Faculty of Science
 Final Examination

Computer Science 308-250B
 Introduction to Computer Science

Examiner: Prof. Claude Crépeau
Date: April 15, 2004
Associate Examiner: Lecturer John M. Mercer
Time: 14:00-17:00

INSTRUCTIONS:

- This examination is worth 60% of your final grade.
- The total of all questions is 65 points.
- Each question is assigned a value found in brackets next to it.
- OPEN•BOOKS $/ \bullet$ OPEN•NOTES
- Faculty standard calculator permitted only.
- This examination consists of 4 pages including title page.
- This examination consists of 8 questions.

SUGGESTION : read all the questions and their values before you start.

1) Consider the following list of numbers : $\{15,9,1,13,17,21,3,7\}$.

- Put these numbers in a binary search tree with largest possible height.
- Put these numbers in a binary search tree with smallest possible height.
- Put these numbers in a min-HEAP.
- In each case tell if the solution is unique or not and why.

2) Suppose you are given a (single) queue Q containing distinct integers.

- A) Find an algorithm (in pseudo-code) to invert the content of the queue using queue operations on Q and nothing else than a fixed number of extra int variables (no array, no stack, no other queue). Example:
$\{15,9,1,13,17,21,3,7\}$ becomes $\{7,3,21,17,13,1,9,15\}$.
- B) Estimate the worst-case running time of your algorithm and express this time function using the Big-O notation.
- C) Argue that this would be impossible with a single stack S instead of a queue.

3) Consider the following graph. List the sequence of nodes visited according to a
a)

- Depth-first search starting at (M).
(DFS chooses neighbors in the order "left to right")
- Breath-first search starting at (M).
(BFS chooses neighbors in the order "left to right")
b) Re-label the vertices of this graph so that a BFS starting at (M) will produce the string "MY FUNNY VALENTINE". (BFS chooses neighbors "from left to right")

(Write your answer on 6 lines; the current graph labeling would be:
M
YEN
FNYET
VULI
NA
N

4) Let H_{n} be the number of distinct heaps that can be built with n distinct keys. By the definitional properties of a heap we may assert that H_{n} may be defined as

$$
\mathrm{H}_{\mathrm{n}}= \begin{cases}1 & \text { if } \mathrm{n}=0,1 \\ \binom{\mathrm{n}-1}{\mathrm{k}} * \mathrm{H}_{\mathrm{k}} * \mathrm{H}_{\mathrm{n}-1-\mathrm{k}} & \text { if } \mathrm{n}>1\end{cases}
$$

where $\mathrm{k}=\mathrm{f}(\mathrm{n})$ is a certain function of n that depends on the heap structure.

- A) Justify the correctness of this formula, and explain in words what k is.
- B) Prove that for all n we have $(n-1) / 2^{2} k=f(n) \leq(2 n-1) / 3$.
- C) Show that at least one of k or $\mathrm{n}-1-\mathrm{k}$ is a power of two minus one $\left(2^{\mathrm{h}}-1\right)$.
- D) Let $\tilde{n}=2^{[\lg n]}$ where $[x]$ be the integer part of real number x. Show that

$$
f(n)= \begin{cases}n-\tilde{n} / 2 & \text { if } \tilde{n} \quad \leq n<3 \tilde{n} / 2 \\ \tilde{n}-1 & \text { if } 3 \tilde{n} / 2 \leq n<2 \tilde{n}\end{cases}
$$

5) Let N be an integer. Let $[x]$ be the integer part of real number x.

- A) Describe an algorithm to compute the $[\lg N]$ in $\mathrm{O}(\log \mathrm{N})$ time, and justify your running time.
- B) Describe an algorithm to compute the $[\sqrt{N}]$ in $O(\log N)$ time, and justify your running time.

6) Compare MergeSort with HeapSort in terms of

- A) Time used to sort n elements when implemented with arrays.
- B) Time used to sort n elements when implemented with linked lists.
- C) Space used to sort n elements when implemented with arrays.
- D) Space used to sort n elements when implemented with linked lists.

