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big O (informal)

In the next several lectures, we will study how the number of operations performed by various
algorithms grows with n which is the size of the input. We have seen several examples of this
growth.

• addition grows linearly with the number of digits in the two numbers (assuming they have
the same number of digits). We say that the addition algorithm is O(n).

• Multiplication grows with the square of the number of digits. We say this algorithm is O(n2).
The reason it is n2 is that the algorithm involves the single digit products of each possible
pair of digits in the first and second numbers and there are n2 pairs.

• Insertion sort (worst case) grew as n2 so we say it is O(n2). The reason it is n2 is that the
algorithm involves two loops, one nested inside the other, which leads to 1 + 2 + . . . + n
operations.

• Insertion sort (best case) grew as n so we say it is O(n). The best case occurs if the list is
already sorted. In this case the inner loop only executes a small number of operations (not
dependent on n).

• (coming up) Mergesort is O(n log n). The merge steps at each “level” involve a total of n
operations and there are log n levels, since the number of levels is the number of times we
divide n by 2 before we reach 0. (It is more challenging to visualize this.)

• (coming up) Binary search is O(log n). It involves log n recursive calls (for the same reason
mergesort has log n levels).

We have seen several algorithms in the course, and loosely characterized the time it takes to
run them in terms of the “size” n of the input. Let’s now tighten up our analysis. We will study
the behavior of algorithms by comparing the number of operations required – which is typically a
complicated function of n of the input size n – against some simpler function of n. This simpler
function describes either an upper bound, in a certain technical sense to be specified below, or a
lower bound, or both.

Limits In Calculus, you look at the limit of a sequence an as n→∞. For example, if an = 7+2−n,
then the limit is 7. Formally, the limit is defined as follows: We say lim

n→∞
an = a if for any ε > 0,

there exists and n0 such that if n > n0 then |an − a| < ε.

Big O

Let t(n) be a well-defined sequence of numbers. This sequence t(n) represents the “time” or number
of steps it takes an algorithm to run as a function of some variable n which itself represents the
“size” of the input. We will consider n ≥ 0 and t(n) to both be positive and real.

Let g(n) be another well defined sequence of reals. We commonly consider g(n) to be one of the
following:

1, log n, n, n log n, n2, n3, 2n, . . .
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We would like to say that t(n) is bounded above by a simple g(n) function if, for n sufficiently
large, we have t(n) ≤ g(n). We would say that t(n) is “asymptotically bounded above” by g(n).
Formally, let’s say that t(n) is asymptotically bounded above by g(n) if there exists a positive number
n0 such that, for all n ≥ n0,

t(n) ≤ g(n).

For example, consider the function t(n) = 5 + 7n. For n sufficiently large, t(n) ≤ 8n. Thus,
t(n) is “asymptotically bounded above” by g(n) = 8n in the sense that I just define. Notice that
the constant 8 is arbitrary here. Any constant greater than 7 would do. For example, t(n) is also
“asymptotically bounded above” by g(n) = 7.00001n.

It is much more common and useful to talk about asymptotic upper bounds on t(n) in terms
of a simpler function g(n), namely where we don’t have constants in g(n). This is justified by the
fact that exact constants are generally implementation dependent. We typically care about the
growth of the function but not precise constants. To do this, one needs a slightly more appropriate
definition. This is the standard definition of an asymptotic upper bound:

Definition (big O): The sequence t(n) is O(g(n)) if there exists two positive numbers n0 and c
such that, for all n ≥ n0,

t(n) ≤ c g(n).

We say t(n) is “big-O of g(n)”.

I emphasize that the condition n ≥ n0 allows us to ignore how t(n) compares with g(n) when n
is small. In this sense, it describes an asymptotic upper bound.

Example 1

The function t(n) = 5 + 7n is O(n). To prove this, we write:

t(n) = 5 + 7n

≤ 5n+ 7n, n ≥ 1

= 12n

and so n0 = 1 and c = 12 satisfy the definition. An alternative proof is:

t(n) = 5 + 7n

≤ n+ 7n, for n ≥ 5

= 8n

and so n0 = 5 and c = 8 also satisfy the definition.
A few points to note:

• If you can show t(n) is O(g(n)) using constants c, n0, then you can always increase c and/or
n0 and be sure that these constants will satisfy the definition also. So, don’t think of the c
and n0 as being uniquely defined.

