
COMP 250 2016, Assignment 2 
Due Thursday February 18th 2016 

(no programming this time) 
 

1. Prove that if 

limn→∞ f(n)/g(n) = 0 

then f(n) is O(g(n)) but f(n) is not θ(g(n)). 

By definition, "limn→∞ f(n)/g(n) = 0" means that for all 
ϵ>0 there exists n0 s.t. n>n0 implies f(n)/g(n)<ϵ. Choose 
c=ϵ=1 and let n0 be given by the limit definition. Then 
n>n0 implies f(n)<1•g(n). This means f(n) is O(g(n)). 

Now we show f(n) is not Ω(g(n)). We wish to prove that 
for all c>0 and for all n0>0 there exists n>n0 s.t. 
f(n)<cg(n). But this is weaker than what we get from the 
limit definition: for all c=ϵ>0 there exists n0 s.t. n>n0 
implies f(n)<cg(n). 

2.Solve the following Exercises  

  a) 99n 
  b) n2 
  c) n4 
  d) n2n 
  e) 3n 

[6%]

[5%]



a) 99(2n)/99n = 2                    99(n+1)/99n = 1 + 1/n 
b) (2n)2/n2 = 4                         (n+1)2/n2 ≈ 1 + 2/n 
c) (2n)4/n4 = 16                       (n+1)4/n4 ≈ 1 + 4/n 
d) (2n)22n/n2n = 2n+1               (n+1)2n+1/n2n = 2 + 2/n 
e) 32n/3n = 3n                           3n+1/3n = 3 
 

  f) f1(n) = 99n2 
  g) f2(n) = 2lg n 
  h) f3(n) = n2 log log n 
  i) f4(n) = n2n 
  j) f5(n) = 3n 

O(2lg n)=O(n)⊊O(99n2)⊊O(n2 log log n)⊊O(n2n)⊊O(3n) 

limn→∞ n/99n2 = limn→∞ 1/99n = 0 
limn→∞ n2 / n2 log log n = limn→∞ 1/log log n = 0 
limn→∞ n2 log log n/ n2n  = limn→∞ n log log n/2n = 0 
limn→∞ n2n/3n = limn→∞ n/(3/2)n = 0 

3. 
 

 

(a) False. Take f(n) = 2 and g(n) = 1. 
(b) False. Take f(n) = n and g(n) = n/2. Then  

limn→∞ 2g(n)/2f(n) = limn→∞ 2n/2/2n = limn→∞ 1/2n/2 = 0. 
(c) True. f(n)<cg(n) implies f(n)2<c2g(n)2. 

[5%]

[6%]



4.

5. We know ∑
n

i=1
i  = n(n+1)/2,  ∑

n

i=1
i 2 = n(n+1)(2n+1)/6,  ∑

n

i=1
i 3 = (n(n+1)/2)2. 

Prove that in general ∑n

i=1
i k is 𝛩(nk+1) for any positive integer k.

Proof. ∑n

i=1
i k is O(nk+1) : ∑n

i=1
i k < ∑n

i=1
nk = nk+1

    ∑n

i=1
i k is Ω(nk+1) : ∑n

i=1
i k > ∑n

i=⌊n/2⌋ 
i 
k

       > ∑n

i=⌊n/2⌋ 
(n/2)k 

                                                           ≥ (n/2) k+1 = cn k+1 

               for c=1/2k+1. 

[8%]

[10%]

)



6.

Proof. Define 

              1          if n is even 
  f(n)=  
              n          if n is odd 

                               n         if n is even 
                  g(n)= 
                               1         if n is odd 
 
Clearly f(n) is not O(g(n)) for odd n, g(n) is not O(f(n)) for even n. 

7. Suppose I give you access to a (singly) linked list by its entry point 
named “mylist“. You can move from one cell to the next by using the 
“.next“ field of each cell. For example, mylist points at the cell 
containing the blue diamond, whereas mylist.next points at the cell 
containing the green pentagone. If you walk through this list from the 
head forward you will notice that it contains no null pointer. This means 
that at some point this list points into itself. In the example below, you 
can see this because you see the entire list from the outside. But if you 
visit all the nodes of the list, one by one, it maybe a bit more difficult to 
figure out what is going on.

[5%]

{
{



Now imagine you start two pointers at the beginning of the list: one 
named "tortoise" and another named "hare". The former moves step 
by step while the latter moves two steps at a time 

   tortoise = tortoise.next 
   hare = hare.next.next 

Repeat this process until the two pointers meet : tortoise == hare.  

a) Where will this occur in the example above ? 

 At the blue-circle.          (sorry for the mistake)  

Once this has happened, move the tortoise back to the beginning  of 
the list. Start moving the two pointers from their current positions in the 
list, but both in a step by step fashion:  

   tortoise = tortoise.next 
   hare = hare.next 

Repeat until the two pointers meet once again : tortoise == hare. 
  
 
b) Where will this occur in the example above ?  

 
 
At the green-pentagone.  

 

c) Show that whatever is the length x of the initial segment before 
entering the loop and whatever is the length y of the loop itself, the 
above process will always find the point connecting the two parts. 
Provide a formal proof here. 

 

The red dots form the tail and the yellow dots form the loop. Let Y be the 
length of the loop. Pretend we know Y and write down the numbers %Y on the 
dots starting with zero at the beginning of the tail. You get the picture below. 

[3%]

[3%]

[8%]



After K steps of the algorithm, the tortoise pointer will be on a node labeled 
with K%Y and the hare on 2K%Y. The two pointers cannot meet unless K is 
large enough to reach the yellow part. Once K is large enough to reach the 
yellow nodes, the pointers meet exactly when 2K%Y = K%Y = 0. That’s 
because the simpler condition 2K%Y = K%Y implies K%Y = 0 (by subtracting 
K from both sides). 

