We know that the Post Correspondence Problem cannot be solved in general by any algorithm. Here is a few facts about variations on PCP:

* PCP is decidable if we restrict the strings to come from an alphabet with a single symbol (ex: $\sum=\{a\}$),

* PCP is decidable if we restrict the tile set to contain only two tiles (ex: $(ab/aaa), (aa/bb)$).

Show that if we restrict PCP according to both of these constraints, "the strings come from an alphabet with a single symbol" and "the tile set contains only two tiles", then it is decidable (ex: $(aa/aaa), (aa/aa)$). Give an explicit algorithm that decides whether a two-tile input $(u_1/v_1), (u_2/v_2)$, where u_1,v_1,u_2,v_2 are strings of a's, form a positive or negative instance of PCP. (|s| tells you the number of symbols of a string as s.length in JAVAscript.)

JAVAscript

Write a JAVAscript function `sort` that inputs a string `w` and outputs another string `z` such that if you consider the characters of `z` they are the same as those of `w`, but in alphabetical order.

Example:
`sort("aviation")` should output the string "aaiinotv".
Your function should work for arbitrarily long strings. We don’t care what happens if the input is not of the right format. A few examples will be made available to you. Your function should be executed on these inputs and return the correct outputs.

3. Write two JAVAscript functions `Eotp` (resp. `Dotp`) that inputs two strings `m,k` (resp. `c,k`) and outputs another string `c` (resp. `m`) such that if you consider the characters of `m,k` and `c`, we have the relation `c[i]=m[i]+k[i]` where the sum is interpreted that “A” corresponds to 0, “B” corresponds to 1, … , “Z” corresponds to 25, and addition is modulo 26. All of `c,k,m` are strings made of capital letters only. `Dotp` is the inverse of `Eotp` computing `m[i]=c[i]-k[i]`.

Example:
```
Eotp(
    "VERNAMINVENTEDTHEONETIMEPAD",
    "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
)
```

should output the string

```
c="VFTQEROUDNXEQQHWUFFXNDIBNZD"
```

which is the One-time-pad sum of the value `m` encrypted by key `k`. Your functions should work for arbitrarily long strings. We don’t care what happens if the inputs are not of the right format. A few examples will be made available to you. Your functions should be executed on these inputs and return the correct outputs.