Adventures in
Computer Science

COMP 102A, Lecture 22

COMP 102: Excursions in Computer Science
Sorting Data

.| Instructor: Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp102

Acknowledgement: Some of today’s slides were taken from:
hitp://www.cs.rutgers.edu/~mlittman/courses/cs442-06/

Sock Matching

« We've got a basketful of

mixed up pairs of socks.

We want to pair them
up reaching into the
basket as few times as

we Can.

Sock Sorter A

« Strategy: Repeat until basket is empty

— Grab a sock.
— Grab another.

— If they don’t match, toss them back in the basket.

* Will this procedure ever work?

« Will it always work?

Measuring Performance

Let’'s say we have 8 pairs of socks.

How many times does this strategy reach into the basket?
— Min?
— Max?

— Average?
How do these values change with increasing numbers of pairs

of socks?

Sock Sorter B

« Strategy: Repeat until basket is empty

— Grab a sock.
— Is its match already on the bed?

— If yes, make a pair.

— If no, put it on the bed.

Measuring Performance

Once again, assume we have 8 pairs of socks.

How many times does this strategy reach into the basket?
— Min?
— Max?
— Average”?
How do these values grow with increasing numbers of pairs of

socks?

How does this compare with Sock Sorter A?

Comparing Algorithms

Repeat For Each Sock

sockA
* Do you have a Is there a match on the
matching pair? Set it table? Pair them and
aside. set the pair aside.
* Do you have a non- ¢ Otherwise, find an
matching pair? Put empty place on the
them back in the table and set the sock

basket. down.

Notable if No Table

Sock Sorter B seems like it is faster.
One disadvantage of Sock Sorter B is that you must have a big
empty space.

What if you can only hold 2 socks at a time?

Sock Sorter C

« Strategy: Repeat until basket empty

— Grab a sock.
— Grab another.

— Repeat until they match:

 Toss second sock into the basket.
« Grab a replacement.

Measuring Performance

Once again, let’'s imagine we have 8 pairs of socks.

How many times does this strategy reach into the basket?
— Min?
— Max?
— Average”?
How do these values grow with increasing numbers of pairs of

socks?

Comparing Algorithms

sockA
* Do you have a * Do you have a
matching pair? Set it matching pair? Set it
aside. aside.
* Do you have a non- * Do you have a non-
matching pair? Put matching pair? Put
them both back in the one back in the basket.

basket.

Analysis of Sock Sorter C

* Roughly the same number of matching operations as Sock
Sorter A, but since it always holds one sock, roughly half the

number of socks taken out of the basket.

Algorithms

 Sock Sorter A, Sock Sorter B and Sock Sorter C are three

different algorithms for solving the problem of sock sorting.

- Different algorithms can be better or worse in different ways.
— Number of operations
E.g. total # of times reaching into basket, total # of comparisons.

— Amount of memory
E.g. # of socks on the bed (or in the hand) at any given time.

| essons Learned

Given notion of time (# instructions to execute) and space

(amount of memory), we can compare different algorithms.

It's important to use a good algorithm!

It's especially important to think how time and space change, as

a function of the size of the problem (i.e. # pairs of socks).

Sorting Lists

- Many problems of this type! This is an important topic in CS.

— Sorting words in alphabetical order.

— Ranking objects according to some numerical value (price, size, ...)

Unsorted / Sorted

262,201, 918, 301, 187, 762, 397, 277, 645, 306,
765,798, 689, 867, 276, 402, 124, 545, 907, 569,
259, 152, 399, 481, 977, 947, 774, 727, 292, 285,
173, 599, 464, 212, 147, 696, 242, 559, 155, 569,
806, 784, 415, 321, 820, 126, 469, 225, 646, 438

124,126, 147, 152, 155, 173, 187, 201, 212, 225,
242, 259, 262, 276, 277, 285, 292, 301, 306, 321,
397, 399, 402, 415, 438, 464, 469, 481, 545, 559,
569, 569, 599, 645, 646, 689, 696, 727, 762, 765,
774,784, 798, 806, 820, 867, 907, 918, 947, 977

