Computability and Complexity COMP 199B 2008

Paris, 1900

- German mathematician David Hilbert presented ten problems in mathematics from a list of 23 ($1,2,6,7,8,13,16,19,21$ and 22).
- Speaking on 8 August 1900, at the Paris $2^{\text {nd }}$ International Congress of Mathematicians, at La Sorbonne. The full list was published later.
- The problems were all unsolved at the time, and several of them turned out to be very influential for $20^{\text {th }}$ century mathematics.

Fundamental question?

- Can we prove all the mathematical statements that we can formulate? (Hilbert's $2^{\text {nd }}$ problem)
- Certainly, there are many mathematical problems that we do not know how to solve.
- Is this just because we are not smart enough to find a solution?
- Or, is there something deeper going on ?

computer science version of these questions

- If my boss / supervisor / teacher formulates a problem to be solved urgently, can I write a program to solve this problem in an efficient manner ???
- Are there some problems that cannot be solved at all ? and, are there problems that cannot be solved efficiently ?? (related to Hilbert's $10^{\text {th }}$ problem)

Kurt Gödel

- In 1931, he proved that any formalization of mathematics contains some statements that cannot be proved or disproved.

Alan Turing

- In 1934, he formalized the notion of decidability of a language by a computer.

A Language

- Let Σ be a finite alphabet. (ex: $\{0,1\}$)
- Let Σ^{*} be all sequences of elements from this alphabet. (ex: $0,1,00000,0101010101, . .$.
- A language L is any subset of Σ^{*}.
- An algorithm decides a language if it answers Yes when x is in L and No otherwise

Alonzo Church

- In 1936, he proved that certain languages cannot be decided by any algorithm whatsoever...

Emil Post

- In 1946, he gave a very natural example of an undecidable language...

(PCP) Post

Correspondence Problem

bb	a $b b$	$\left.\begin{gathered} b b b \\ a \end{gathered} \right\rvert\,$	$a \mathrm{a}$ a	bb

- An instance of PCP with 6 tiles.
- A solution to PCP

$a a$	$b b b$	b		
a	a		$b b$	$b b$

Post

Correspondence Problem
 $$
\begin{array}{l|l|ll|l|} u_{1} & u_{2} & u_{3} & & \begin{array}{l} u_{n} \\ v_{1} \end{array} \end{array} \begin{aligned} & v_{2} \end{aligned}
$$

- Given n tiles, $u_{1} / v_{1} \ldots u_{n} / v_{n}$ where each u_{i} or v_{i} is a sequence of letters.
- Is there $a k$ and a sequence $\left\langle i_{1}, i_{2}, i_{3}, \ldots, i_{k}\right\rangle$ (with each $1 \leq i_{j} \leq n$) such that $u_{i_{1}}\left|u_{i_{2}}\right| u_{i_{3}}|\ldots| u_{i_{k}}=v_{i_{1}}\left|v_{i_{2}}\right| v_{i_{3}}|\ldots| v_{i_{k}} ?$

A Solution to Post

Correspondence Problem

$$
\begin{array}{l|l|lll|}
u_{1} & u_{2} & u_{3} & & \begin{array}{l}
u_{n} \\
v_{1}
\end{array} \\
v_{2} & v_{3} & \ldots & v_{n} \\
\hline
\end{array}
$$

- A solution is of this form:
with the top and bottom strings identical.

| $u_{i 1}$ | $u_{i 2}$ | $u_{i 3}$ | $u_{i 4}$ | $u_{i 5}$ | | $u_{i k}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $v_{i 1}$ | $v_{i 2}$ | $v_{i 3}$ | $v_{i 4}$ | $v_{i 5}$ | \ldots | |
| $v_{i k}$ | | | | | | |

Post

Correspondence Problem

- Theorem:

The Post Correspondence Problem cannot be decided by any algorithm (or computer program). In particular, no algorithm can identify in a finite amount of time the instances that have a negative outcome. However, if a solution exists, we can find it.

Post

Correspondence Problem

- Proof:

Reduction technique - if PCP was decidable
then another undecidable problem would be decidable.

The Halting Problem

- Notice that an algorithm is a piece of text.
- An algorithm can receive text as input.
- An algorithm can receive an algorithm as input.
- The Halting Problem: Given two texts A, B, consider A as an algorithm and B as an input. Will algorithm A halt (as opposed to loop forever) on input B ?

The Halting Problem

- Theorem: no algorithm can decide the Halting Problem.
- Proof: Assume for a contradiction that an algorithm $\operatorname{Halt}(A, B)$ exists to decide the Halting Problem.

The Halting Problem

- Consider the Algorithm:

Bug(A)
if Halt (A, A) then While True do
\{ when $\operatorname{Halt}(A, A)$ is true then $\operatorname{Bug}(A)$ loops \} \{ when $\operatorname{Halt}(A, A)$ is false then Bug (A) halts \}

- Question: What is the outcome of Bug(Bug)?

