
Computability and
Complexity

COMP 199B 2008

Paris, 1900

German mathematician David Hilbert presented
ten problems in mathematics from a list of 23
(1, 2, 6, 7, 8, 13, 16, 19, 21 and 22).

Speaking on 8 August 1900, at the Paris 2nd
International Congress of Mathematicians, at La
Sorbonne. The full list was published later.

The problems were all unsolved at the time, and
several of them turned out to be very influential
for 20th century mathematics.

Fundamental question ?

Can we prove all the mathematical
statements that we can formulate ?
(Hilbert’s 2nd problem)

Certainly, there are many mathematical
problems that we do not know how to solve.

Is this just because we are not smart
enough to find a solution ?

Or, is there something deeper going on ?

computer science version
of these questions

If my boss / supervisor / teacher
formulates a problem to be solved urgently,
can I write a program to solve this problem
in an efficient manner ???

Are there some problems that cannot be
solved at all ? and, are there problems that
cannot be solved efficiently ??
(related to Hilbert’s 10th problem)

Kurt Gödel

In 1931, he proved that any formalization of
mathematics contains some statements that
cannot be proved or disproved.

Alan Turing

In 1934, he formalized the notion of
decidability of a language by a computer.

A Language

Let ∑ be a finite alphabet. (ex: {0,1})

Let ∑* be all sequences of elements from
this alphabet. (ex: 0, 1, 00000, 0101010101,...)

A language L is any subset of ∑*.

An algorithm decides a language if it
answers Yes when x is in L and No otherwise

Alonzo Church

In 1936, he proved that certain languages
cannot be decided by any algorithm
whatsoever...

Emil Post

In 1946, he gave a very natural example of
an undecidable language...

(PCP) Post
Correspondence Problem

An instance of PCP with 6 tiles.

A solution to PCP

aaa
bb

a
bb

bbb
a

aa
a

bb

b

aa
a

bbb
a

b

bb

bb

Post
Correspondence Problem

Given n tiles, u1/v1 ... un/vn
where each ui or vi is a sequence of letters.

Is there a k and a sequence <i1,i2,i3,...,ik>
(with each 1≤ij≤n) such that

ui1 | ui2 | ui3 | ... | uik = vi1 | vi2 | vi3 | ... | vik ?

u1

v1

u2

v2

u3

v3

un

vn
. . .

A Solution to Post
Correspondence Problem

A solution is of this form:
with the top and bottom strings identical.

u1

v1

u2

v2

u3

v3

un

vn
. . .

ui3

vi3

ui4

vi4

ui5

vi5

uik

vik
. . .ui1

vi1

ui2

vi2

Post
Correspondence Problem

Theorem:

The Post Correspondence Problem cannot be
decided by any algorithm (or computer
program). In particular, no algorithm can
identify in a finite amount of time the
instances that have a negative outcome.
However, if a solution exists, we can find it.

Post
Correspondence Problem

Proof:

Reduction technique - if PCP was decidable
then another undecidable problem would be
decidable.

The Halting Problem

Notice that an algorithm is a piece of text.

An algorithm can receive text as input.

An algorithm can receive an algorithm as
input.

The Halting Problem:
Given two texts A,B, consider A as an
algorithm and B as an input. Will algorithm A
halt (as opposed to loop forever) on input B?

The Halting Problem

Theorem: no algorithm can decide the
Halting Problem.

Proof: Assume for a contradiction that an
algorithm Halt(A,B) exists to decide the
Halting Problem.

The Halting Problem

Consider the Algorithm:

Bug(A)
if Halt(A,A) then While True do
{ when Halt(A,A) is true then Bug(A) loops }
{ when Halt(A,A) is false then Bug(A) halts }

Question: What is the outcome of Bug(Bug)?

The Halting Problem

If Bug(Bug) does not loop forever it is
because Halt(Bug,Bug)=False which means
Bug(Bug) loops forever. (contradiction)

If Bug(Bug) loops forever it is because
Halt(Bug,Bug)=True which means Bug(Bug)
does not loop forever. (contradiction)

Conclusion: Halt cannot exist.

The Halting Problem
and PCP

Any algorithm to decide PCP can be
converted to an algorithm to decide the
Halting Problem.

