
Winter 2016
COMP-250: Introduction 

to Computer Science
Lecture 10, February 11, 2016

A Survey of Common
Running Times

Linear time. Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers a1, …, an.

max ← a1
for i = 2 to n {
 if (ai > max)
 max ← ai
}

Linear Time: O(n)

Merge. Combine two sorted lists A = a1,a2,…,an with B = b1,b2,…,bn
into a sorted whole.

Claim. Merging two lists of size n takes O(n) time.
Pf. After each comparison, the length of output list increases by 1.

i = 1, j = 1
while (both lists are nonempty) {
 if (ai ≤ bj) append ai to output list and increment i
 else(ai ≤ bj)append bj to output list and increment j
}
append remainder of nonempty list to output list

Linear Time: O(n)

O(n log n) time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and Heapsort are sorting algorithms that perform
O(n log n) comparisons.

Largest empty interval. Given n time-stamps x1, …, xn on which copies of
a file arrive at a server, what is largest interval of time when no copies of the
file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order,
identifying the maximum gap between successive time-stamps.

also referred to as linearithmic time

O(n log n) Time

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane
(x1, y1), …, (xn, yn), find the pair that is closest.

O(n2) solution. Try all pairs of points.

Remark. This algorithm is Ω(n2) and it seems inevitable in general,
 but this is just an illusion.

min ← (x1 - x2)2 + (y1 - y2)2
for i = 1 to n {
 for j = i+1 to n {
 d ← (xi - xj)2 + (yi - yj)2
 if (d < min)
 min ← d
 }
}

don't need to 
take square roots

Quadratic Time: O(n2)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S1, …, Sn each of which is a subset of 
1, 2, …, n, is there some pair of these which are disjoint?

O(n3) solution. For each pair of sets, determine if they are disjoint.

foreach set Si {
 foreach other set Sj {
 foreach element p of Si {
 determine whether p also belongs to Sj
 }
 if (no element of Si belongs to Sj)
 report that Si and Sj are disjoint
 }
}

Cubic Time: O(n3)

Independent set of size k. Given a graph, are there k nodes such that no
two are joined by an edge?

O(nk) solution. Enumerate all subsets of k nodes.

■ Check whether S is an independent set = O(k2).  

■ Number of k element subsets :
■ O(k2 nk / k!) is O(nk).

foreach subset S of k nodes {
 check whether S in an independent set
 if (S is an independent set)
 report S is an independent set
 }
}

€

n
k
"

$
%

&
' =

n (n−1) (n− 2)! (n− k +1)
k (k −1) (k − 2)! (2) (1)

 ≤ n
k

k!

poly-time for k=17, 
but not practical

k is a constant

Polynomial Time: O(nk)

Independent set of size k. Given a graph, are there k nodes such that no
two are joined by an edge?

O(nk) solution. Enumerate all subsets of k nodes.

■ Check whether S is an independent set = O(k2).  

■ Number of k element subsets :
■ O(k2 nk / k!) is O(nk).

foreach subset S of k nodes {
 check whether S in an independent set
 if (S is an independent set)
 report S is an independent set
 }
}

€

n
k
"

$
%

&
' =

n (n−1) (n− 2)! (n− k +1)
k (k −1) (k − 2)! (2) (1)

 ≤ n
k

k!

poly-time for k=17, 
but not practical

k is a constant

Polynomial Time: O(nk)

Independent set. Given a graph, what is the maximum size of an
independent set?

O(n2 2n) solution. Enumerate all subsets.

S* ← ∅
foreach subset S of nodes {
 check whether S in an independent set
 if (S is largest independent set seen so far)
 update S* ← S
 }
}

Exponential Time: O(cn)

Induction and Recursion

Predicate.
■ P(n) : f(n) = some formula in n

Statement.
∀n≥1, P(n) is true.

Proof.
■ Base case: proof that P(1) is true.

■ Induction step: ∀n≥1, P(n) ⟹ P(n+1).

Let n≥1.
Assume for induction hypothesis that P(n) is
true and prove P(n+1) is also true.

Induction Proofs

Predicate.
■ P(n) : 1+2+…+n = n(n+1)/2

■ Base case: when n=1 we have
1+…+n = 1 = 1(2)/2 = n(n+1)/2.

P(1) is true.

■ Induction step: let n≥1. Assume for
induction hypothesis that P(n) is true.
We show P(n+1) is true as well :
1+2+…+n+(n+1) = n(n+1)/2 + (n+1) by I.H.

= (n+1)(n/2 + 1)
= (n+1)(n+2)/2.

n≥1, P(n) ⟹ P(n+1).

Induction Proof (1)

Predicate.
■ P(n) : ∑

n

i=1
i = n(n+1)/2

■ Base case: when n=1,∑1

i=1
i = 1 = 1(2)/2 = n(n+1)/2.