——

Sorting web pages

GO Ogle sort algorithms (Search) m:,:::—gegem

Web

Sorting algorithm - Wikipedia, the free encyclopedia

In computer science and mathematics, a sorting algorithm is an algorithm that puts
elements of a list in a certain order. The most-used orders are numerical ...
en.wikipedia.org/wiki/Sorting_algorithm - 90k - Cached - Similar pages

Quicksort - Wikipedia, the free encyclopedia

Quicksort is a well-known sorting algorithm developed by C. A. R. Hoare that One
advantage of parallel quicksort over other parallel sort algorithms is ...
en.wikipedia.org/wiki/Quicksort - 74k - Cached - Similar pages

Sorting Algorithms Demo

The following applets chart the progress of several common sorting algorithms while sorting
an array of data using in-place algorithms. ...
www.cs.ubc.ca/~harrison/Java/sorting-demo.html - 11k - Cached - Similar pages

Sorting Algorithms

Description, source code, algorithm analysis, and empirical results for bubble, heap,
insertion, merge, quick, selection, and shell sorts.
linux.wku.edu/~lamonml/algor/sort/sort.ntml - 9k - Cached - Similar pages

Sorting Algorithms

Shows the number of comparisons, performed by the sorting algorithm. ... 4. Shows the
code listing of the performed sorting algorithm. ...
maven.smith.edu/~thiebaut/java/sort/demo.html - 3k - Cached - Similar pages

Sorting Algorithms
Overview of many sorting techniques and corresponding links.
www.softpanorama.org/Algorithms/sorting.shtml - 67k - Cached - Similar pages

——

Sorting arrays

- Consider an array containing a list of names:

 How can we arrange them in alphabetical order?

A simple way to sort: Bubble sort

« Compare the first two values. If the second |s lar gﬁréthen swap.
* Continue with the 2nd and 3rd values, and so on.
* When you get to the end, start again.

* Repeat until no values are swapped.

Original list: Patrtially sorted list:

Let’'s think about Bubble sort

* Is this a good way to sort items?
— Simple to implement. This is good!

— Guaranteed to find a fully sorted list. This is good too!

 How do we decide whether it's a good method?

Useful things to consider

How long will it take”?
How much memory will it take?

Is there a way we can measure this?

Best criteria:

— number of basic machine operations: move, read, write data

— amount of machine memory

Can we think of something similar, at a higher level?

Predicting the “cost” of a sorting program

Number of pairwise comparisons

For Bubble sort:

« Let's say n is the number of items in the array.

* Need n-7 comparisons on every pass through the array.
* Need n passes in total (at most).

* So n*(n-1) pairwise comparisons.

Amount of memory we need (in addition to the original array)

For Bubble sort:

- Everything happens within the original array.

* Need to keep track of the index of the current item being compared.
* Need to keep track, during each pass, of whether a swap was done.
« So only 1 integer and 1 bit of memory.

A more Intuitive sort method: Selection sort

« Scan the full array to find the first element, and put it into 1st position.

* Repeat for the 2nd position, the 3rd, and so on until array is sorted.

Original list: Patrtially sorted list:

A l |

<

What is the “cost” of Selection sort?

* Number of pairwise comparisons

— Let's say n is the number of items in the array.

— Need n-71 comparisons on the 1st pass through the array.

— Need n-2 comparisons on the 2nd pass through the array.

— And so on until we reach the last two elements.

— Sointotal: (n-1) + (n-2) + (n-3)+ ... + 1=n *(n-1) / 2 pairwise comparisons.

— This is better than Bubble sort. (But only by a factor of 2.)

« Amount of memory we need (in addition to the original array)

— Everything happens within the original array.

— Need to keep track of the index of the current item being compared.
— Need to keep track, during each pass, of the index of the best value found so far.
— So only 2 integers in memory. Roughly the same as Bubble sort.

Why do we care about the “cost™?

Need to know whether we can use our program or not!

Can we use Selection sort to alphabetically sort the words in the

English Oxford dictionary?
— About 615,000 entries in the 2nd edition (1989).

— So we would need 189 trillion pairwise comparisons!

What if we try to sort websites according to hostnames:

— About 127 .4 million active domain names (as of January 2011).

— So we would need 8.06*10'° pairwise comparisons!

Fortunately, not much “extra” memory is needed :-))

Let's find a better way: Merge sort

* Divide-and-Conquer! (This is our old friend “Recursion”.)

