COMP 250 Winter 2016 2 — binary representations Jan. 19, 2016

Binary numbers

The reason humans represent numbers using decimal (the ten digits 0,1, ... ,9) is that we have ten
fingers. There is no other reason than that. There is nothing special otherwise about the number
ten. Computers don’t represent numbers using decimal. Instead, they represent numbers using
binary, or “base 2”. Let’s make sure we understand what binary representations of numbers are.
We'll start with positive integers.

In decimal, we write numbers using digits {0,1,...,9}, in particular, as sums of powers of ten.
For example,

(238)1p = 2% 10* +3 % 10" + 8 % 10"

In binary, we represent numbers using bits {0, 1}, in particular, as a sum of powers of two:
(11010) = 1#2* + 12 +0x22 + 152" +0%2°

I have put little subscripts (10 and 2) to indicate that we are using a particular representation
(decimal or binary). We don’t need to always put this subscript in, but sometimes it helpsﬂ

Let’s consider how to count in binary. You should verify that the binary representation is a sum
of powers of 2 that indeed corresponds to the decimal representation on the left.

decimal binary

11
100
101
110
111

1000
1001
1010
1011

© 00 NO O WN +—= O

=
= O

etc

Just as we did last lecture with base 8, let’s add two numbers which are written in binary:

11010 26
+ 1111 15
101001 41

Make sure you see how this is done, namely how the “carries” work. For example, in column 0,
we add 0+ 1 to get 1 and no carry. In column 1, we add 1+ 1 (in fact, 1 % 2! + 1 % 2!) and we get
2% 2! = 22 and so we carry a 1 over column 2. Do not proceed further until you understand this.

2Note however that the subscript itself is represented in some fixed base. For convinience let’s use base ten because
it is a lot easier for us to read and write. However, computers might disagree! To be completely base-independent we
could write the base using a different notation like roman numerals... (238)x and (11010)y;. But let’s not go crazy...

(©Michael Langer (modified with permission) 5 Updated: February 5, 2016

COMP 250 Winter 2016 2 — binary representations Jan. 19, 2016

Converting from decimal to binary

It is trivial to convert a number from a binary representation to a decimal representation. You just
need to know the decimal representation of the various powers of 2.

20=1,21=222=4,22=8 21 =16, 2° =32, 26 =64, 27 =128, 2% =256, 2° =512, 2! = 1024, ...

Then, for any binary number, you write each of its bits as a power of 2 (in decimal) and then you
add up these decimal numbers, e.g.

11010, = 16+ 8 + 2 = 26.

The other direction is more challenging. How do you convert from a decimal number to a binary
number?

Here is an algorithm for doing so which is so simple you could have learned it in grade school.
The algorithm repeatedly divides by 2 and the “remainder” bits give us the binary representation.
Recall that “/” is the integer division operation which ignores the remainder i.e. the fractional part.
If you want the remainder of the division, use “%”.

Algorithm 3 Convert integer to binary
INPUT: a number m
OUTPUT: the number m expressed in base 2 using a bit array 0] |
140
while m > 0 do
bli] + m%2
m < m/2
14—1+1
end while

Example: Convert 241 to binary
i bli] m

120

N O Ttk W= O
— == =0 OO O

and so (241);0 = (11110001),. Note that there are an infinite number of 0’s on the left which are
higher powers of 2 which we ignore.

Why does this algorithm work? To answer this question, it helps to recall a few properties of
multiplication and division. Let’s go back to base 10 where we have a better intuition.

(©Michael Langer (modified with permission) 6 Updated: February 5, 2016

COMP 250 Winter 2016 2 — binary representations Jan. 19, 2016

Suppose we have a positive integer m which is written in decimal (as a sum of powers of 10) and
we then multiply m by 10. There is a simple way to get the result, 10 m, namely shift the digits
left by one place and put a 0 in the rightmost position. So, 238 « 10 = 2380 and the reason is

238510 = (2%10% 4+ 2% 10" +8%10%) * 10 = 2 % 10 + 3 10? + 8 % 10" 4 0 * 10°.
Similarly, to divide a number m by 10, we shift the digits to the right
238/10 = (2% 10% + 3% 10" + 8 % 10°) /10 = 2 % 10" + 3 x 10°

We have dropped the rightmost digit 8 (which becomes the remainder) since we are doing integer
division, and thus ignoring terms with negative powers of 10 i.e 8 x 1071,

In binary, the same idea holds. If we represent a number m in binary and multiply by 2, we
shift the bits to the left by one position and put a 0 in the rightmost position. So, e.g. if

m=(11010)y = 1%2* +1%23 + 022 + 12" +0%2°
then multiplying by 2 gives
(110100); = 1% 2° +1%2* 4+ 0%2° + 1522 + 0% 2" +0x2°.

