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Paris, 1900

German mathematician David Hilbert presented 
ten problems in mathematics from a list of 23      
( 1, 2, 6, 7, 8, 13, 16, 19, 21 and 22).

Speaking on 8 August 1900, at the Paris 2nd 
International Congress of Mathematicians, at La  
Sorbonne. The full list was published later.

The problems were all unsolved at the time, and 
several of them turned out to be very influential 
for 20th century mathematics. 



Fundamental question ?

Can we prove all the mathematical 
statements that we can formulate ?
(Hilbert’s 2nd problem)

Certainly, there are many mathematical 
problems that we do not know how to solve.

Is this just because we are not smart 
enough to find a solution ?

Or, is there something deeper going on ?



computer science version 
of these questions

If my boss / supervisor / teacher 
formulates a problem to be solved urgently, 
can I write a program to solve this problem 
in an efficient manner ???

Are there some problems that cannot be 
solved at all ? and, are there problems that 
cannot be solved efficiently ??
(related to Hilbert’s 10th problem)



Kurt Gödel

In 1931, he proved that any formalization of 
mathematics contains some statements that 
cannot be proved or disproved.



Alan Turing

In 1934, he formalized the notion of 
decidability of a language by a computer.



A Language

Let ∑ be a finite alphabet. (ex: {0,1})

Let ∑* be all sequences of elements from 
this alphabet. (ex: 0, 1, 00000, 0101010101,...)

A language L is any subset of ∑*.

An algorithm decides a language if it 
answers Yes when x is in L and No otherwise



Alonzo Church

In 1936, he proved that certain languages 
cannot be decided by any algorithm 
whatsoever...



Emil Post

In 1946, he gave  a very natural example of 
an undecidable language...



(PCP) Post
Correspondence Problem

An instance of PCP with 6 tiles.

A solution to PCP
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Post
Correspondence Problem

Given n tiles, u1/v1 ... un/vn 
where each ui or vi is a sequence of letters.

Is there a k and a sequence <i1,i2,i3,...,ik> 
( with each 1≤ij≤n ) such that

ui1 | ui2 | ui3 | ... | uik = vi1 | vi2 | vi3 | ... | vik ?
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A Solution to Post
Correspondence Problem

A solution is of this form:
with the top and bottom strings identical.
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Post
Correspondence Problem

Theorem:

The Post Correspondence Problem cannot be 
decided by any algorithm (or computer 
program). In particular, no algorithm can 
identify in a finite amount of time the 
instances that have a negative outcome. 
However, if a solution exists, we can find it.



Post
Correspondence Problem

Proof:

Reduction technique - if PCP was decidable 
then another undecidable problem would be 
decidable.



The Halting Problem

Notice that an algorithm is a piece of text.

An algorithm can receive text as input. 

An algorithm can receive an algorithm as 
input.

The Halting Problem: 
Given two texts A,B, consider A as an 
algorithm and B as an input. Will algorithm A 
halt (as opposed to loop forever) on input B?



The Halting Problem

Theorem: no algorithm can decide the 
Halting Problem.

Proof: Assume for a contradiction that an 
algorithm Halt(A,B) exists to decide the 
Halting Problem.



The Halting Problem

Consider the Algorithm:

Bug(A)
if Halt(A,A) then While True do
{ when Halt(A,A) is true then Bug(A) loops }
{ when Halt(A,A) is false then Bug(A) halts }

Question: What is the outcome of Bug(Bug)?



The Halting Problem

If Bug(Bug) does not loop forever it is 
because Halt(Bug,Bug)=False which means
Bug(Bug) loops forever. (contradiction)

If Bug(Bug) loops forever it is because 
Halt(Bug,Bug)=True which means Bug(Bug) 
does not loop forever. (contradiction)

Conclusion: Halt cannot exist.



The Halting Problem
and PCP

Any algorithm to decide PCP can be 
converted to an algorithm to decide the 
Halting Problem.

Conclusion: PCP cannot be decided either.



