
Computer Science COMP-250 Homework #5 v2.0
Due Sunday April 16th, 2016

1. Linear-time sorting  
Consider a situation where you are given an array A of n positive integers, 
each of these integers A[i] being bounded by a polynomial nk. Show that 
Radix sort using k rounds, combined with Counting sort, will allow you to 
sort these numbers in time O(n).

2. Min-Max  
Consider another situation where you have to operate on a large set S of 
(comparable) values. You have to handle three types of operations on S : 
 
           S.min(): returns and removes the min in S 
           S.max(): returns and removes the max in S 
           S.insert(x): inserts an element x in S

Show how to implement the set S  so that any of these operations can be 
performed in time O(log n), where n is the current number of elements in S.

3. Radix trees  
Given two strings a = a0a1. . .ap and b = b0b1. . .bq, where each ai and each 
bj  is  in  some  ordered  set  of  characters,  we  say  that  string  a  is 
lexicographically less than string b if either  
 
A. there exists an integer j, 0 ≤ j ≤ min(p, q), such that ai = bi for all i = 0, 
1, . . . , j - 1 and aj < bj, or  
 
B. p<q and ai = bi for all i = 0, l, . . . , p. 
 
For example, if  a  and b  are bit  strings, then 10100 < 10110 by rule 1 
(setting  j  =  3)  and  10100  <  101000  by  rule  2.  This  is  similar  to  the 
ordering used in English-language dictionaries.  
 
The radix tree data structure shown in Figure 1 stores the bit strings 1011, 
10, 011, 100, and 0. When searching for a key a = a0a1 . . . ap, we go left at 
a node of depth i if ai = 0 and right if ai = 1. Let S be a set of distinct 
binary strings whose lengths sum to n. 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Show how to use a radix tree to sort S lexicographically in O(n) time. For 
the example in Figure 1, the output of the sort should be the sequence 0, 
011, 10, 100, 1011. 

Figure 1  A radix tree storing the bit strings 1011, 10, 011, 100, and 0. 
Each node’s key can be determined by traversing the path from the root to 
that node. There is no need, therefore, to store the keys in the nodes; the 
keys  are  shown here  for  illustrative  purposes  only.  Nodes  are  heavily 
shaded if the keys corresponding to them are not in the tree; such nodes 
are present only to establish a path to other nodes.

4. Let Tn be the number of distinct ways we can organize a binary tree with n 
internal nodes. It is easy to observe T0 = T1 =1. Argue that for n≥1 we have  
 

                                               Tn+1 = ∑n
k=0TkTn-k . 

 
Show by mathematical induction that Tn is Ω(2n). Indeed Tn is 𝛳(4n/n3/2).  
[for 10 EXTRA points] Show by mathematical induction that Tn is Ω(3n).

5. Professor Bunyan  thinks  he  has  discovered  a  remarkable  property  of 
binary search trees. Suppose that the search for key k in a binary search 
tree ends up in a leaf. Consider three sets: A, the keys to the left of the 
search path; B, the keys on the search path; and C, the keys to the right of 
the search path. Professor Bunyan claims that any three keys a∈A, b∈B, 
and c∈C must satisfy a ≤ b ≤ c. Give a smallest possible counterexample 
to the professor’s claim.
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