
COMP 250 Winter 2016 4 – singly linked lists Jan. 26, 2016

Insertion Sort: an algorithm for sorting an array

Let’s use arrays to solve a problem that comes up often in programming, namely sorting. Suppose we
have an array of objects that is in no particular order and the objects are such that it is meaningful
to talk about an ordering e.g. the objects might be numbers, or they might be strings which can
be sorted alphabetically. Given the under-ordered items in an array, we would like to rearrage the
items in the array such that they are sorted.

There are several possible algorithms for doing so. “Insertion sort” is one of the simplest to
describe. The basic idea of the algorithm is to assume that the k elements of the array (indices
0, . . . , k − 1) are already in the correct order, and then insert element at index k into its correct
position with respect to the first k elements. We start with k = 0. The first element is clearly in
its correct position if we only have one element, so there is nothing to do.

Now suppose that the first k elements are correctly ordered relative to each other. How do we
put the element at index k into its correct position? The idea is to look backwards from index
k until we find the right place for it. Element a[k − 1] is the largest of all a[0], . . . , a[k − 1] by
assumption, since the first k elements are in their correct order. When stepping backwards, if the
element in the next position is greater than a[k], then we move that element forward in the array
to make room for the a[k]. If, on the other hand, we find an element that is less than (or equal to)
a[k] then we go no further.

The algorithm is listed below. You should step through it and make sure you follow it. I suggest
you also have a look at an applet that allows you to visualize how the algorithm works, such as
http://tech-algorithm.com/articles/insertion-sort.

ALGORITHM: INSERTION SORT
INPUT: array a[] with N elements that can be compared (<,=, >)
OUTPUT: array a[] containing the same elements but in increasing order

for k = 1 to N − 1 do
tmp← a[k]
i← k
while (i > 0) & (tmp < a[i− 1]) do
a[i]← a[i− 1]
i← i− 1

end while
a[i] = tmp

end for

Analysis of insertion sort

Suppose you are given an array a[] which is of size N , and you step through this algorithm line
by line. How many steps will you take? Interestingly, the answer depends on the data, not only on
the size N .

Suppose the operations inside the for loop but outside the while loop take c1 time steps, and
the operations inside the while loop take c2 times steps. Then, in the worst case, you need to take

c©Michael Langer (modified with permission) Updated: February 5, 201614

http://tech-algorithm.com/articles/insertion-sort

COMP 250 Winter 2016 4 – singly linked lists Jan. 26, 2016

about c1N + c2(1 + 2 + · · ·+N − 1), where the latter expression occurs in the case that, for each k,
the while loop decrements i all the way from k back to 0. But you should recall from high school
math that

1 + 2 + . . . N − 1 =
N(N − 1)

2

so you can see that in the worst case the algorithm takes time that depends on N2. This worst case
scenario occurs in the case that the array is already sorted, but it is sorted in the wrong direction,
namely from largest to smallest.

In the “best” case, the array is already correctly sorted from smallest to largest. Then the
condition tested in the while loop will be false every time (since a[i− 1] < tmp), and so each time
we hit the while statement, it will take a constant amount of time. This is the best case scenario,
in the sense that the algorithm executes the fewest operations in this case. Since there are N passes
through the for loop, the time taken is proportional to N .

array as a “list”

In the next part of the course, we consider data structures that hold an ordered set of elements.
By “ordered”, I mean that we can talk about the first element, the second element, etc. Such a
set of ordered objects is often called a list. One also refers to list data structures as “linear data
structures”.

The array is a natural data structure for representing a list. If we have size elements in the list,
then we store these elements in positions 0, 1, . . . , size− 1. An array allows us to access any of the
elements in the list by providing the position (index) of the element. Arrays can sometimes be an
awkward way to represent a list, however. If you want to insert a new element into the array then
you have to make room for that element in the array. For example, if you want to insert a new
element at the front (into array slot 0), then you need to move all the elements ahead one position
(i→ i+ 1). We saw this type of problem with the insertion sort algorithm.