 Main idea:

1. Divide the problem into subproblems.

2. Conquer the sub-problems by solving them recursively.

3. Merge the solution of each subproblem into the solution of the

original problem.

 What does this have to do with sorting?

Merge sort

Example:

— Sort an array of names to be in alphabetical order.

« Algorithm:

1. Divide the array into left and right halves.

2. Conquer each half by sorting them (recursively).

3. Merge the sorted left and right halves into a fully sorted array.

Merge sort: An example

—

Original list:

—

Merge

Divide in 2 Divide again Divide again Start merging again

Another example of Merge sort

Consider sorting an array of numbers:

38 (27|43 3|19|82 10

38 |27 (43 | 3 }82 10

38 | 27 433 a |82 10
I BN N
38 27 43 3 9 82 10
}27 38 3 4§ 9|82 10

3|27 |38 a3 9|10 |82

w
[T+
w
oo\
&
w
@
o

10 | 27

Let's think about Merge sort

« Possibly harder to implement than Bubble sort or Selection sort.

* Number of pairwise comparisons:

— How many times we divide into left/right sets? At most /og,(n)
— How many items to sort once everything is fully split? None!

— How many comparisons during merge, if subsets are sorted?

Need about n comparisons if sorted subsets have n/2 items each.
— Soin total: n comparisons per level *log,(n) levels =n *log,(n)

— This is better than Bubble sort and Selection sort (by a lot).

* Amount of memory we need (in addition to the original array):

— Every time we merge 2 lists, we need extra memory.

— For the last merge, we need a full n-item array of extra memory.

— This is worse than Bubble sort and Selection sort, but not a big deal.

— We also need 2 integers (1 for each list) to keep track of where we are during merging.

Merge sort is a bargain!

« Using Merge sort to alphabetically sort the words in the English Oxford

dictionary.
— Recall: about 615,000 entries in the 2nd edition (1989).

— So we would need 11.8 million pairwise comparisons.

— Versus 1.89 trillion if using Selection sort!

« Using Merge sort to organize websites according to hostnames:
— Recall: about 127.4 million active domain names (as of January 2011).
— So we would need 3.4 billion pairwise comparisons.

— Versus 8.06*10° if using Selection sort!

Number of comparions

- Between Dec. 2007 and Jan. 2011 number of domains names grew from 62
millions to 127 millions.
« Number of comparisons with Bubblesort grows from 3.4*10'° to 1.6*107,

Number of comparisons with Mergesort grows from 1.6 to to 3.4 billion comparisons.

Quick recap on the number of operations

Number of operations (y) as a function of the problem size (n)
— Constant: y=c Best
. A
— Linear: y=n
— Log-linear: y = n*log,(n)
— Quadratic: y =n? v
— Exponential: y=2" Worse

Bubble sort and Selection sort take a quadratic number of comparisons.

— This is as bad as it gets, for sorting algorithms. (...for natural algorithms...)

Merge sort takes a linear*log number of comparisons.

— This is as good as it gets, for sorting algorithms.

This is a worst-case analysis (i.e. maximum number of operations.)

A word about memory

Merge sort uses twice as much memory as Selection sort.

— This is not a big deal. If you can store the array once, you can probably store it
twice.

But computers have 2 types of memory:

— RAM (rapid-access memory) and hard-disk memory.
— RAM is much faster, but usually there is less of it.

— As long as everything fits into RAM, no problem!

If array is too large for RAM, then you need to worry about:

— Number of times sections of the array are copied / swapped to and from disk.

Take-home message

« Sorting is one of the most useful algorithms.

— Applications are everywhere.

* There are many ways to solve a problem.

— For sorting: Bubble sort, Selection sort, Merge sort, and many more.

— Some methods use n*log,(n) comparisons and (almost) no extra memory!

When choosing an algorithm to solve a problem, it's important to think

about the cost (= time and memory) of this algorithm.

« |t's also useful to think about how “easy” the algorithm is to program

(more complicated = more possible mistakes), but this is harder to

qguantify.

COMP 102: Excursions in Computer Science
Searching

Y Instructor: Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgqill.ca/~jpineau/comp102

Searching example

Given: A list of names of students and their favourite colour.

