Computer Science COMP-250 Homework \#5 $\mathbf{v 2 . 0}$
 Due Sunday April 16 ${ }^{\text {th }}, 2016$

1. Linear-time sorting

[20\%]Consider a situation where you are given an array A of n positive integers, each of these integers $A[i]$ being bounded by a polynomial n^{k}. Show that Radix sort using k rounds, combined with Counting sort, will allow you to sort these numbers in time $O(n)$.

2. Min-Max

Consider another situation where you have to operate on a large set S of (comparable) values. You have to handle three types of operations on S :
S.min(): returns and removes the min in S
S.max(): returns and removes the max in S
S.insert (x) : inserts an element x in S
Show how to implement the set S so that any of these operations can be performed in time $O(\log n)$, where n is the current number of elements in S.

3. Radix trees

Given two strings $a=a_{0} a_{1} \ldots a_{p}$ and $b=b_{0} b_{1} \ldots b_{q}$, where each a_{i} and each b_{j} is in some ordered set of characters, we say that string a is lexicographically less than string b if either
A. there exists an integer $j, 0 \leq j \leq \min (p, q)$, such that $a_{i}=b_{i}$ for all $i=0$, $1, \ldots, j-1$ and $a_{j}<b_{j}$, or
B. $p<q$ and $a_{i}=b_{i}$ for all $i=0,1, \ldots, p$.

For example, if a and b are bit strings, then $10100<10110$ by rule 1 (setting $j=3$) and $10100<101000$ by rule 2 . This is similar to the ordering used in English-language dictionaries.

The radix tree data structure shown in Figure 1 stores the bit strings 1011, $10,011,100$, and 0 . When searching for a key $a=a_{0} a_{1} \ldots a_{p}$, we go left at a node of depth i if $a_{i}=0$ and right if $a_{i}=1$. Let S be a set of distinct binary strings whose lengths sum to n.

Show how to use a radix tree to sort S lexicographically in $O(n)$ time. For the example in Figure 1, the output of the sort should be the sequence 0 , 011, 10, 100, 1011.

Figure 1 A radix tree storing the bit strings 1011, 10, 011, 100, and 0. Each node's key can be determined by traversing the path from the root to that node. There is no need, therefore, to store the keys in the nodes; the keys are shown here for illustrative purposes only. Nodes are heavily shaded if the keys corresponding to them are not in the tree; such nodes are present only to establish a path to other nodes.
4. Let T_{n} be the number of distinct ways we can organize a binary tree with n internal nodes. It is easy to observe $T_{0}=T_{1}=1$. Argue that for $\mathrm{n} \geq 1$ we have

$$
T_{n+1}=\sum_{k=0}^{n} T_{k} T_{n-k} .
$$

Show by mathematical induction that T_{n} is $\Omega\left(2^{n}\right)$. Indeed T_{n} is $\theta\left(4^{n} / n^{3 / 2}\right)$. [for 10 EXTRA points] Show by mathematical induction that T_{n} is $\Omega\left(3^{n}\right)$.
5. Professor Bunyan thinks he has discovered a remarkable property of binary search trees. Suppose that the search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left of the search path; B, the keys on the search path; and C, the keys to the right of the search path. Professor Bunyan claims that any three keys $a \in A, b \in B$, and $c \in C$ must satisfy $a \leq b \leq c$. Give a smallest possible counterexample to the professor's claim.

