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13.1  Contention Resolution
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Contention Resolution in a Distributed System

Contention resolution.  Given n processes P1, …, Pn, each competing for 
access to a shared database. If two or more processes access the 
database simultaneously, all processes are locked out. Devise protocol 
to ensure all processes get through on a regular basis. 

Restriction.  Processes can't communicate. 

Challenge.  Need symmetry-breaking paradigm.
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Contention Resolution:  Randomized Protocol

Protocol.  Each process requests access to the database at time t with 
probability p = 1/n. 

Claim.  Let S[i, t] = event that process i succeeds in accessing the 
database at time t. Then 1/(e ⋅ n) ≤ Pr[S(i, t)] ≤ 1/(2n). 

Claim.  The probability that process i fails to access the database in 
en rounds is at most 1/e. After e⋅n(c ln n) rounds, the probability is at 
most n-c. 

Claim.  The probability that all processes succeed within 2e ⋅ n ln n 
rounds is at least 1 - 1/n.



13.3  Linearity of Expectation
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Guessing Cards

Game.  Shuffle a deck of n cards; turn them over one at a time; try to 
guess each card. 

Memoryless guessing.  No psychic abilities; can't even remember 
what's been turned over already.  Guess a card from full deck 
uniformly at random. 

Claim.  The expected number of correct guesses is 1. 

Guessing with memory. Guess a card uniformly at random from cards 
not yet seen. 

Claim.  The expected number of correct guesses is Θ(log n).
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Coupon Collector

Coupon collector.  Each box of cereal contains a coupon. There are n 
different types of coupons. Assuming all boxes are equally likely to 
contain each coupon, how many boxes before you have ≥ 1 coupon of 
each type? 

Claim.  The expected number of steps is Θ(n log n). 



13.5  Randomized Divide-and-Conquer
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Quicksort

Sorting.  Given a set of n distinct elements S, rearrange them in 
ascending order. 

Remark.  Can implement in-place.

RandomizedQuicksort(S) { 
   if |S| = 0 return 
   choose a splitter ai ∈ S uniformly at random 
   foreach (a ∈ S) { 
      if      (a < ai) put a in S- 
      else if (a > ai) put a in S+ 
   } 
   RandomizedQuicksort(S-) 
   output ai 
   RandomizedQuicksort(S+) 
}

O(log n) extra space
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Quicksort

Running time. 
■ [Best case.]  Select the median element as the splitter:  quicksort 

makes Θ(n log n) comparisons. 
■ [Worst case.]  Select the smallest element as the splitter:  

quicksort makes Θ(n2) comparisons. 

Randomize.  Protect against worst case by choosing splitter at random.  

Intuition.  If we always select an element that is bigger than 25% of 
the elements and smaller than 25% of the elements, then quicksort 
makes Θ(n log n) comparisons. 

Notation.  Label elements so that x1 < x2 < … < xn.



Theorem.  Expected # of comparisons is O(n log n). 

Theorem.  [Knuth 1973]  Stddev of number of comparisons is ~ 0.65n. 

Ex.  If n = 1 million, the probability that randomized quicksort takes 
less than 4n ln n comparisons is at least 99.94%. 

       Chebyshev's inequality.  Pr[|X - μ| ≥ kδ]  ≤  1 / k2.
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Quicksort:  Expected Number of Comparisons



The expected number of comparisons in a randomized Quicksort of n 
elements is  (γ is Euler’s constant near 0.577) : 

In 1996, McDiarmid and Hayward have formulated an exact expression for 
the probability that the number of comparisons Qn be far from its average qn  

Let c be a positive constant. McDiarmid and Hayward’s formula imply that 
there exists another positive constant a smaller than 1 such that 

Pr[ Qn ∈Θ(n1+c) ] < anc.

Quicksort:  Expected Number of Comparisons
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