// add new element to front of the list

// assuming that there is room left in the array

//

for (i = size; i > 0; i--)

a[i] = a[i-1]

a[0] = new element

size = size + 1

Note that you need the for loop to go backwards. Think what happens if you go forwards!
A similar issue arise if you want to remove an element, namely you need to shift all elements

back one position (i→ i− 1).

// remove the element at front of the list

//

for (i = 1; i < size-1; i++)

a[i-1] = a[i]

a[size-1] = null

size = size - 1

c©Michael Langer (modified with permission) Updated: February 5, 201615

COMP 250 Winter 2016 4 – singly linked lists Jan. 26, 2016

If you have size elements in the array, then adding or removing the element with index 0 takes
size operations. This is obviously inefficient, especially if we are doing alot of adding (also called
“insertions”) and removals (also called “deletions”) at the front of the list.

Compare the above to the problem of adding or removing at the last element in the list:

// add new last element to the list

// assuming that there is room left in the array

//

a[size] = new element

size = size + 1

// remove the last element from the list

//

a[size-1] = null

size = size - 1

These algorithms take constant time, i.e. independent of the number of elements in the array.

One note about the above “algorithms” is that, when we remove an element, we have been
careful to set the slot to have a null value. This is not strictly speaking necessary, since we have a
size variable which keeps track of how big the list is and hence it keeps track of where the elements
are, namely in slots 0 to size-1.

Singly Linked lists

Let’s look at an alternative data structure for representing a list. Define a list node which contains:

• an element of a list (this could be the element itself or it could be a reference to an element)

• a reference to the next node in the list.

In Java, we could have a node class defined as follows:

class SNode{

Type element;

SNode next;

}

where Type is the type of the object in the list. To define the list itself, we would define another
class:

class SLinkedList{

SNode head;

SNode tail;

integer size;

}

c©Michael Langer (modified with permission) Updated: February 5, 201616

COMP 250 Winter 2016 4 – singly linked lists Jan. 26, 2016

The field head points to the first node in the list and the field tail points to the last node in the
list. If there is only one node in the list, then head and tail would point to the same node.

Let’s look at a few methods for manipulating a linked list:

addFirst(newNode){

newNode.next = head;

head = newNode;

size = size + 1;

}

Here we assume the input parameter is a node rather than an element. If we were to write this
“algorithm” in Java, we would need to be more careful about such things. Don’t concern yourself
with this detail here. Instead, notice the order of the two instructions. The order matters!

removeFirst(){

tmp = head;

head = head.next;

tmp.next = null;

size = size - 1;

}

Notice that we have used tmp here. We could have just had one instruction (head = head.next)
but then the old first node in the list would still be pointing to the new first node in the list, even
though it isn’t part of the list. (You might argue that since the old first node is not part of the list
anymore, then you don’t care if it points to the new first node. In that case, the first and third
instructions above which involve tmp would be unnecessary.)

Also note that the removeFirst() method ignores certain cases. For example, if there is only
one element in the list, then removing the first means that we are also removing the last. In that
case, we should set the tail reference to null.

Adding a node at the tail can be done in a small number of steps.

addLast(newNode){

tail.next = newNode;

tail = tail.next;

size = size + 1;

}

Removing the last node from a list, however, requires many steps. The reason is that you need
to modify the next reference of the node that comes before the tail node which you want to remove.
But you have no way to directly access the node that comes before tail, and so you have to find
this node by searching from the front of the list.

The algorithm begins by checking if the list has just one element. If it does, then the last node is
the first node and this element is removed. Otherwise, it scans the list for the next-to-last element.

c©Michael Langer (modified with permission) Updated: February 5, 201617

COMP 250 Winter 2016 4 – singly linked lists Jan. 26, 2016

removeLast(){

if (head == tail){

head = null;

tail = null;

size = 0;

}

else{

tmp = head;

while (tmp.next != tail){

tmp = tmp.next;

}

tmp.next = null;

tail = tmp;

size = size - 1;

}

}

This method requires about size steps. This is significantly more expensive than what we had
with an array implementation, where we had a constant cost in removing the last element from a
list. We will come back to this comparison at the end of next lecture, when we compare arrays with
singly and doubly linked lists.

c©Michael Langer (modified with permission) Updated: February 5, 201618