P(1) is true.

■ Induction step: let n≥1. Assume for induction
hypothesis that P(n) is true.
We show P(n+1) is true as well :

∑
n

i=

+1

1
i = (n+1) + ∑

n

i=1
i

= (n+1) + n(n+1)/2 by I.H.
= (n+1)(1+n/2)
= (n+1)(n+2)/2.

n≥1, P(n) ⟹ P(n+1).

Induction Proof (II)

■ f(n) = 1 + 2 + … + n = ∑n

i=1
i

0 if n = 0
■ f(n)=

f(n-1)+n if n > 0

Iteration vs Recursion

f(n)
sum ← 0
for i = 2 to n {
 sum ← sum + i
}
return sum

{
f(n)
if n = 0 { return 0 }
else { return f(n-1)+n }

Predicate.
■ P(n) : f(n) = n(n+1)/2

■ Base case: when n=1, f(1) = 1 = 1(2)/2 = n(n+1)/2.

P(1) is true.

■ Induction step: let n≥1. Assume for induction
hypothesis that P(n) is true.
We show P(n+1) is true as well :

f(n+1) = f(n) + (n+1) by definition
= n(n+1)/2 + (n+1) by I.H.
= (n+1)(n/2+1)
= (n+1)(n+2)/2.

n≥1, P(n) ⟹ P(n+1).

Induction Proof (III)

Predicate.
■ P(n) : f(n) = some formula in n

Statement.
For all n≥1, P(n) is true.

Proof.
■ Base case: proof that P(1) is true.

■ Induction step: let n≥1. Assume for
induction hypothesis that P(1)…P(n) are all
true.We show P(n+1) is also true.

Generalized Induction Proofs

Recursion

■

n if n ≤ 1
■ fib(n)=

fib(n-1) + fib(n-2) if n > 1

Fibonacci sequence:
0,1,1,2,3,5,8,13,21,34,55,89,144,…

■ NOT so easy to define iteratively…

{

Recursion:
Fibonacci Sequence

Recursion vs Iteration

fib(n)
a ← 0
b ← 1
for i = 1 to n {
 b ← a + b
 a ← b - a
}
return a

fib(n)
if n < 2 { return n }
else { return fib(n-1)+ fib(n-2) }

■

n if n ≤ 1
■ fib(n)=

fib(n-1) + fib(n-2) if n > 1{

Statement.
For all n≥0, P(n) : fib(n) ≤ 2n is true.

Proof.
■ Base case: P(0): fib(0) = 0 ≤ 20 is true.

P(1): fib(1) = 1 ≤ 21 is true.

■ Induction step: let n≥1. Assume for
induction hypothesis that P(0)…P(n) are all
true.We show P(n+1) is also true:

fib(n+1) = fib(n) + fib(n-1) by definition
≤ 2n + 2n-1 by gen. I. H.
≤ 2n-1 • 3 < 2n+1

Generalized Induction Proofs

Statement.
For all n≥1, P(n) : fib(n) ≤ 𝜑n is true.

Proof.
■ Base case: P(1): fib(1) = 1 ≤ 𝜑1 is true (if 𝜑≥1).

P(2): fib(2) = 1 ≤ 𝜑2 is true (if 𝜑≥1).

■ Induction step: let n≥1. Assume for induction
hypothesis that P(1)…P(n) are all true.We
show P(n+1) is also true:

fib(n+1) = fib(n) + fib(n-1) by definition
≤ 𝜑n + 𝜑n-1 by gen. I. H.
≤ 𝜑n-1 (𝜑+1) ≤ 𝜑n+1

whenever (𝜑+1) ≤ 𝜑2

whenever 0 ≤ 𝜑2-𝜑-1.

Generalized Induction Proofs

Statement.
For all n≥1, P(n) : fib(n) ≥ 𝜑n-2 is true.

Proof.
■ Base case: P(1): fib(1) = 1 ≥ 𝜑-1 is true (if 𝜑≥1).

P(2): fib(2) = 1 = 𝜑0 is true.

■ Induction step: let n≥1. Assume for induction
hypothesis that P(1)…P(n) are all true.We
show P(n+1) is also true:

fib(n+1) = fib(n) + fib(n-1) by definition
≥ 𝜑n-2 + 𝜑n-3 by gen. I. H.
≥ 𝜑n-3 (𝜑+1) ≥ 𝜑n-1

whenever (𝜑+1) ≥ 𝜑2

whenever 0 ≥ 𝜑2-𝜑-1.

Generalized Induction Proofs

Statements.
For all n≥1, fib(n) ≤ 𝜑n is true.
whenever 0 ≤ 𝜑2-𝜑-1 and 𝜑 ≥ 1.

