exhausted smallest

1 ! 1

Al G L|O|R H I M| S| T

AGHILMORm

auxiliary array

Merging.

= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

Merge

first half
exhausted

]

smallest

]

T

auxiliary array

Merging.

Merge

= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

first half

exhausted smallest
Al G| L R S| T
AlG|H L AT

auxiliary array

Merging.

= Keep track of smallest element in each sorted half.

* Insert smallest of two elements into auxiliary array.

= Repeat until done.

Merge

first half
exhausted

]

second half

exhausted

!]

auxiliary array

Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

M ergeso rt recurrence.

0 if n=1
T(n) = - LT([n/2]) i \T (|_nV/2J), i L otherwise
| solve left half solve right half ~ TMerging

Solution. T(n) is O(n log, n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace < with =.

Telescoping Proof

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.

Pf. Forn> [;:

T(n) = 1

I

assumes n is a power of 2

0 if n=1
2T(n/2) + n otherwise
————’ ==
| sorting both halves MErging
T'(n) 2T(n/2) |
n n
_ T(n/2) L
nl/2
- Tn/4) +1+1
nl4
= I(n/n) +1+---+1
nin N
log, n

log, n

Induction Proof

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.

assumes n is a power of 2

0 if n=1
Tn)=4 2T(m/2) + n otherwise
- — J h,—.l
| sorting both halves merging

Pf. (by induction on k such that n=2¥)

= Base case: n=20=|.

= Inductive hypothesis: T(n) =T(2X) = n log, n.
= Goal: show that T(2n) =T(2*!) = 2n log, (2n).

T(2n)

2T(n) + 2n

2nlog,n + 2n
2n(logy (2n)-1) + 2n
2nlog, (2n)

Generalized Induction Proof

Claim. If T(n) satisfies the following recurrence,thenT(n) <n |[lgn].
[

0 if n=1 logan
T(m) = 1 T([nv/Z]) + T [nv/zj) + o, otherwise
| solve left half solve right half ~ ™MCT8INE

Pf. (by induction on n)

» Basecase: n=1.T(1)=0=1[lIgl].

* Definen, = [n/2] ,n,= [n/2]. (note | =n,<n, | <n,<n)
* Induction step: Let n>2,assume true for |, 2,...,n—I.

I(n) = T(n) + T(ny) + n n, = [n/2]
< m|lgn |+ nflgn,| + n 3 '2“g"1/21
< nlgn,| + n,[lgn,| + n gn]
: : = 2% /2
= n|lgn,|+ n

= lgn, = [lgn] -1

< n([lgn'—l) + n

Il
N
— |
[—

oQ
N
—

Winter 2016

COMP-250: Introduction

to Computer Science
Lecture 10, February 11,2016

