

Network Essentials Session 1

R. Venkateswaran

Outline

- Session 1
 - □ 7-Layer OSI Model
 - □ Network Layer protocols (Internet Protocol)
 - ☐ Transport Layer protocols (TCP and UDP)

Acknowledgments

This presentation has been adapted from presentations available at:

- 2. Prof. Shivkumar Kalyanaraman (http://www.ecse.rpi.edu/Homepages/shivkuma/)
- 3. Prof. Sneha Kumar Kasera (http://www.cs.utah.edu/classes/cs5480/)
- 4. Prof. David Hollinger (http://www.cs.rpi.edu/~hollingd/netprog)
- South Asian Network Operators Group (http://ws.edu.isoc.org/workshops/2004/SANOG-IV/ip-services/presentations/ip-intro/ipbasics.ppt)

3

Network Models

- Formal models allow us to deal with various aspects of networks abstractly
 - One such model is the OSI reference model

"Open Systems Interconnection Basic Reference Model"

- The OSI reference model is a layered model
 - Divide a task into pieces and then solve each piece independently
 - Establishing a well defined interface between layers
- Major Advantages:
 - Each layer can be implemented independently
 - Adaptability
 - Code Reuse
 - Extensibility

OSI 7-Layer Model

<u>Layers</u>		<u>Examples</u>	<u>Funtionality</u>
7	Application	Mail, Web, etc.	
6	Presentation		Data encryption,compression
5	Session		Managing sessions
4	Transport	TCP/UDP	Virtual End-to-end connectivity
3	Network	IP	Path selection, Internetworking
2	Data Link	Ethernet	Error-free communication links
1	Physical		Transmission of raw signal

OSI 7-Layer

TCP/IP Model

No session or presentation layers in TCP/IP model

Packet structure

Network Layer

Internet Architecture

- Packet-switched, connectionless datagram network
- IP is the network layer protocol
 - Acts as a glue
- Hourglass concept
 - all hosts and routers run IP
- Stateless architecture
 - no per flow state inside the network
- Hop-by-hop packet forwarding
 - Header contains all the information

IP - Minimalist Approach

Dumb network

- Connectivity is the key
- Network provides minimal functionalities to support connectivity
- Addressing, forwarding, routing

Smart end systems

- Transport layer or application performs more sophisticated functionalities
- Flow control, error control, congestion control

Advantages

- High scalability
- Works across heterogeneous technologies (Ethernet, modem, satellite, wireless)
- Supports diverse applications (telnet, ftp, Web, media streaming)
- Decentralized network administration

11

IPv4 Header

0	4	8	16			
Version	IHL	Type of Service	Total Length			
Identification			Flags	Fra	agment Offset	
Time to Live		Protocol	Header Checksum			
Source Address						
Destination Address						
Options Padding						
Transport Layer Data						

H \bullet \bullet \bullet

IP Address

- IP address: Unique identification of the end-system from a network-layer perspective
- IP address is 32-bits long (version 4)
- Contains a network ID and host ID
 - Use subnet mask to detect the network ID

133.27.162.125

Decimal Binary

HEX

133	27	162	125	
10000101	00011011	10100010	01111101	
85	1B	A2	7D	

Network Mask

- Define which bits are used to describe the network ID
- Different Representations:
 - Decimal dot notation: 255.255.224.0
 - □ Number of network bits: /19
- Bitwise-AND of 32-bit IP address with 32-bit netmask yields network ID part of the address (truncated appropriately)

Network Mask Examples

137.158.128.0/**17** (netmask **255.255.128.0**)

1111 1111	1111 1111	1	000 0000	0000 0000
1000 1001	1001 1110	1	000 0000	0000 0000

198.134.0.0/**16** (netmask **255.255.0.0**)

1111 1111	1111 1111	0000 0000	0000 0000
1100 0110	1000 0110	0000 0000	0000 0000

205.37.193.128/**26** (netmask **255.255.255.192**)

1111 1111	1111 1111	1111 1111	11	00 0000
1100 1101	0010 0101	1100 0001	10	00 0000

H (4 (F) (H

Subnets

All device interfaces having the same network ID are part of the same subnet

Devices within a subnet can communicate with each other without an intervening router

Network consisting of 3 subnets

Copyright © 2005 Persistent Systems Pvt. Ltd.

16

IP router

- A device with more than one link-layer interface
 - Each interface identified by a different IP address (from different subnets)
- Packets arriving at one interface are forwarded out on another interface to get them closer to the destination
- Creates and maintains forwarding tables
 - Tables help in making forwarding decisions
 - Tables created and updated based on routing information exchanged between routers
 - Each router maintains its own forwarding table

Hop by Hop Forwarding

IP Forwarding Rules - I

- Destination is in the same subnet (direct connectivity)
 - Recognize that destination IP address is on same subnet
 - Find the destination's datalink-layer address
 - IP packet encapsulated and sent directly to the destination's datalink-layer address
- Destination is in a different subnet (indirect connectivity)
 - Recognize that destination IP address is on different subnet
 - Look up destination IP address in a (L3 forwarding) table to find a match, called the next hop router IP address
 - Find the next hop router's datalink-layer address
 - IP packet encapsulated and sent directly to the next hop router's datalink-layer address

IP Forwarding Rules - II

- Problem 1: Recognize if destination is on the same subnet
 - Use netmask to compute network ID of the destination and match it with device's network ID
- Problem 2: Find a device's datalink-layer address
 - Static mapping
 - Dynamic mapping using Address Resolution Protocol (ARP)
 - Sender host broadcasts a request: "What is the Ethernet address of 192.1.1.4?"
 - The device whose IP address is 192.1.1.4 replies back: "The Ethernet address for 192.1.1.4 is 00-0C-FI-4E-2A-E2"
 - > ARP responses are cached at the sender
 - Use arp command to view/modify the cache

20

Thank You!