For all n≥1, fib(n) ≥ 𝜑n-2 is true.
whenever 0 ≥ 𝜑2-𝜑-1 and 𝜑 ≥ 1.

Therefore:
For all n≥1,𝜑n/𝜑2≤ fib(n) ≤ 𝜑n is true.
whenever 0 = 𝜑2-𝜑-1 and 𝜑 ≥ 1.
Only solution 𝜑 = golden ratio = (1+√5)/2.

fib(n) is 𝜭(𝜑n).

Weak Binet Formula

■

n if n ≤ 1
■ f(n)= f2(n+1/2) + f2(n-1/2) if odd n>1

f2(n/2+1) - f2(n/2-1) if even n>1

f-sequence:
0,1,1,2,3,5,8,13,21,34,55,89,144,…

Statement.
For all n≥0, fib(n) = f(n).

Left as an exercise…

Generalized Induction Proofs

{

Recursive Algorithms

Mergesort.
■ Divide array into two halves.
■ Recursively sort each half.
■ Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann
(1945)

O(n)

2T(n/2)

O(1)

Merge Sort

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
■ Linear number of comparisons.
■ Use temporary array.

Challenge for the bored. In-place merge. [Kronrod, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

Merge

auxiliary array

smallest smallest

A G L O R H I M S T

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

Merge

auxiliary array

smallest smallest

A G L O R H I M S T

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

A

Merge

A G L O R H I M S T

A

Merging

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

auxiliary array

smallest smallest

Merge

A G L O R H I M S T

A G

Merging

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

auxiliary array

smallest smallest

Merge

A G L O R H I M S T

A G

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

auxiliary array

smallest smallest

Merge

A G L O R H I M S T

A G H

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

auxiliary array

smallest smallest

Merge

A G L O R H I M S T

A G H

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

auxiliary array

smallest smallest

Merge

A G L O R H I M S T

A G H I

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

auxiliary array

smallest smallest

Merge

A G L O R H I M S T

A G H I

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

auxiliary array

smallest smallest

Merge

A G L O R H I M S T

A G H I L

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

auxiliary array

smallest smallest

Merge

A G L O R H I M S T

A G H I L

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

auxiliary array

smallest smallest

Merge

A G L O R H I M S T

A G H I L M

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

auxiliary array

smallest smallest

Merge

A G L O R H I M S T

A G H I L M

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

auxiliary array

smallest smallest

Merge

A G L O R H I M S T

A G H I L M O

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

auxiliary array

smallest smallest

Merge

A G L O R H I M S T

A G H I L M O

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

auxiliary array

smallest smallest

Merge

A G L O R H I M S T

A G H I L M O R

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

auxiliary array

smallest smallest

Merge

first half 
exhausted

A G L O R H I M S T

A G H I L M O R

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

auxiliary array

smallest

Merge

first half 
exhausted

A G L O R H I M S T

A G H I L M O R S

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

auxiliary array

smallest

Merge

A G L O R H I M S T

A G H I L M O R S

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

first half 
exhausted

auxiliary array

smallest

Merge

A G L O R H I M S T

A G H I L M O R S T

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

first half 
exhausted

auxiliary array

smallest

Merge

A G L O R H I M S T

A G H I L M O R S T

Merging.
■ Keep track of smallest element in each sorted half.
■ Insert smallest of two elements into auxiliary array.
■ Repeat until done.

first half 
exhausted

auxiliary array

Merge

second half 
exhausted

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

Solution. T(n) is O(n log2 n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace ≤ with =.

Recurrence Relation

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. For n > 1:

assumes n is a power of 2

�

T(n)
n

= 2T(n /2)
n

+ 1

= T(n /2)
n /2

+ 1

= T(n / 4)
n / 4

+ 1 + 1
!

= T(n /n)
n /n

+ 1 +!+ 1
log2 n

" # $ % $

= log2 n

Telescoping Proof

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. (by induction on k such that n=2k)
■ Base case: n = 20 = 1.
■ Inductive hypothesis: T(n) = T(2k) = n log2 n.
■ Goal: show that T(2n) = T(2k+1) = 2n log2 (2n).

assumes n is a power of 2

Induction Proof

Claim. If T(n) satisfies the following recurrence, then T(n) ≤ n ⎡lg n⎤.

Pf. (by induction on n)
■ Base case: n = 1. T(1) = 0 = 1⎡lg 1⎤.
■ Define n1 = ⎣n / 2⎦ , n2 = ⎡n / 2⎤. (note 1≤n1<n, 1≤n2<n)
■ Induction step: Let n≥2, assume true for 1, 2, ... , n–1.

log2n

Generalized Induction Proof

Winter 2016
COMP-250: Introduction 

to Computer Science
Lecture 10, February 11, 2016