• There are inequalities in the definition, e.g. n ≥ n0 and t(n) ≤ cg(n). Does it matter if the
inequalities are strict or not? Not really. You can easily verify that, for any t(n) and g(n),
the statement “t(n) is O(g(n))” is true (or false) whether we have a strict inequality or just
“less than or equal to”.
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• We are looking for tight upper bounds for our g(n). But the definition of big O doesn’t require
this. For example, in the above example, t(n) is also O(n2) since t(n) ≤ 12n ≤ 12n2 for n ≥ 1.
By a similar argument, t(n) is also O(n log n) or O(n3), etc.

Many students write “proofs” that they believe are correct, but in fact the “proofs” are incom-
plete (or wrong). For example, consider the following “proof” for the above example:

5 + 7n < c n

5n + 7n < c n, n >= 1

12n < c n

Thus, c > 12, n_0 = 1

There are several problems with this, as a formal proof.

• the first statement seems to assume what we are trying to prove; some indication should be
given as whether this first line is “an assumption”, or this is “what we are going to show”.
And is the statement true for some c, or for all c, or for some n, or all n? Its just not clear.

• There is no clear connection between the statements. What implies what? Are the statements
equivalent, etc ? Such proofs may get grades of 0. This is not the “big O” you want.

What would it mean to say t(n) is O(1), i.e. g(n) = 1 ? Applying the definition, it would mean
that there exists a c and n0 such that t(n) ≤ c for all n ≥ n0. That is, t(n) is bounded by some
constant.11

Example 2 (see a different example in slides)

The function t(n) = 17− 46n + 8n2 is O(n2). To prove this, we need to show there exists positive
c and n0 such that, for all n ≥ n0,

17− 46n+ 8n2 ≤ cn2 .

t(n) = 17− 46n+ 8n2

≤ 17 + 8n2, n > 0

≤ 17n2 + 8n2, if n ≥ 1

= 25n2

and so n0 = 1 and c = 25 do the job.

We can perform an alternative manipulation:

t(n) = 17− 46n+ 8n2

≤ 17 + 8n2, n > 0

≤ n2 + 8n2, if n ≥ 5

= 9n2

and so c = 9 and n0 = 5 do the job as well.

11Why would this be used? Sometimes when we analyze an algorithm’s performance, we consider different parts
of the algorithm separately. Some of those parts (such as assigning values to variables outside of any loops or any
recursive calls) might be done once. Such parts take O(1) time.
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Example 3

Show t(n) = 500+20 logn
n

is O(1).
First note

t(n) =
500 + 20 log n

n
≤ 500 + 20n

n

since log n < n for all n ≥ 1 (see below). We now want to show there exist positive c and n0 such
that for all n ≥ n0,

500 + 20n

n
≤ c

Take c = 520. Then we want to show there exists an n0 such that

500 + 20n ≤ 520n

for all n ≥ n0. But n0 = 1 clearly does the job.

[BEGIN ASIDE: Can you formally prove the “obvious” claim that log n < n for n ≥ 1. One easy
way to do this is to note the “even more obvious” claim n < 2n for all n ≥ 1 and take the log of
both sides (because log is monotone and increasing). To formally prove that n < 2n for n ≥ 1, use
induction. The base case is 1 < 21. For the induction step, we have for k ≥ 1,

k + 1 < 2k + 1 by the induction hypothesis

< 2k + 2k

= 2k+1 and we are done.

END ASIDE]

Subset notation

For any g(n), we can define O(g(n)) as the set of functions t(n) that satisfy the above definition.
In this interpretation, we would say t(n) ∈ O(g(n)) rather than t(n) “is” O(g(n)). With this set
interpretation, one can formally show (though this is not obvious yet) that

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(n2) ⊂ O(n3) ⊂ O(2n) · · · ⊂ O(n!)

for example, if a function t(n) is O(log n) then it automatically is O(n), etc. (The reason comes
down to the fact that log n is itself O(n).)
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Some background logic

The first thing to appreciate is that when you have multiple “for all” and “there exists” quantifiers
in a single statement, the order matters. For example, suppose I say that “for all integers x, there
exists an integer y such that y > x”. This statement is true; it just means that there is no largest
integer. However if I reverse the quantifiers, then I get the statement “there exists an integer y such
that for all integers x, y > x”; it just means that there exists an integer larger than any integer,
which is now false.

Now, let’s look at the problem of how to negate statements that involve logical quantifiers.
Consider the statement “t(n) is asymptotically bounded above by g(n) if there exists a positive

number n0 such that, for all n ≥ n0, t(n) ≤ g(n).” How do we negate such a statement? We say
t(n) is not asymptotically bounded above by g(n) if there does not exist a positive number n0 such
that, for all n ≥ n0,

t(n) ≤ g(n).