Problem: Find the favourite colour of the student named Alice,

If she is in the class.

1. Bob ‘black’
2. Mary ‘red’
3. Carol ‘yellow’
4. Allison ‘blue’
5. Alice ‘yellow’

6. Joe ‘green’
7. Joseph ‘purple’

Sequential Search

* Process each list entry from first to last.

— Check if each entry processed is the entry for “Alice”.

— If we find the “Alice” entry,

* Note Alice’s favourite colour. 1 BOb ‘blaCk,
« Stop searching. 2 Mary ‘I'Cd,

3. Carol ‘yellow’
4. Allison ‘blue’
- How many entries in the list are 5. Alice ‘yellow’

processed before Alice is found? 6. Joe ‘green’
7. Joseph ‘purple’

Sequential search

How many entries in the list are

processed before Alice is found?

1.

3.
4.
5.

6.

7.
8.
9.

10.

11.

Bob ‘black’
Mary ‘red’
Carol ‘yellow’
Allison ‘blue’
George ‘green’
Billy ‘white’
Walter ‘yellow’
Geoffrey ‘pink’
Alice ‘yellow’
Joe ‘green’

Joseph ‘purple’

Sequential Search on a Sorted List

Can you speed-up the search if the list is sorted?

?

1. Alice ‘yellow
2. Allison ‘blue’

3. Bob ‘black’
4. Carol ‘yellow’

Yes! If you are looking for Alice.

What if you are looking for Joe's

favourite colour? ‘ :
5. Joe "green

6. Joseph ‘purple’
7. Mary ‘red’

Sorting won't help. Or can it?

Binary Search

« Search algorithm for sorted lists.
* How do you find a word in the dictionary?

E.g. "Joe”

Binary Search on a Dictionary

Look at the middle page of the dictionary.

— Read the words on this page.

If the word you are looking for comes after these words:

— Search among the pages of the dictionary that come after this
page.

If the word you are looking for comes before these words:

— Search among the pages of the dictionary that come before.

If the word you are looking for is on this page,

— Stop searching!

Binary Search for “Joe”

1. Alice ‘yellow’
2. Allison ‘blue’

3. Bob ‘black’
First, try the middle. =—l- 4. Carol ‘yellow’

Third try, got it! =e———) 5. JOE€ ‘green’
Second, try the middle =——————)p Joseph ‘purple’

of the second half.
7. Mary ‘red’

Comparing Search Algorithms

« Sequential search: 5 items examined to find “Joe”.

* Binary search: 3 items examined to find “Joe”.

Which would choose?

Binary Search for "Walter”

Alice ‘yellow’
Allison ‘blue’
Billy ‘white’
Bob ‘black’
Carol ‘yellow’
Geoffrey ‘pink’

George ‘green’

N SN0k

8. Joe ‘green’

2nd try ﬁ) JOSCph ‘purple’
3rd try ———— () Mary ‘red’

4th try 11. Walter ‘yellow’

Comparing Search Algorithms

« Searching for “Joe”:

— Sequential search: 5 items examined.

— Binary search: 3 items examined.

« Searching for “Walter”

— Sequential search: 11 items examined.

— Binary search: 4 items examined.

* Which would choose?

Worst-Case Analysis

Binary search seems faster than sequential search for sorted lists.

Let’s think about the maximum possible humber of items we need to

check.

— With sequential search: N elements
where N = numbers of items in the sorted list.

“ If there are 7 elements in the list, then in the worst-case, sequential search
looks at 7 elements before finding the answer. “

— With binary search: 7?77

Worst-case Complexity of Binary Search

 Here, at most 3 elements

of the list need to be 1. Alice ‘yellow’

analyzed. 2. Allison ‘blue’
3. Bob ‘black’

s> 4. Carol ‘yellow’

> 5. Joc ‘green’
s> . Joscph ‘purple’

7. Mary ‘red’

Worst-case Complexity of Binary Search

Here, at most 4 elements
of the list need to be

analyzed.

1. Alice ‘yellow’
2. Allison ‘blue’
3. Billy ‘white’
4. Bob ‘black’
5. Carol ‘yellow’
> 6. Geoffrey ‘pink’
7. George ‘green’

8. Joe ‘green’
mmmmmmp> 9. Joseph ‘purple’

> 0. Mary ‘red’
| —> 11. Walter ‘yellow’

Why should you care?