Comparing Cardinalities

All languages

languages
that we can 

describe
languages 
that we

can decide

= <
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All languages

languages
that we can 

describe

languages that  we can decide



Decidable ? Some times 
we just don’t know...
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Syracuse Conjecture

For any integer n>0 define the following 
sequence:
                Si/2   if Si is even,
S1=n, Si+1=     
               3Si+1   if Si is odd.

                  

Syracuse(n)=    least i s.t. S1=n,...,Si=1
                   0 if Si≠1 for all i.

{
{



Syracuse Conjecture

Example: Syracuse(9) = 20

S1=9, S2=28, S3=14, S4=7, S5=22, S6=11, S7=34, 
S8=17, S9=52, S10=26, S11=13, S12=40, S13=20, 
S14=10, S15=5, S16=16, S17=8, S18=4, S19=2, S20=1



Syracuse Conjecture

For all n that we have computed so far, 
Syracuse(n) > 0. 

Conjecture

for all n>0,    Syracuse(n)>0

If there exists N such that Syracuse(N) = 0 
we might not be able to prove it.



Syracuse Conjecture

The Syracuse conjecture is believed to be 
true but no proof of that statement was 
discovered so far. It is an open problem.

Even worse, it might be decidable but there 
might be no proof that it is !!!



Complexity and 
Tractability



Not all problems
were born equal...



Is it possible to paint a colour on
each region of a map so that no 

neighbours are of the same colour ?



Obviously, yes, if you can use as 
many colours as you like...



2 colouring problem



3 colouring problem



4 colouring problem



K-colouring of
 Maps (planar graphs)
K=1, only the map with zero or one region
       are 1-colourable.

K=2, easy to decide. Impossible as soon as 3
       regions touch each other.

K=3, No known efficient algorithm to decide.
      However it is easy to verify a solution.

K≥4, all maps are K-colourable. (hard proof)
Does not imply easy to find a K-colouring.



3-colouring of Maps

Seems hard to solve in general,

Is easy to verify when a solution is given,

Is a special type of problem (NP-complete) 
because an efficient solution to it would yield 
efficient solutions to MANY similar problems !



Examples of
NP-Complete Problems
SAT: given a boolean formula, is there an 
assignment of the variables making the 
formula evaluate to true ?

Travelling Salesman: given a set of cities and 
distances between them, what is the 
shortest route to visit each city once.

KnapSack: given items with various weights, 
is there of subset of them of total weight K.



NP-Complete Problems

Many practical problems are NP-complete.

Some books list hundreds of such problems.

If any of them is easy, they are all easy.

In practice, some of them may be solved 
efficiently in some special cases.



Tractable Problems (P)

2-colorability of maps.

Primality testing.

Solving NxNxN Rubik’s cube.

Finding a word in a dictionary.

Sorting elements.



Tractable Problems (P)

Fortunately, many practical problems are 
tractable. The name P stands for Polynomial-
Time computable.

Computer Science studies mostly techniques 
to approach and find efficient solutions to 
tractable problems.

Some problems may be efficiently solvable 
but we might not be able to prove that...



complete

Complexity
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P = NP ?



Beyond NP-Completeness

P-Space Completeness: problems that require 
a reasonable (Poly) amount of space to be 
solved but may use very long time though.

Many such problems. If any of them may be 
solved within reasonable (Poly) amount of 
time, then all of them can.



P-Space Completeness

Geography Game:

Given a set of country names: Arabia, Cuba, 
Canada, France, Italy, Japan, Korea, Vietnam

A two player game: One player chooses a 
name. The other player must choose a name 
that starts with the last letter of the 
previous name and so on. A player wins when 
his opponent cannot play any name.



Generalized Geography

Given an arbitrary set of names: w1, ..., wn.

Is there a winning strategy for the first 
player to the previous game ?
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Theoretical
Computer Science

Challenges of TCS:

FIND efficient solutions to many problems.

PROVE that certain problems are NOT 
computable within a certain time or space.
(With applications to cryptography)

Consider new models of computation.
(Such as a Quantum Computer)