Thus when we return the tortoise at the initial zero, the hare pointer is on the 
innermost zero. Now both pointers move one step at a time, meaning that 
they stay synchronized %Y as they move. The tortoise circling down the 
spiral, while the hare circles the loop at the core of this structure. As soon as 
the tortoise pointer reaches the loop (yellow 8 in this example), the hare 
pointer will join in because they are always synchronized %Y. Thus they meet 
at the place we wanted them to meet: the unique dot where tail and loop join 
together. All that mattered is that they were both on a zero %Y at the end of 
the first phase of the algorithm, and that they stayed synchronized %Y 
throughout the second phase of the algorithm. 



d) Combine all this together into an algorithm that breaks an arbitrary 
list mylist into two sub-lists:  
 
NR = the part of the list from beginning before the connecting point  
R = the part of the list closing into a loop starting at the connecting 
point. 

Make sure your algorithm works even if the list does not contain a loop, 
in which case NR contains the whole list and R is an empty list. 

NR = mylist; 
IF NR!=NULL THEN { tortoise = NR.next; 
    IF NR.next!=NULL THEN hare = NR.next.next} 
WHILE 
(hare!=NULL && hare.next!=NULL && hare!=tortoise) 
DO { tortoise = tortoise.next 
 hare = hare.next.next} 
IF hare==NULL OR hare.next==NULL THEN R=NULL 
ELSE{tortoise = NR 
 WHILE (hare!=tortoise) DO { 
  tortoise = tortoise.next 
  hare = hare.next} 
 IF NR==hare THEN {NR=NULL} 
 ELSE{WHILE mylist.next!=hare DO 
   mylist=mylist.next 
  mylist.next=NULL 
  } 
 WHILE tortoise.next!=hare DO 
  {tortoise=tortoise.next} 
 tortoise.next=NULL 
 R=hare 
 } 

[10%]



e) Analyse the running time of your algorithm as a function of the 
number of cells in the list. How much space does your algorithm use 
as a function of the number of cells in the list. 

 Let x be the length of the tail and y the length of the loop.  
Total time is O(x+y) and space is O(1). 
 

f) Let f(s) be a function from a finite set S into itself. Define for all s∈S,  
f(0)(s) = s and f(n)(s) = f(f(n-1)(s)) for n>0. Give an efficient algorithm 
to identify for each x the smallest n and k such that f(n)(x) = f(n+k)(x).  

tortoise = f(x); hare = f(f(x)); 
WHILE (hare!=tortoise) DO 
  {tortoise = f(tortoise); 
 hare = f(f(hare))} 
tortoise = x 
WHILE (hare!=tortoise) DO { 
 tortoise = f(tortoise) 
 hare = f(hare)} 
n=0 
IF x!=hare THEN  { 
    n=1 
    WHILE f(x)!=hare DO 
     {x=f(x); n=n+1} 
    } 
k=1 
WHILE f(tortoise)!=hare DO 
 {tortoise=f(tortoise); k=k+1} 

 
g) Analyse the running time of your algorithm as a function of n and k. 

How much space does your algorithm use as a function of n and k. 

 Let n be the length of the tail and k the length of the loop.  
Total time is O(n+k) and space is O(1). 

 

h) Explain the link between this whole problem and what was asked in 
HW1 !!! [5%]

[8%]

[8%]

[10%]



In HW-1, when computing the periodic part of the fractional 
representation we most likely used an array to store all the remainders 
encountered so far. Most likely this lead to an O(n) space and O((n+k)2)  
time solution. Following the guidelines of the current exercise, Q7f) in 
particular, an O(1) space and O(n+k)  time solution could have been 
constructed. In HW-1 the function f was defined by computing the next 
remainder of the division.

Le Lièvre et la Tortue 

Rien ne sert de courir ; il faut partir à point. 
Le Lièvre et la Tortue en sont un témoignage. 
Gageons, dit celle-ci, que vous n'atteindrez point 
Sitôt que moi ce but. - Sitôt ? Êtes-vous sage ? 
Repartit l'animal léger. 
Ma commère, il vous faut purger 
Avec quatre grains d'ellébore. 
- Sage ou non, je parie encore. 
Ainsi fut fait : et de tous deux 
On mit près du but les enjeux : 
Savoir quoi, ce n'est pas l'affaire, 
Ni de quel juge l'on convint. 
Notre Lièvre n'avait que quatre pas à faire ; 
J'entends de ceux qu'il fait lorsque prêt d'être atteint 
Il s'éloigne des chiens, les renvoie aux Calendes, 
Et leur fait arpenter les landes. 
Ayant, dis-je, du temps de reste pour brouter, 
Pour dormir, et pour écouter 
D'où vient le vent, il laisse la Tortue 
Aller son train de Sénateur. 
Elle part, elle s'évertue ; 
Elle se hâte avec lenteur. 
Lui cependant méprise une telle victoire, 
Tient la gageure à peu de gloire, 
Croit qu'il y va de son honneur 
De partir tard. Il broute, il se repose, 
Il s'amuse à toute autre chose 
Qu'à la gageure. A la fin quand il vit 
Que l'autre touchait presque au bout de la carrière, 
Il partit comme un trait ; mais les élans qu'il fit 
Furent vains : la Tortue arriva la première. 
Eh bien ! lui cria-t-elle, avais-je pas raison ? 
De quoi vous sert votre vitesse ? 
Moi, l'emporter ! et que serait-ce 
Si vous portiez une maison?


