
Adventures in

Computer Science

COMP 102A, Lecture 22

COMP 102: Excursions in Computer Science

Lecture 9: Sorting Data

Instructor: Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp102

Acknowledgement: Some of today’s slides were taken from:
http://www.cs.rutgers.edu/~mlittman/courses/cs442-06/

Joelle Pineau2COMP-102: Computers and Computing

Sock Matching

• We’ve got a basketful of

mixed up pairs of socks.

• We want to pair them

up reaching into the

basket as few times as

we can.

COMP 102: Excursions in Computer Science

Lecture 9: Sorting Data

Instructor: Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp102

Acknowledgement: Some of today’s slides were taken from:
http://www.cs.rutgers.edu/~mlittman/courses/cs442-06/

Joelle Pineau2COMP-102: Computers and Computing

Sock Matching

• We’ve got a basketful of

mixed up pairs of socks.

• We want to pair them

up reaching into the

basket as few times as

we can.

Joelle Pineau3COMP-102: Computers and Computing

Sock Sorter A

• Strategy: Repeat until basket is empty

– Grab a sock.

– Grab another.

– If they don’t match, toss them back in the basket.

• Will this procedure ever work?

• Will it always work?

Joelle Pineau4COMP-102: Computers and Computing

Measuring Performance

• Let’s say we have 8 pairs of socks.

• How many times does this strategy reach into the basket?

– Min?

– Max?

– Average?

• How do these values change with increasing numbers of pairs

of socks?

Joelle Pineau3COMP-102: Computers and Computing

Sock Sorter A

• Strategy: Repeat until basket is empty

– Grab a sock.

– Grab another.

– If they don’t match, toss them back in the basket.

• Will this procedure ever work?

• Will it always work?

Joelle Pineau4COMP-102: Computers and Computing

Measuring Performance

• Let’s say we have 8 pairs of socks.

• How many times does this strategy reach into the basket?

– Min?

– Max?

– Average?

• How do these values change with increasing numbers of pairs

of socks?

Joelle Pineau5COMP-102: Computers and Computing

Sock Sorter B

• Strategy: Repeat until basket is empty

– Grab a sock.

– Is its match already on the bed?

– If yes, make a pair.

– If no, put it on the bed.

Joelle Pineau6COMP-102: Computers and Computing

Measuring Performance

• Once again, assume we have 8 pairs of socks.

• How many times does this strategy reach into the basket?

– Min?

– Max?

– Average?

• How do these values grow with increasing numbers of pairs of

socks?

• How does this compare with Sock Sorter A?

Joelle Pineau5COMP-102: Computers and Computing

Sock Sorter B

• Strategy: Repeat until basket is empty

– Grab a sock.

– Is its match already on the bed?

– If yes, make a pair.

– If no, put it on the bed.

Joelle Pineau6COMP-102: Computers and Computing

Measuring Performance

• Once again, assume we have 8 pairs of socks.

• How many times does this strategy reach into the basket?

– Min?

– Max?

– Average?

• How do these values grow with increasing numbers of pairs of

socks?

• How does this compare with Sock Sorter A?

Joelle Pineau7COMP-102: Computers and Computing

Comparing Algorithms

Joelle Pineau8COMP-102: Computers and Computing

Notable if No Table

• Sock Sorter B seems like it is faster.

• One disadvantage of Sock Sorter B is that you must have a big

empty space.

• What if you can only hold 2 socks at a time?

Joelle Pineau7COMP-102: Computers and Computing

Comparing Algorithms

Joelle Pineau8COMP-102: Computers and Computing

Notable if No Table

• Sock Sorter B seems like it is faster.

• One disadvantage of Sock Sorter B is that you must have a big

empty space.

• What if you can only hold 2 socks at a time?

Joelle Pineau9COMP-102: Computers and Computing

Sock Sorter C

• Strategy: Repeat until basket empty

– Grab a sock.

– Grab another.

– Repeat until they match:

• Toss second sock into the basket.

• Grab a replacement.

Joelle Pineau10COMP-102: Computers and Computing

Measuring Performance

• Once again, let’s imagine we have 8 pairs of socks.

• How many times does this strategy reach into the basket?

– Min?

– Max?

– Average?

• How do these values grow with increasing numbers of pairs of

socks?

Joelle Pineau9COMP-102: Computers and Computing

Sock Sorter C

• Strategy: Repeat until basket empty

– Grab a sock.

– Grab another.

– Repeat until they match:

• Toss second sock into the basket.