This means that for all n0 ≥ 0 we may choose, there exists an n ≥ n0 such that t(n) > g(n). Each
“there exists” becomes a “for all” and vice versa, and the final statement is negated.

not big O

What does it mean for a function t(n) not to be O(g(n)), or equivalently, that that statement “t(n)
is O(g(n))” is false? Saying t(n) is not O(g(n)) means that there do not exist two positive constants
c and n0 such that, for all n ≥ n0, t(n) ≤ cg(n). Logically, this is equivalent to saying that, for all
two positive constants c and n0, there exists an n > n0 such that t(n) > cg(n). Let’s look a few
examples of t(n) and g(n) for which t(n) is not O(g(n)).

Example: t(n) = 3n is not O(2n)

Take any c > 0 and n0 ≥ 0. We want to show there exists an n > n0 such that 3n > c2n,
or equivalently, (3

2
)n > c. Clearly such an n exists since the left hand side of the last inequality

increases without bound, whereas the right hand side is a constant. To find a value of n, take logs of
both sides and manipulate to get n > log 3

2
c. Thus, if we choose any n greater than max(n0, log 3

2
c)

then 3n > c2n. We have therefore shown that t(n) = 3n is not O(2n).

Example: t(n) = 3n2 + 5n+ 2 is not O(n)

To prove formally that t(n) is not O(n), we use a different argument from what we saw last lecture,
namely we use a proof by contradiction. We hypothesize that t(n) is indeed O(n), and then we show
that this hypothesis cannot be correct, i.e. it leads to a contradiction.

Assume t(n) is O(n). Let c > 0 and n0 ≥ 0 be two constants such that, for all n ≥ n0,

3n2 + 5n+ 2 ≤ cn.

Dividing both sides by n gives an equivalent inequality,

3n+ 5 +
2

n
≤ c . (∗)
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But we see that this cannot be true for all n ≥ n0 since the left side grows without bound.
To get a concrete value of the n that produces the failure, note that

3n+ 5 +
2

n
> 3n+ 5, if n > 0

≥ c, if n ≥ max{0, c− 5

3
}

So, any n > max( c−5
3
, n0) will contradict the big O definition for the chosen constants n0, c. Hence

it is not possible to find such constants that satisfy the big O definition. Hence t(n) is not O(n).

In the proof above, do you need to provide the “concrete value” of n? Or could you stop at the
line (*) ? In this case, I would say the latter is fine since there is nothing very subtle about the
claim that the left side increases without bound as n→∞.

Big Omega (asymptotic lower bound)

With big O, we defined an asymptotic upper bound. There is a similar definition for asymptotic
lower bounds. This lower bound is used to claim that something can only be done so fast. You will
make great use of Ω() arguments in future Algorithms courses.

As an example, consider t(n) = n(n−1)
2

. For sufficiently large n, this function is greater than
g(n) = n

4
. More formally, we would say that t(n) is asymptotically bounded below by g(n) if there

exists an n0 such that, for all n ≥ n0, we have t(n) ≥ g(n). The definition of Ω( ) is slightly more
complicated than this, though, since we want to use functions g(n) that don’t have constants in
them – just like in the definition of O( ).

Definition (big Ω): We say that t(n) is Ω(g(n)) – “big Omega of g(n)” – if there exists positive
constants n0 and c such that, for all n ≥ n0,

t(n) ≥ c g(n).

The idea is that t(n) grows at least as fast as g(n) times some constant, for sufficiently large n.
Note that the only difference between the definition of O() and Ω() is the ≤ vs. ≥ inequality.

As an example, you will prove in COMP 251 that the average case behavior, t(n), of any sorting
algorithm is Ω(n log n). That is, it is impossible that algorithm that sorts n arbitrary numbers
using fewer than cn log n operations, on average.12

See the slides for a few examples and see Exercises 5 for many more examples.

Big Theta

It often happens that t(n) is both O(g(n)) and Ω(g(n)). For example, t(n) = n(n+1)
2

is both O(n2)
and Ω(n2). In this case, we say that t(n) is Θ(g(n)), i.e. “big theta”.

12If you are wondering how “average” is defined here, note that there are n! arrangments of n distinct numbers
and only one of the arrangements is correctly sorted. “Average case” analysis treats the n! arrangements as equally
likely.
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Subset notation

Similarly to big-O set notation, we can write

· · · ⊂ Ω(n2) ⊂ Ω(n log n) ⊂ Ω(n) ⊂ Ω(
√
n) ⊂ Ω(log n) ⊂ Ω(1)

That is, Ω(1) is the largest of the sets shown. It is the set of functions that are asymptotically
bounded below by a positive constant – note that this includes any function that converges above
0 as n→∞.
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