
1

Chapter 13  
 
Randomized  
Algorithms

Slides by Kevin Wayne.  
Copyright @ 2005 Pearson-Addison Wesley.  
All rights reserved.

13.1 Contention Resolution

3

Contention Resolution in a Distributed System

Contention resolution. Given n processes P1, …, Pn, each competing for
access to a shared database. If two or more processes access the
database simultaneously, all processes are locked out. Devise protocol
to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.

P1

P2

Pn

.  

.  

.

4

Contention Resolution: Randomized Protocol

Protocol. Each process requests access to the database at time t with
probability p = 1/n.

Claim. Let S[i, t] = event that process i succeeds in accessing the
database at time t. Then 1/(e ⋅ n) ≤ Pr[S(i, t)] ≤ 1/(2n).

Claim. The probability that process i fails to access the database in 
en rounds is at most 1/e. After e⋅n(c ln n) rounds, the probability is at
most n-c.

Claim. The probability that all processes succeed within 2e ⋅ n ln n
rounds is at least 1 - 1/n.

13.3 Linearity of Expectation

6

Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to
guess each card.

Memoryless guessing. No psychic abilities; can't even remember
what's been turned over already. Guess a card from full deck
uniformly at random.

Claim. The expected number of correct guesses is 1.

Guessing with memory. Guess a card uniformly at random from cards
not yet seen.

Claim. The expected number of correct guesses is Θ(log n).

7

Coupon Collector

Coupon collector. Each box of cereal contains a coupon. There are n
different types of coupons. Assuming all boxes are equally likely to
contain each coupon, how many boxes before you have ≥ 1 coupon of
each type?

Claim. The expected number of steps is Θ(n log n).

13.5 Randomized Divide-and-Conquer

9

Quicksort

Sorting. Given a set of n distinct elements S, rearrange them in
ascending order.

Remark. Can implement in-place.

RandomizedQuicksort(S) {
 if |S| = 0 return
 choose a splitter ai ∈ S uniformly at random
 foreach (a ∈ S) {
 if (a < ai) put a in S-
 else if (a > ai) put a in S+
 }
 RandomizedQuicksort(S-)
 output ai
 RandomizedQuicksort(S+)
}

O(log n) extra space

10

Quicksort

Running time.
■ [Best case.] Select the median element as the splitter: quicksort

makes Θ(n log n) comparisons.
■ [Worst case.] Select the smallest element as the splitter:

quicksort makes Θ(n2) comparisons.

Randomize. Protect against worst case by choosing splitter at random.

Intuition. If we always select an element that is bigger than 25% of
the elements and smaller than 25% of the elements, then quicksort
makes Θ(n log n) comparisons.

Notation. Label elements so that x1 < x2 < … < xn.

Theorem. Expected # of comparisons is O(n log n).

Theorem. [Knuth 1973] Stddev of number of comparisons is ~ 0.65n.

Ex. If n = 1 million, the probability that randomized quicksort takes
less than 4n ln n comparisons is at least 99.94%.

 Chebyshev's inequality. Pr[|X - μ| ≥ kδ] ≤ 1 / k2.

11

Quicksort: Expected Number of Comparisons

The expected number of comparisons in a randomized Quicksort of n
elements is (γ is Euler’s constant near 0.577) :

In 1996, McDiarmid and Hayward have formulated an exact expression for
the probability that the number of comparisons Qn be far from its average qn

Let c be a positive constant. McDiarmid and Hayward’s formula imply that
there exists another positive constant a smaller than 1 such that

Pr[Qn ∈Θ(n1+c)] < anc.

Quicksort: Expected Number of Comparisons

12