Conclusion: PCP cannot be decided either.

Comparing Cardinalities

All languages

languages
that we can

describe
languages
that we

can decide

= <

Computability
Theory
All languages

languages
that we can

describe

languages that we can decide

Decidable ? Some times
we just don’t know...

COMP 199B 2008

Syracuse Conjecture

For any integer n>0 define the following
sequence:
 Si/2 if Si is even,
S1=n, Si+1=
 3Si+1 if Si is odd.

Syracuse(n)= least i s.t. S1=n,...,Si=1
 0 if Si≠1 for all i.

{
{

Syracuse Conjecture

Example: Syracuse(9) = 20

S1=9, S2=28, S3=14, S4=7, S5=22, S6=11, S7=34,
S8=17, S9=52, S10=26, S11=13, S12=40, S13=20,
S14=10, S15=5, S16=16, S17=8, S18=4, S19=2, S20=1

Syracuse Conjecture

For all n that we have computed so far,
Syracuse(n) > 0.

Conjecture

for all n>0, Syracuse(n)>0

If there exists N such that Syracuse(N) = 0
we might not be able to prove it.

Syracuse Conjecture

The Syracuse conjecture is believed to be
true but no proof of that statement was
discovered so far. It is an open problem.

Even worse, it might be decidable but there
might be no proof that it is !!!

Complexity and
Tractability

Not all problems
were born equal...

Is it possible to paint a colour on
each region of a map so that no

neighbours are of the same colour ?

Obviously, yes, if you can use as
many colours as you like...

2 colouring problem

3 colouring problem

4 colouring problem

K-colouring of
 Maps (planar graphs)
K=1, only the map with zero or one region
 are 1-colourable.

K=2, easy to decide. Impossible as soon as 3
 regions touch each other.

K=3, No known efficient algorithm to decide.
 However it is easy to verify a solution.

K≥4, all maps are K-colourable. (hard proof)
Does not imply easy to find a K-colouring.

3-colouring of Maps

Seems hard to solve in general,

Is easy to verify when a solution is given,

Is a special type of problem (NP-complete)
because an efficient solution to it would yield
efficient solutions to MANY similar problems !

Examples of
NP-Complete Problems
SAT: given a boolean formula, is there an
assignment of the variables making the
formula evaluate to true ?

Travelling Salesman: given a set of cities and
distances between them, what is the
shortest route to visit each city once.

KnapSack: given items with various weights,
is there of subset of them of total weight K.

NP-Complete Problems

Many practical problems are NP-complete.

Some books list hundreds of such problems.

If any of them is easy, they are all easy.

In practice, some of them may be solved
efficiently in some special cases.

Tractable Problems (P)

2-colorability of maps.

Primality testing.

Solving NxNxN Rubik’s cube.

Finding a word in a dictionary.

Sorting elements.

Tractable Problems (P)

Fortunately, many practical problems are
tractable. The name P stands for Polynomial-
Time computable.

Computer Science studies mostly techniques
to approach and find efficient solutions to
tractable problems.

Some problems may be efficiently solvable
but we might not be able to prove that...

complete

Complexity
Theory
Decidable
Languages

NP

P

P = NP ?

Beyond NP-Completeness

P-Space Completeness: problems that require
a reasonable (Poly) amount of space to be
solved but may use very long time though.

Many such problems. If any of them may be
solved within reasonable (Poly) amount of
time, then all of them can.

P-Space Completeness

Geography Game:

Given a set of country names: Arabia, Cuba,
Canada, France, Italy, Japan, Korea, Vietnam

A two player game: One player chooses a
name. The other player must choose a name
that starts with the last letter of the
previous name and so on. A player wins when
his opponent cannot play any name.

Generalized Geography

Given an arbitrary set of names: w1, ..., wn.

Is there a winning strategy for the first
player to the previous game ?

complete

Decidable
Languages

P-Space

Complexity
Theory

NP

P

NP = P-Space ?

Theoretical
Computer Science

Challenges of TCS:

FIND efficient solutions to many problems.

PROVE that certain problems are NOT
computable within a certain time or space.
(With applications to cryptography)

Consider new models of computation.
(Such as a Quantum Computer)