* If your database has 8,388,607 names (e.g. the telephone

book), using sequential search may examine all 8,388,607

Names.

* To search a list of 8,388,607 names using binary search

examines how many names at most?

23

How do we get this?

If you have 1 names in the list, need at most 1 check.

If you have 2 names in the list, need at most 2 checks.
If you have 4 names in the list, need at most 3 checks.
If you have 8 names in the list, need at most 4 checks.
If you have 16 names in the list, need at most 5 checks.

If you have N names in the list, need at most /log,(N)+1 checks.

But!

- Binary search only works on sorted lists.

* In the worst-case, if you sort using Bubble sort, you will need:

n*(n-1) comparisons for Bubble sort + /og,(n) comparisons for Binary search

* |In the worst-case, if you sort using Merge sort, you will need:

n*log,(n) comparisons for Merge sort + /og,(n) comparisons for Binary search

- So why not keep things simple and use:

n comparisons for Sequential search (no sorting necessary) ?

Binary search vs Sequential search

* In general, you need to sort only once, and then you can search

the sorted list as many times as we want.

* If you don’t need to do multiple searches, then it is better to just

do sequential search, without any pre-sorting.

Quick Recap

Searching is as useful as (if not more than) sorting.

So far we have seen searching on arrays (sorted or not).

This is interesting, but the fun is only beginning!

In many problems, data is not stored in an array.

Searching data organized in a tree

* You excavated a fossil, and are trying to identify its species.

— In what order do you consider the nodes in the tree?

Dinosauria

Searching through a maze

* Interesting questions:

— How do we search through the maze?

— How do we encode this problem for the computer?

Searching through the subway system

What is the shortest path from the Université de Montréal station to
the McGill station?

HONORE-BEAUGRAND
®
S50 g

How should we encode

this problem?

Can’t store the list of
stations in a simple array.

This is an example
of a graph.

Graphs

A graph is an abstract representation defined by a pair (N, E), where
N is a collection of nodes (or objects)

E is a collection of pairs of nodes, called edges (representing the

relations between the objects.)

In the Montreal metro system:

— What are the nodes?
The metro stations.
— What are the edges?

Rail link between neighbouring stations.

Paths

A path is a sequence of adjacent nodes.
E.g. "McGill” - “Place-des-Arts” - “St-Laurent” - “"Berri-UQAM"

The path length is the total number of nodes along a path.

We can store a graph in memory using an adjacency matrix,

which defines which nodes are next to each other.

Adjacency matrix

» Consider a 2-D matrix, showing the relation between any pair of
nodes (1=neighbours, 0=not neighbours).

Example A B C D E

A 0 1 0 0 1

B 1 0 1 0 0

C 0 1 0 0 1

D 0 0 0 1 1

\% E 1 0 1 1 0

Downtown Montreal map
BEEHE

Le plus vaste réseau de galeries intérieures au monde

Tour Centre 1000 Industrislle 2015
Scotia Mont Royal Shertrocks Alliance University
Owest

3] [Pl [P]
College Université 1001 2020 Les galerins
Dawson Concordia do University 2001

Pavillon Masiconswve

2 Harey F. Hall
3] [P] [Pl [P]
Place Centre Complexe Place do'la Museo
Montreal Eaton Las Alles pes—. S
Trust &ml..- cortarmporae
[P) [F) [Pl

-re Place.
Squ Villo-Marie
(PIC7) [F]
1250 Square Hotel 900
René- Lo Reine Rone.
Levesque Elizabeth Levesque
[P] [P]
=
B
Marriott [Tour Tour =
Chatesu Centrale Bell Banque g
Champlain Nationale
P P 3] [Fl

e —() e)

Centre Gare Gare Place Terminus Le 1000 Hotel Place OACI Place Ce Centre Palains
Boll Lugien- Windsor du Canada RTL Dala Vaton fonaventure Place dols Cre : COP Capital des
L'Alher Caschatiaes Boreverturs o ln Cits Itmeratnale = Bhxs A8 congrés
Intarnstons s
Q@ ® B] ®) @ ® ® ®
Hotel Place Victoris Centre do Hotel
Deka Tour <t commerce e
Contro-Villo e mondial Continertal
® ® ® 3] amrTm

