13.1 Contention Resolution
Contention Resolution in a Distributed System

Contention resolution. Given n processes P_1, \ldots, P_n, each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.
Contention Resolution: Randomized Protocol

Protocol. Each process requests access to the database at time \(t \) with probability \(p = 1/n \).

Claim. Let \(S[i, t] \) = event that process \(i \) succeeds in accessing the database at time \(t \). Then \(1/(e \cdot n) \leq \Pr[S(i, t)] \leq 1/(2n) \).

Claim. The probability that process \(i \) fails to access the database in \(en \) rounds is at most \(1/e \). After \(e \cdot n(c \ln n) \) rounds, the probability is at most \(n^{-c} \).

Claim. The probability that all processes succeed within \(2e \cdot n \ln n \) rounds is at least \(1 - 1/n \).
13.3 Linearity of Expectation
Guessing Cards

Game. Shuffle a deck of \(n \) cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is \(\Theta(\log n) \).
Coupon Collector

Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have ≥ 1 coupon of each type?

Claim. The expected number of steps is $\Theta(n \log n)$.
13.5 Randomized Divide-and-Conquer
Quicksort

Sorting. Given a set of \(n \) distinct elements \(S \), rearrange them in ascending order.

```plaintext
RandomizedQuicksort(S) {
    if \(|S| = 0\) return

    choose a splitter \( a_i \in S \) uniformly at random
    foreach \((a \in S)\) {
        if \((a < a_i)\) put \( a \) in \( S^- \)
        else if \((a > a_i)\) put \( a \) in \( S^+ \)
    }
    RandomizedQuicksort(S^-)
    output \( a_i \)
    RandomizedQuicksort(S^+)
}
```

Remark. Can implement in-place.

\(O(\log n) \) extra space
Quicksort

Running time.

- [Best case.] Select the median element as the splitter: quicksort makes $\Theta(n \log n)$ comparisons.
- [Worst case.] Select the smallest element as the splitter: quicksort makes $\Theta(n^2)$ comparisons.

Randomize. Protect against worst case by choosing splitter at random.

Intuition. If we always select an element that is bigger than 25% of the elements and smaller than 25% of the elements, then quicksort makes $\Theta(n \log n)$ comparisons.

Notation. Label elements so that $x_1 < x_2 < \ldots < x_n$.
Quicksort: Expected Number of Comparisons

Theorem. Expected # of comparisons is $O(n \log n)$.

Theorem. [Knuth 1973] Stddev of number of comparisons is $\sim 0.65n$.

Ex. If $n = 1$ million, the probability that randomized quicksort takes less than $4n \ln n$ comparisons is at least 99.94%.

Chebyshev’s inequality. $\Pr[|X - \mu| \geq k\delta] \leq 1 / k^2$.

QuickSort: Expected Number of Comparisons

The expected number of comparisons in a randomized QuickSort of n elements is (γ is Euler’s constant near 0.577):

$$q_n = 2n \ln n - (4 - 2\gamma)n + 2\ln n + O(1).$$

In 1996, McDiarmid and Hayward have formulated an exact expression for the probability that the number of comparisons Q_n be far from its average q_n,

$$\Pr\left[\left|\frac{Q_n}{q_n} - 1\right| > \varepsilon\right] = n^{-(2 + o(1))\varepsilon \ln(2)} n$$

Let c be a positive constant. McDiarmid and Hayward’s formula imply that there exists another positive constant a smaller than 1 such that

$$\Pr[Q_n \in \Theta(n^{1+c})] < a^{nc}.$$