The Halting Problem

- If Bug(Bug) does not loop forever it is because Halt(Bug,Bug)=False which means Bug(Bug) loops forever. (contradiction)
- If Bug(Bug) loops forever it is because Halt(Bug,Bug)=True which means Bug(Bug) does not loop forever. (contradiction)
- Conclusion: Halt cannot exist.

The Halting Problem and PCP

- Any algorithm to decide PCP can be converted to an algorithm to decide the Halting Problem.
- Conclusion: PCP cannot be decided either.

Comparing Cardinalities

Computability

Theory

Decidable ? Some times

 we just don't know... COMP 199B 2008
Syracuse Conjecture

- For any integer $n>0$ define the following sequence:

$$
S_{1}=n, S_{i+1}= \begin{cases}S_{i} / 2 & \text { if } S_{i} \text { is even, } \\ 3 S_{i+1} & \text { if } S_{i} \text { is odd. }\end{cases}
$$

- Syracuse $(n)=\left\{\begin{array}{l}\text { least } i \text { s.t. } S_{1}=n, \ldots, S_{i=1} \\ 0 \text { if } S_{i \neq 1} \text { for all i. }\end{array}\right.$

Syracuse Conjecture

- Example: Syracuse(9) $=20$
- $\mathrm{S}_{1}=9, \mathrm{~S}_{2}=28, \mathrm{~S}_{3}=14, \mathrm{~S}_{4}=7, \mathrm{~S}_{5}=22, \mathrm{~S}_{6}=11, \mathrm{~S}_{7}=34$, $S_{8}=17, S_{9}=52, S_{10}=26, S_{11}=13, S_{12}=40, S_{13}=20$, $S_{14}=10, S_{15}=5, S_{16}=16, S_{17}=8, S_{18}=4, S_{19}=2, S_{20}=1$

Syracuse Conjecture

- For all n that we have computed so far, Syracuse(n) >0.
- Conjecture
for all $n>0, \quad$ Syracuse(n) >0
- If there exists N such that Syracuse $(N)=0$ we might not be able to prove it.

Syracuse Conjecture

- The Syracuse conjecture is believed to be true but no proof of that statement was discovered so far. It is an open problem.
- Even worse, it might be decidable but there might be no proof that it is !!!

Complexity and Tractability

Not all problems

 were born equal...

Is it possible to paint a colour on each region of a map so that no neighbours are of the same colour?

Obviously, yes, if you can use as many colours as you like...

2 colouring problem

3 colouring problem

4 colouring problem

K-colouring of

Maps (planar graphs)

- K=1, only the map with zero or one region are 1-colourable.
- $K=2$, easy to decide. Impossible as soon as 3 regions touch each other.
- K=3, No known efficient algorithm to decide. However it is easy to verify a solution.
- K ≥ 4, all maps are K-colourable. (hard proof) Does not imply easy to find a K-colouring.

3-colouring of Maps

- Seems hard to solve in general,
- Is easy to verify when a solution is given,
- Is a special type of problem (NP-complete) because an efficient solution to it would yield efficient solutions to MANY similar problems !

Examples of

NP-Complete Problems

- SAT: given a boolean formula, is there an assignment of the variables making the formula evaluate to true?
- Travelling Salesman: given a set of cities and distances between them, what is the shortest route to visit each city once.
- KnapSack: given items with various weights, is there of subset of them of total weight K .

NP-Complete Problems

- Many practical problems are NP-complete.
. Some books list hundreds of such problems.
- If any of them is easy, they are all easy.
- In practice, some of them may be solved efficiently in some special cases.

Tractable Problems (P)

- 2-colorability of maps.
- Primality testing.
- Solving NxNxN Rubik's cube.
- Finding a word in a dictionary.
- Sorting elements.

Tractable Problems (P)

- Fortunately, many practical problems are tractable. The name P stands for PolynomialTime computable.
- Computer Science studies mostly techniques to approach and find efficient solutions to tractable problems.
- Some problems may be efficiently solvable but we might not be able to prove that...

Complexity

Theory
Decidable
Languages

NP
$P=N P ?$

Beyond NP-Completeness

- P-Space Completeness: problems that require a reasonable (Poly) amount of space to be solved but may use very long time though.
- Many such problems. If any of them may be solved within reasonable (Poly) amount of time, then all of them can.

P-Space Completeness

- Geography Game:

Given a set of country names: Arabia, Cuba, Canada, France, Italy, Japan, Korea, Vietnam

- A two player game: One player chooses a name. The other player must choose a name that starts with the last letter of the previous name and so on. A player wins when his opponent cannot play any name.

Generalized Geography

- Given an arbitrary set of names: w_{1}, \ldots, w_{n}.
- Is there a winning strategy for the first player to the previous game?

Complexity

Theory

Decidable
Languages
P-Space

NP

NP = P-Space ?

Theoretical

Computer Science

- Challenges of TCS:
- FIND efficient solutions to many problems.
- PROVE that certain problems are NOT computable within a certain time or space. (With applications to cryptography)
- Consider new models of computation. (Such as a Quantum Computer)