Elimnmims,

BEBCO

CARTE-SCHEMA DU RESO
ET DE CERTAINS LIEUX D'INTERET ET SERVICES DE MONTREAL

L ——
. Immeuble et lien PESO Station de métro

Trains de banlieue et gare

Stationnement Informations revisées en octobre 2003

Conception et implantation : e 2003, Tous droits de reproduction réserves 4
Info touriste : ¢ i i i Montrea
BELANGER BRANDING DESIGN LTEE Arrondissement de Ville-Marie

@

Lieu d'intérdt et services [=] Terminus aautobus
P
(7]

Interesting questions on graphs

Question #1: What is the shortest path between two given (non-

neighbour) nodes?

Question #2: What is the best path to visit all nodes with

minimum overall travel time?

Many more interesting questions!

A few more definitions

A directed graph, is a graph where there may be an edge from A to B,

but not from B to A. So we say there is a direction to each edge.

In undirected graphs, each connected pairs of nodes is connected in

both directions.

A cycle is a path in which the first and last nodes are the same.

A tree is a graph that has no cycle.

Example of a Cycle

Nodes A-B-C-E form a cycle.

Node D forms a cycle.

®

Example of a Tree

* The following graph is a tree.

Example of an Undirected Graph

If A is a neighbour of B,
then B is a neighbour of A

(and similarly for all nodes.)

OE LA CONCORDE

HONORE-BEAUGRAND

. . o
MONTMORENCY " RADISSON 4

o LANGELER

@ SANTMICHEL o,

JIERRVLLE
L
FABRI

LA\ TR OF SanUE l:RL.'YlL";
RN 5

JEAN-TALON

WASTELNAL o BEAUBEN
PARE *
ROSEMONT
LEGE O patroNTamE
FRONTENAC
DE LA SAYANE .

.
=P MEal

L
UMVERSITE.DE I -
'-"3""‘!LL_ BER?I UCA\' ' BEAUDRY
SANI] lro'..lsf:‘.l’

LONGUEUIL

JNNERS TEOE- S0 One

1 LIONEL-GROULX ® CHARLEVWOX
B woiTriaLonison JOLICOEUR

/

o YERDUN
WONK .
L 9 ® LASALLE
ANGRIGNON @ 08 LEGUSE

Example of a Directed Graph

* The internet!

— Nodes are the web-pages.

— Edges are the hyper-links, taking you from one page to another.

& Learning
Lab
Joelle's >COMP-102
homepage < page

Research
page

Students
page

Take-home message

Searching is one of the most useful algorithms.

You should understand sequential search and binary, and be

familiar with the pros/cons of each.

Be able to recognize graphs, and define the key components

(nodes, edges, paths, etc.)

COMP 102: Excursions in Computer Science
Graphs

¥ Instructor: Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp102

Example: A friendship network

« Graphs are sometimes

also called networks.

« Graph analysis tool
on Facebook to analyze

patterns of friendships.

— Nodes: people

— Edges: friendships

 Could annotate the

types of relationships.

Example: Scientific collaborations

Nodes correspond to

scientists in residence at
the Santa Fe Institute in

1999-2000, and their
collaborators.

An edge Is drawn between
a pair of scientists if they
coauthored one or more
articles during this time
period.

The research topics are

shown as different colours.

These are identified
automatically using a
clustering algorithm.

Agent-based
Models

Mathemaltxcal
Ecology

http.//arxiv.org/pdf/cond-mat/0112110v1

Example: Food web

Nodes correspond to the
most prevalent marine
organisms living in the
Chesapeake Bay (USA).

An edge is drawn between
a pair if one of the
organisms eats the other.

Graph suggests there are
two well-defined
communities.

These correspond quite
closely to pelagic
organisms (those that live
near the surface) and
benthic organisms (those
that live near the bottom).

