Computability and
Complexity

COMP 199B 2008

Paris, 1900

® German mathematician David Hilbert presented
ten problems in mathematics from a list of 23
(1,2,6,7 8,13, 16, 19, 21 and 22).

@ Speaking on 8 August 1900, at the Paris 2"
International Congress of Mathematicians, at La
Sorbonne. The full list was published later.

@ The problems were all unsolved at the time, and
several of them turned out to be very influential
for 20™ century mathematics.

Fundamental question ?

@ Can we prove all the mathematical
statements that we can formulate ?
(Hilberts 2" problem)

@ Certainly, there are many mathematical
problems that we do not know how to solve.

@ Is this just because we are not smart
enough to find a solution ?

@ Or, is there something deeper going on ?

computer science version
of these questions

@ If my boss / supervisor / teacher
formulates a problem to be solved urgently,
can I write a program fo solve this problem
in an efficient manner ?2?27?

@ Are there some problems that cannot be
solved at all ? and, are there problems that
cannot be solved efficiently ??

(related to Hilberts 10™ problem)

Kurt Godel

i ’
=4
@ In 1931, he proved that any formalization of

mathematics contains some statements that
cannot be proved or disproved.

Alan Turing

@ In 1934, he formalized the notion of
decidability of a language by a computer.

A Language

@ Let 3 be a finite alphabet. (ex: 10,1})

@ Let >* be all sequences of elements from
this alphabet. (ex: O, 1, 00000, 010101010},...)

@ A language L is any subset of 3*

@ An algorithm decides a language if it
answers Yes when x is in L and No otherwise

Alonzo Church

@ In 1936, he proved that certain languages

cannot be decided by any algorithm
whatsoever...

Emil Post

@ In 1946, he gave a very natural example of
an undecidable language...

(PCP) Post
Correspondence Problem

aaa a bbb aa b
bb bb a a bb

@ An instance of PCP with 6 tiles.

® A solution to PCP

aa bbb b
a a bb bb

Post
Correspondence Problem

Un
Vn

@ Given n tiles, U1/Vi ... Un/Vn
where each u; or v; is a sequence of letters.

@ Is there a k and a sequence «iy,iz2,l3,...,Ik>
(with each 1<ij¢<n) such that

uI1| u|2| u|3| coo I Uik = V|1| V|2I V|3| dok | V|k?

A Solution fto Post
Correspondence Problem

@ A solution is of this form:
with the top and bottom strings idenftical.

Uik

Post
Correspondence Problem

@ Theorem:

The Post Correspondence Problem cannot be

decided by any algorithm (or computer
program). In particular, no algorithm can
identify in a finite amount of time the
instances that have a negative outcome.
However, if a solution exists, we can find it.

Post
Correspondence Problem

@ Proof:

Reduction technique - if PCP was decidable
then another undecidable problem would be
decidable.

The Halting Problem

@ Notice that an algorithm is a piece of text.
@ An algorithm can receive text as input.

@ An algorithm can receive an algorithm as
input.

@ The Halting Problem:
Given two texts A,B, consider A as an
algorithm and B as an input. Will algorithm A
halt (as opposed to loop forever) on input B?

The Halting Problem

@ Theorem: no algorithm can decide the
Halting Problem.

@ Proof: Assume for a contradiction that an

algorithm Halt(A,B) exists to decide the
Halting Problem.

The Halting Problem

@ Consider the Algorithm:

Bug(A)

if Halt(A,A) then While True do

{ when Halt(A,A) is true then Bug(A) loops }
{ when Halt(A,A) is false then Bug(A) halts }

@ Question: What is the outcome of Bug(Bug)?

The Halting Problem

o If Bug(Bug) does not loop forever it is
because Halt(Bug,Bug)=False which means
Bug(Bug) loops forever. (contradiction)

o If Bug(Bug) loops forever it is because

Halt(Bug,Bug)=True which means Bug(Bug)
does not loop forever. (contradiction)

@ Conclusion: Halt cannot exist.

The Halting Problem
and PCP

@ Any algorithm to decide PCP can be
converted fo an algorithm to decide the
Halting Problem.

@ Conclusion: PCP cannot be decided either.

Comparing Cardinalities

/ All languages
languages

that we can ¢ (
\ descrlbe/ \\\

Computability

2\

Theory
Al languages

languages)
that we can
describe

Decidable ? Some ftimes
we just dont know...

