COMP 250 2016, Assignment 3 v3.0 Due Friday March $\mathbf{1 8}^{\text {th }} 2016$

1.In all of the following sub-questions, give an algorithm in recursive form and show its running time using the Master Theorem or just by solving the recurrence in the simpler cases.
A) Describe a $\Theta(n)$-time algorithm that, given a set S of n integers, determines which two elements in S have the largest sum.
B) Describe a $\Theta(n)$-time algorithm that, given a set S of n integers, determines which two elements in S have the largest difference.
C) Describe a $\Theta(n)$-time algorithm that, given a set S of n integers, determines which two elements in S have the smallest sum.
D) Describe a $\Theta(n \lg n)$-time algorithm that, given a set S of n integers, determines which two elements in S have the smallest difference.
E) Describe a $\Theta(n \lg n)$-time algorithm that, given a set S of n integers and another integer x, determines whether or not there exist two elements in S whose sum is exactly x.
F) Describe an $\Theta(n \lg n)$-time algorithm that, given a set S of n integers and another integer x, determines whether or not there exist two elements in S whose difference is exactly x.
G) Describe an $\Theta(n \lg n)$-time algorithm that, given a set S of n integers and another integer x, determines whether or not there exist two elements in S whose difference is smaller or equal to x.
2.On January 19, 2016, Dr. Curtis Cooper published about his recent discovery of a $49^{\text {th }}$ Mersenne prime, $2^{74207281}-1$ (a number with $22,338,618$ digits), as a result of a search executed by a GIMPS server network.

The best method presently known for testing the primality of Mersenne numbers is the Lucas-Lehmer test. Specifically, it can be shown that for prime $p>2$, $M_{p}=2^{p}-1$ is prime if and only if

$$
S_{\rho-2}=0,
$$

where $S_{0}=4$ and, for $\mathrm{k}>0$,

$$
S_{k}=\left(\left(S_{k-1}\right)^{2}-2\right) \% M_{p} .
$$

I give you two options: you may use either the grade school algorithm for multiplication or the Karatsuba algorithm.

I arbitrarily chose the following two constants:
time to add two numbers of 64 bits each: 0.5 nano-sec time to multiply two numbers of 64 bits each: 1.5 nano-sec.

> How much time would be required (on a single machine) to prove the primality of the $49^{\text {th }}$ Mersenne prime?
> (Proceed by making some reasonable assumptions about the recurrence expressing the running-time of both multiplication methods and solving them.)

Count time for subtraction to be the same as addition and the time for modulo (\%) to be the same as multiplication.
3. Let's consider one last time the problem related to HW-1... but this time I change the conditions slightly:

You receive a list of integers, one at a time, a_{1}, a_{2}, \ldots and I want you to find the first time an a_{i} comes up that has occurred previously, i.e. find the smallest i such that all the $a_{1}, a_{2}, \ldots, a_{i-1}$ are distinct but $a_{i}=a_{j}$ for some $1 \leq j<i$. However, contrary to HW-1 and HW-2, we do not have the nice repetitive structure past position j that $a_{j+k}=a_{i+k}$ for all $k \geq 0$. (This allowed us to obtain an $O(i)$ time algorithm in HW-2.)

Describe an $O\left(i \log ^{2} i\right)$ time algorithm to find the smallest i. (Give an algorithm in recursive form and show its running time using the Master Theorem.)

Note - running time is not a function of the global number of elements but only a function of the position of the first repetition.

Hints: Combine merge-sort, binary search and let yourself be inspired by the expansion process of ArrayLists...