Heterotrophic microflagellates
Free bacteria in water column/pDOC-e

Fish larvae

American shad

Striped bassy

Alewife and blue herring
Sea nettles

Blue crabd

Atlantic menhaden
Ctenophores

American cyster
Zooplankton

Bacteria attached to suspended 2OC'
Other suspension feeders
Phytoplankton

Softshell clam
Microzooplankton

Bay anchovy

Summer flounder

Weakfish (O

White perch
Bluefish

CEECROEECEE_EREEE 8O

Macoma spp. (bivalve) U
Sea catfish)

Bacteria attached to sediment 20Ct O

Hogchoker ()

Other clychaetes L)
Spot U

Nereis (Rag worm) L)

Atlantic ¢roaker (O

Crustacean deposit feeders (O

Benthic diatoms (
Meiofauna <

* Dissolved Organic Carbon
* Particulate Organic Carbon

Benthic Organisms
B Pelagic Organisms
Undetermined

http://arxiv.org/pdf/cond-mat/0112110v1

Searching over Graphs

* Your graph is defined by a set of hodes and an adjacency matrix.

* You also need to know the start node and the end node.

 The goal is to explore all possible paths and return the shortest

one.

Warning! Need to be systematic about the order in which you

explore these paths.

Breadth-first search

Start at some node n. Say we start with F.
Explore all the neighbors of n. Explore D, G, | and H.
Then explore all the unvisited neighbours of the neighbours ofn. B, E, K, J
Then visit unvisited neighbours of those. C
Continue until no more unvisited nodes remain. A

Visitation order: F.D G, ILH B E K, J, C A

Visitation path: F-D-F-G-F-1-F-H-F-D-B-D-F-G
-E-G-F-H-K-H-J-H-F-D-B-C-A

Comments on breadth-first search

Breadth-first search explores the graph layer by layer.
E.g. For web-browsing, all n-away links are explored.
IMPORTANT:
— Need to decide before-hand on the order of neighbours (e.g. clockwise)

— Need to keep track of nodes you've already explored.

Pro: Good algorithm if you want to find the shortest path between the start
node, and another node. (As soon as you find that node, you know you have
found the shortest path to it.)

Con: Often requires a lot of backtracking (= visitation path goes through visited
nodes again and again.)

Can we avoid all this backracking?

Depth-first search

Start at some node n. Say we start with F.
Then explore the first unvisited neighbour of n (call this n’). Explore D.

Then explore the first unvisited neighbour n’, and so on until you hit a node with
no unexplored neighbours. B,C, A

Then backtrack 1 level to explore the next unvisited neighbour. E, G, etc.
Visitation order: F,D,B,C,AJE, G I, H K, J

Visitation path: ~ F-D-B-C-A-C-B-E-G-E-B-D-F
1-F-H-K-J

S bt

Comments on depth-first search

Depth-first search explores graph by going deeper whenever possible.

E.g. For web-browsing, always click on 15t link until you hit a dead-end.

IMPORTANT:
— Need to decide before-hand on the order of neighbours (e.g. clockwise)

— Need to keep track of nodes you've already explored.

Pro: Usually uses much less backtracking to explore the full graph

than breadth-first search. How much less depends on neighbourhood

ordering (sometimes lucky, sometimes not)

Con: Not guaranteed to find the shortest path, unless you explore the

full graph.
— E.g. After 3 rounds, found path to “E": F-D-B-E, which is longer than F-G-E.

Can we try a Best-first search?

Start at some node n. Say we start with F.

Pick a score function. Say score = alphabetical order.

Add its neighbours to the list of candidate nodes. Add D(=4), G(=7), I(=9), H(=8).

Pick candidate node with best score. Pick D.

Add its neighbours to the list of candidate nodes. Add B(=2).

Continue until no more unexplored nodes. Pick B, Add C(=3) and E(=5), etc.
Exploration order: F,D,B,C,AE,G H,I J, K

Candidate list: D,G,I,H,B,C E AK,J

Comments on best-first search

Best-first search explores graph by according to priority order.

E.g. For web-browsing, always explore link with highest PageRank.
IMPORTANT:

— Need to have a score function, which can be calculated for each node.

— Need to keep track of candidate nodes.

Pro: Usually much faster to reach a goal node (e.g. let’'s say we stop when we

reach “A”.)

Con: No advantage if you want to explore the full graph.

Graph Topologies

 Topology = The arrangement in which the nodes of a graph are
connected to each other.