COMP 199B 2008

Syracuse Conjecture

@ For any integer n>0 define the following
sequence:
Si/2 if S;is even,
Si=n, Siy=
3Si+l if S; is odd.

@ Syracuse(n)z{ least i s.t. Si=n,...,Si=1
O if Si#l for all i.

Syracuse Conjecture

@ Example: Syracuse(9) = 20

@ S1=9, S5,=28, S3=14, S,=7, Ss=22, S¢=11, S7=34,
Sg=17, S9=52, S10=26, S11=13, Si12=40, Si3=20,
S14=10, Si5=5, S16=16, $17=8, Si8=4, Si19=2, Sz0=1

Syracuse Conjecture

@ For all n that we have computed so far,
Syracuse(n) > O.

@ Conjecture

for all n>0, Syracuse(n)>0

o If there exists N such that Syracuse(N) = O
we might not be able to prove it.

Syracuse Conjecture

@ The Syracuse conjecture is believed to be
true but no proof of that statement was

discovered so far. It is an open problem.

@ Even worse, it might be decidable but there
might be no proof that it is !!!

Complexity and
Tractability

Not all problems
were born equal...

Is it possible to paint a colour on
each region of a map so that no
neighbours are of the same colour ?

if you can use as

/

ves

o
=

3

o

N
(Vo)

O

v

—

-

i

o

O

N
=

O

£

Obviously,

2 colouring problem

=
9
O
O
s
o
(@)
=
“
>
O
O
O
oM

=
L.
Q
O
I
Q
o
...
—
-
O
O
O
4

K-colouring of
Maps (planar graphs)

@ K=1, only the map with zero or one region
are l-colourable.

@ K=2, easy to decide. Impossible as soon as 3
regions touch each other.

@ K=3, No known efficient algorithm fo decide.
However it is easy to verify a solution.

@ K24, all maps are K-colourable. (hard proof)
Does not imply easy to find a K-colouring.

3-colouring of Maps

@ Seems hard fo solve in general,
@ Is easy to verify when a solution is given,

o Is a special type of problem (NP-complete)
because an efficient solution to it would yield
efficient solutions to MANY similar problems !

Examples of
NP-Complete Problems

@ SAT: given a boolean formula, is there an
assignment of the variables making the
formula evaluate to true ?

@ Travelling Salesman: given a set of cities and
distances between them, what is the
shortest route to visit each city once.

@ KnapSack: given items with various weights,
is there of subset of them of total weight K.

NP-Complete Problems

@ Many practical problems are NP-complete.
@ Some books list hundreds of such problems.
@ If any of them is easy, they are all easy.

@ In practice, some of them may be solved
efficiently in some special cases.

Tractable Problems (P)

@ 2-colorability of maps.

@ Primality festing.

@ Solving NxNxN Rubik's cube.
@ Finding a word in a dictionary.

@ Sorting elements.

Tractable Problems (P)

@ Fortunately, many practical problems are
tractable. The name P stands for Polynomial-
Time computable.

@ Computer Science studies mostly techniques
to approach and find efficient solutions to
tractable problems.

@ Some problems may be efficiently solvable
but we might not be able to prove that...

Complexity

Theory
~ Decidable

/ Languages \

Beyond NP-Completeness

@ P-Space Completeness: problems that require

a reasonable (Poly) amount of space to be
solved but may use very long time though.

® Many such problems. If any of them may be
solved within reasonable (Poly) amount of
time, then all of them can.

P-Space Completeness

@ Geography Game:

Given a set of country names: Arabia, Cuba,
Canada, France, Italy, Japan, Korea, Vietnam

@ A two player game: One player chooses a
name. The other player must choose a name
that starts with the last letter of the
previous name and so on. A player wins when
his opponent cannot play any name.

Generalized Geography

@ Given an arbitrary set of names: wi, ..., wq.

@ Is there a winning strategy for the first
player to the previous game ?

Complexity

Theory
~ Decidable

/ Languages \

NP = P-Space ?

Theoretical
Computer Science

@ Challenges of TCS:
@ FIND efficient solutions to many problems.

@ PROVE that certain problems are NOT
computable within a certain time or space.
(With applications to cryptography)

@ Consider new models of computation.
(Such as a Quantum Computer)