If we divide by 2, then we shift right by one position and drop the rightmost bit (which becomes
the remainder).
Let’s put the left and right shifts together. For any positive integer m, we can write

m = 10 % (m/10) + (m%10),

for example,
549 = 540 + 9 = 10 % (549/10) + (549 % 10).

More generally, for any positive integer — call it base — we can write
m = base x (m/base) + (m % base),
and in particular, in binary we use base = 2, so
m=2x%(m/2)+ (m % 2).

Now let’s apply these ideas to the algorithm. Representing a positive integer m in binary means

that we write it)
e
i=0

where b; is a bit, i.e either 0 or 1. So we write m in binary as a bit sequence (b,,_1 b2 ... by by bp).
In particular,

m % 2 = b()

m / 2 = (bn,1 e bgbl)
Thus, the algorithm essentially just uses repeated division and mod to read off the bits of the binary
representation of the number.

If you are still not convinced, let’s run another example where we “know” the answer from the

start and we’ll see that the algorithm does the correct thing. Suppose our number is m = 241,
which is (11110001)y in binary.

(©Michael Langer (modified with permission) 7 Updated: February 5, 2016

COMP 250 Winter 2016 2 — binary representations Jan. 19, 2016

=
o
—/
'—l;
il

m
11110001
1111000
111100
11110
1111
111
11
1

0

O UL W N = O
i = ===

and so the remainders are just the bits used in the binary representation of the number.

Interestingly, the same algorithm works for any base. For example, let’s convert 238 from decimal
to base 5, that is, let’s write 238 as a sum of powers of 5. We apply the same algorithm as earlier
but now we divide by 5 at each step and take the remainder.

i blil m
0 3 47
1 2 9
2 4 1
3 1 0

and so (238)19 = (1423)5. Verify this by converting the latter back into decimal by summing powers
of 5.

Binary fractions

Up to now we have only talked about integers. We next talk about binary representations of
fractional numbers, that is, numbers that lie between the integers. Take a decimal number such as
26.375. We write this as:

(26.375)10 = 2% 10" +6%10°+3% 107" + 7+ 107> + 5% 107>

The “.” is called the decimal point.
One uses an analogous representation using binary numbers, e.g.

(11010.011)y = 1%2* +1 %23 +0%22 + 12" +0x2° 4+ 027 +1x272 1273

where “.” is called the binary point. Check for yourself that this is the same number as above,
namely

16 +8+2+0.25+0.125 = 26.375.

How do we convert from decimal to binary for such fractional numbers in general ? Suppose
we have a number z that is written in decimal and has a finite number of digits to the right of the
binary point. Let’s look at a particular example.

(©Michael Langer (modified with permission) 8 Updated: February 5, 2016

COMP 250 Winter 2016 2 — binary representations Jan. 19, 2016

Let x = 4.67 and let’s convert it to binary. Since x = 4 + .67, we know the answer will have the
form (100.__)5 since 100 is the binary representation of 4 and .67 is a sum of negative powers of
2. So we just need to find the bits to the right of the binary point. To get the first say five bits,
we multiply and divide by 2 five times (or alternatively, as was suggested in class, we just directly
multiply 0.67 by 2° = 32 and also divide by 2°).

0.67 = 1.34%27!
= 2.68%272
= 5.36%x27°

10.72 % 274
21.44 % 27°

We convert (21);p from decimal to binary which gives (10101.__), and then we shift the binary
point left by five places. Thus (0.67);90 = (0.10101__), and so (4.67);p = (100.10101__),. If we
drop the unspecified part to have a finite number of bits only, then we have an approximation
(4.67)19 =~ (100.10101)5.

As was observed in class, we can sometimes obtain a better approximation than truncating
(chopping) the unknown bits. In this example, the approximation error is 0.44 x 275 and since 0.44
is closer to 0 than to 1, we are better off truncating. For other examples, however, it might be
better to “round up”. This is the case of the one example in the slides, where we had

(0.247)3 = 3.952%27*
= (0.0011__),

Since 0.952 is closer to 1 than to 0, we would obtain a better approximation if we replaced 0.952%2~%
by 1% 27 and so the approximation would be (.247),9 ~ (0.0100)s.

(©Michael Langer (modified with permission) 9 Updated: February 5, 2016