7) For each statement, say if it is true or false.

Correct $=+1 \mathbf{p t}, \quad$ Incorrect $=\mathbf{- 0 . 5} \mathbf{~ p t}, \quad$ No answer $=0 \mathbf{p t}, \quad$ Minimum Total $=0$ pt.

(a) The center of a tree (HW5) is always a single vertex or a single edge.
(b) The regular expressions $\mathbf{a b + a}(\mathbf{b}+\mathbf{a})^{*}$ and $\mathbf{a}+\mathbf{a}(\mathbf{a}+\mathbf{b})^{*}$ generate the same strings.
(c) If $\mathrm{g}(\mathrm{n})$ is $\mathrm{O}(\mathrm{h}(\mathrm{n}))$ then $2^{\mathrm{g}(\mathrm{n})}$ is $\mathrm{O}\left(2^{\mathrm{h}(\mathrm{n})}\right)$.
(d) Besides the case where n points are co-linear, the convex hull of n points in the plane contains as little as 3 line segments and as many as n line segments.
(e) We can easily modify any sorting algorithm to run in $\mathrm{O}(\mathrm{n})$ time in best case.
(f) The best cases of Binary Search is when the element we are seeking is absent.
(g) The 3-colorability of graphs is an undecidable problem.
(h) A tree is a forest.
8) Let A and B be $n \times n$ matrices where $n=2^{k}$ is a power of 2 . Let $M=A B$ be the matrix product of A and B to be defined recursively as

where the original matrices are

where each sub-matrix $A_{i \mathrm{ij}}, \mathrm{B}_{\mathrm{ij} \text {, }}, \mathrm{M}_{\mathrm{ij}}$ is an $\mathrm{n} / 2 \mathrm{xn} / 2$ matrix (the base case is $\mathrm{n}=1$). The above method uses eight multiplications of sub-matrices and four additions of sub-matrices.

- A) Write the recurrence equation that defines the running time $T(n)$ needed to multiply two $n x n$ matrices using the above method.
You may use without proof the fact that adding two $n \times n$ matrices requires $\Theta\left(n^{2}\right)$ time. Operations on integers are at constant cost.
- B) Solve this recurrence using the Master Method.

You do not need to prove BIG-O notation claims such as n^{2} is $\mathrm{O}\left(\mathrm{n}^{3}\right) \ldots$

- C) Consider the following alternate way of computing the matrix product. One may prove that the matrix M defined below is the same as the matrix M defined above. Repeat A) and B) for this new method:

where the seven $n / 2 x n / 2$ sub-matrices M_{1}, \ldots, M_{7} are computed as follows from the $A_{i j}, B_{i j}$.
$\mathrm{M}_{1}=\mathrm{A}_{12} \mathrm{~B}_{21}$
$\mathrm{M}_{5}=\left(\mathrm{A}_{21}+\mathrm{A}_{22}\right)\left(\mathrm{B}_{12}-\mathrm{B}_{11}\right)$
$\mathrm{M}_{2}=\mathrm{A}_{11} \mathrm{~B}_{11}$
$\mathrm{M}_{3}=\left(\mathrm{A}_{21}+\mathrm{A}_{22}-\mathrm{A}_{11}\right)\left(\mathrm{B}_{22}-\mathrm{B}_{12}+\mathrm{B}_{11}\right)+\mathrm{M}_{2}$
$\mathrm{M}_{4}=\left(\mathrm{A}_{11}-\mathrm{A}_{21}\right)\left(\mathrm{B}_{22}-\mathrm{B}_{12}\right)$
$\mathrm{M}_{6}=\left(\mathrm{A}_{12}-\mathrm{A}_{21}+\mathrm{A}_{11}-\mathrm{A}_{22}\right) \mathrm{B}_{22}$
$\mathrm{M}_{7}=\mathrm{A}_{22}\left(\mathrm{~B}_{11}+\mathrm{B}_{22}-\mathrm{B}_{12}-\mathrm{B}_{21}\right)$

