
Computer Science COMP-250 Homework #5 v2.0
Due Sunday April 16th, 2016

1. Linear-time sorting  
Consider a situation where you are given an array A of n positive integers,
each of these integers A[i] being bounded by a polynomial nk. Show that
Radix sort using k rounds, combined with Counting sort, will allow you to
sort these numbers in time O(n).

2. Min-Max  
Consider another situation where you have to operate on a large set S of
(comparable) values. You have to handle three types of operations on S : 
 
 S.min(): returns and removes the min in S 
 S.max(): returns and removes the max in S 
 S.insert(x): inserts an element x in S

Show how to implement the set S so that any of these operations can be
performed in time O(log n), where n is the current number of elements in S.

3. Radix trees  
Given two strings a = a0a1. . .ap and b = b0b1. . .bq, where each ai and each
bj is in some ordered set of characters, we say that string a is
lexicographically less than string b if either  
 
A. there exists an integer j, 0 ≤ j ≤ min(p, q), such that ai = bi for all i = 0,
1, . . . , j - 1 and aj < bj, or  
 
B. p<q and ai = bi for all i = 0, l, . . . , p. 
 
For example, if a and b are bit strings, then 10100 < 10110 by rule 1
(setting j = 3) and 10100 < 101000 by rule 2. This is similar to the
ordering used in English-language dictionaries.  
 
The radix tree data structure shown in Figure 1 stores the bit strings 1011,
10, 011, 100, and 0. When searching for a key a = a0a1 . . . ap, we go left at
a node of depth i if ai = 0 and right if ai = 1. Let S be a set of distinct
binary strings whose lengths sum to n. 

[20%]

[20%]

Show how to use a radix tree to sort S lexicographically in O(n) time. For
the example in Figure 1, the output of the sort should be the sequence 0,
011, 10, 100, 1011. 

Figure 1 A radix tree storing the bit strings 1011, 10, 011, 100, and 0.
Each node’s key can be determined by traversing the path from the root to
that node. There is no need, therefore, to store the keys in the nodes; the
keys are shown here for illustrative purposes only. Nodes are heavily
shaded if the keys corresponding to them are not in the tree; such nodes
are present only to establish a path to other nodes.

4. Let Tn be the number of distinct ways we can organize a binary tree with n
internal nodes. It is easy to observe T0 = T1 =1. Argue that for n≥1 we have  
 

 Tn+1 = ∑n
k=0TkTn-k . 

 
Show by mathematical induction that Tn is Ω(2n). Indeed Tn is 𝛳(4n/n3/2).  
[for 10 EXTRA points] Show by mathematical induction that Tn is Ω(3n).

5. Professor Bunyan thinks he has discovered a remarkable property of
binary search trees. Suppose that the search for key k in a binary search
tree ends up in a leaf. Consider three sets: A, the keys to the left of the
search path; B, the keys on the search path; and C, the keys to the right of
the search path. Professor Bunyan claims that any three keys a∈A, b∈B,
and c∈C must satisfy a ≤ b ≤ c. Give a smallest possible counterexample
to the professor’s claim.

[20%]

[20%]

[20%]