« Common types of graphs:

— Regular graph
— Complete graph

— Random graph

Regular graph

- Main characteristic. Each node has same number of neighbours.

O-regular graph 1-regular graph 2-regular graph 3-regular graph

http://en.wikipedia.org/wiki/Regular _graph

Special regular graph: the Ring
® ©

- ”
- ”
- ”

- »

- -

- »

- ”

- »

- ”

- »
~ »

- ”

- »

\ ’

http.//geza.kzoo.edu/~csardi/module/html/

Special regular graph: the Lattice

This is a common topology
to model road networks

(in 2-D).

Also common for molecular

diagrams (in 3-D).

(1.9)

O

(2,9)

(3,9)

O

(3.4)

(4.9)

O

“.4)

(3.9)
O
http.://geza.kzoo.edu/

(5.4

O Y ~csardi/module/html/

(9,3)

Complete graph (also a regular graph)

Main characteristic: All pairs of nodes are connected by an edge.

K:0 K>5:1 K3:3 K4:6

Ks:10 Kg:15 K721

http.//en.wikipedia.org/wiki/Complete _graph

Random graph

Basic construction: Start with a set of nodes. With probability p,

randomly add an edge between any pair of nodes.

Graph is denoted G(n,p), where n is the number of nodes and p is

the probability of a pairwise connection.

http://epress.anu.edu.au/cs/html/ch05s03.html http://aps.arxiv.org/PS_cache/cond-mat/pdf/0007/0007235v2.pdf

Graphs in the real world

* Think back to our examples:
— Montreal metro system.
— Friendship networks.
— Roadmap of a city.
— The internet.

— A maze.

* Most biological, technological and social graphs/networks are

not exactly regular, complete or random.

Take-home message

Main searching algorithms for graphs: Breadth-first search,

Depth-first search, Best-first search.

— Know the steps of each algorithm, and the pros/cons for each.

Characteristics of the basic types of graphs (regular, complete,

random).

Small-world networks

d
* A small-world network is a mix of a -
reqular graph and a random graph.
« Simple construction:
— Start with a ring made of n nodes
and k edges per node.
(b)

— Wire the k edges as for a regular
graph.

— With probability p, re-wire each
edge to another random node.

http.//aps.arxiv.org/PS cache/cond-mat/pdf/0303/0303516v1.pdf

Characteristics of a small-world network

* Key parameters:

— n controls the size of the graph (= number of nodes)

— k controls the degree of connectedness (e.g. if k=n then we have a
complete graph.

— p controls the trade-off between “regular’ (p=0) and “random” (p=17)

This correctly models many real-life networks!

Example: Model the spread of an infectious disease

Consider a population of n individuals, connected according to a given topology.

Basic model:

 Onday 1. a number b of individuals are infected.

* Onday 2 (and subsequent days): we see the effect of that infection

— Each infected individual can infect each of its neighbours with probability 5.

— Each infected individual is cured with probability g.

We could complicate this model significantly, e.g.
— Individuals have probability of dying from the disease.
— Individuals develop immunity so can’t get the disease more than once.

— Individuals take a variable number of days to develop symptoms after contagion.

Analysis of the model

Now we can ask lots of interesting questions!

For what values of infection rate / and remission probability g can we

keep infection rate at less than 10% of the population?

What is the critical base rate b at which the disease infects half of n in

less than a week?

What is the impact of the graph topology on the spread of a disease?

What is the impact of a specific intervention strategy (e.g. through

manipulating 1) on the spread of the disease?

How do we get these results?

Simulating a graph

Need to simulate our graph, to capture the change of state in

the infected population.

What do you remember about finite-state machines?

— States + Transition graph. Use this here!

Pick values for n, b, g, and h.

The state is described by a separate variable, n. = {healthy,

infected} for each node.

The transition graph expresses the effect of the infection.

Scratch simulation

infection:)

oo
olo

B

EEEE @
)
©
ool

2
e
2
2
©

olo

®lole.
Clof®

@

©
©
©
©
©
©
2
2

2] @ [E]
©|©
® [®

®
[E] (€]
o

[high—gtt—sk:lg—ratt mIgtt—hmr—[am I:E.] [hast—gtt—si:lg—ratt “]

http.//scratch.mit.edu/projects/zevbo/1372318

