$\mathrm{Q}:$ How does one turn $(\mathrm{X} . \mathrm{Y})_{\mathrm{B}}$ into $(\mathrm{U} . \mathrm{V} \underline{\mathrm{W}})_{\mathrm{R}}$?
A :
OVERVIEW:

1) Turn $(X)_{B}$ into $(U)_{R}$:
2) Turn $(\mathrm{Y})_{\mathrm{B}}$ into $(\mathrm{P})_{R}$.
3) Build a number $(\mathrm{Z})_{\mathrm{B}}$ as $\mathbf{1}$ followed by length (Y) many zeros.

Turn $(\mathrm{Z})_{\mathrm{B}}$ into $(\mathrm{Q})_{\mathrm{R}}$.
4) Do Long-Division of P by Q (in base R).

V and W come out of that.

DETAILS :

1) $\operatorname{Turn}(X)_{B}$ into $(\mathbf{U})_{R}$:
1.1) Compute $(\mathrm{R})_{\mathrm{B}}$ using fixed size arithmetic. $(\mathrm{B}, \mathrm{R} \leq 60)$
1.2) Do Long-Division of X by R (in base B).
1.3) This will produce one digit of U (the remainder) and a new X (the ratio).
1.4) Repeat 1.2 and 1.3 (Long-Division) until $\mathrm{X}=0$.
2) $\operatorname{Turn}(\mathbf{Y})_{\mathbf{B}}$ into $(\mathbf{P})_{\mathbf{R}}$. Do this as in 1$)$.
3) Build a number $(\mathbf{Z})_{B}$ as $\mathbf{1}$ followed by length (\mathbf{Y}) many zeros.

Turn (Z) $)_{\mathbf{B}}$ into $(\mathbf{Q})_{\mathbf{R}} \cdot$. Do this as in 1$)$.
(The number of zeros is the size of Y .)
That's because $(0 . \mathrm{Y})_{\mathrm{B}}$ really means $(\mathrm{Y})_{\mathrm{B}} /\left(10^{\text {length }(\mathrm{Y})}\right)_{\mathrm{B}}$.

4) Do Long-Division of \mathbf{P} by \mathbf{Q} (in base \mathbf{R}).

Keep track of all the remainders during division and stop when you find a remainder Z that you have seen before.

The digits of the ratio produced before the first occurrence of Z are V and those produced from the first occurrence of Z on are W .