• Grab a replacement.

Joelle Pineau10COMP-102: Computers and Computing

Measuring Performance

• Once again, let’s imagine we have 8 pairs of socks.

• How many times does this strategy reach into the basket?

– Min?

– Max?

– Average?

• How do these values grow with increasing numbers of pairs of

socks?

Joelle Pineau11COMP-102: Computers and Computing

Comparing Algorithms

Joelle Pineau12COMP-102: Computers and Computing

Analysis of Sock Sorter C

• Roughly the same number of matching operations as Sock

Sorter A, but since it always holds one sock, roughly half the

number of socks taken out of the basket.

Joelle Pineau11COMP-102: Computers and Computing

Comparing Algorithms

Joelle Pineau12COMP-102: Computers and Computing

Analysis of Sock Sorter C

• Roughly the same number of matching operations as Sock

Sorter A, but since it always holds one sock, roughly half the

number of socks taken out of the basket.

Joelle Pineau13COMP-102: Computers and Computing

Algorithms

• Sock Sorter A, Sock Sorter B and Sock Sorter C are three

different algorithms for solving the problem of sock sorting.

• Different algorithms can be better or worse in different ways.

– Number of operations

E.g. total # of times reaching into basket, total # of comparisons.

– Amount of memory

E.g. # of socks on the bed (or in the hand) at any given time.

Joelle Pineau14COMP-102: Computers and Computing

Lessons Learned

• Given notion of time (# instructions to execute) and space

(amount of memory), we can compare different algorithms.

• It’s important to use a good algorithm!

• It’s especially important to think how time and space change, as

a function of the size of the problem (i.e. # pairs of socks).

Joelle Pineau13COMP-102: Computers and Computing

Algorithms

• Sock Sorter A, Sock Sorter B and Sock Sorter C are three

different algorithms for solving the problem of sock sorting.

• Different algorithms can be better or worse in different ways.

– Number of operations

E.g. total # of times reaching into basket, total # of comparisons.

– Amount of memory

E.g. # of socks on the bed (or in the hand) at any given time.

Joelle Pineau14COMP-102: Computers and Computing

Lessons Learned

• Given notion of time (# instructions to execute) and space

(amount of memory), we can compare different algorithms.

• It’s important to use a good algorithm!

• It’s especially important to think how time and space change, as

a function of the size of the problem (i.e. # pairs of socks).

Joelle Pineau15COMP-102: Computers and Computing

On the usefulness of sorting

• Recall last class’s example about finding the minimum in an array.

• How many times is MinValue assigned?

– Case 1: List is in increasing order.

• Only once!

– Case 2: List is in decreasing order.

• MinValue gets assigned K times.

– Case 3: List is in random order.

• A bit harder to estimate…

If we are going to use the list many times, better to sort it first!

Joelle Pineau16COMP-102: Computers and Computing

Sorting Lists

• Many problems of this type! This is an important topic in CS.

– Sorting words in alphabetical order.

– Ranking objects according to some numerical value (price, size, …)

Joelle Pineau17COMP-102: Computers and Computing

Sorting web pages

Joelle Pineau18COMP-102: Computers and Computing

Sorting arrays

• Consider an array containing a list of names:

• How can we arrange them in alphabetical order?

Lindsey

Christopher

Nicholas

Erica

Rahul

Jane

Joelle Pineau17COMP-102: Computers and Computing

Sorting web pages

Joelle Pineau18COMP-102: Computers and Computing

Sorting arrays

• Consider an array containing a list of names:

• How can we arrange them in alphabetical order?

Lindsey

Christopher

Nicholas

Erica

Rahul

Jane

Joelle Pineau19COMP-102: Computers and Computing

A simple way to sort: Bubble sort

• Compare the first two values. If the second is larger, then swap.

• Continue with the 2nd and 3rd values, and so on.

• When you get to the end, start again.

• Repeat until no values are swapped.

Lindsey

Christopher

Nicholas

Erica

Rahul

Jane

Christopher

Lindsey

Nicholas

Erica

Rahul

Jane

Original list: Partially sorted list:

Christopher

Lindsey

Nicholas

Erica

Rahul

Jane

Christopher

Lindsey

Erica

Nicholas

Rahul

Jane

Christopher

Lindsey

Erica

Nicholas

Rahul

Jane

Joelle Pineau20COMP-102: Computers and Computing

Let’s think about Bubble sort

• Is this a good way to sort items?

– Simple to implement. This is good!

– Guaranteed to find a fully sorted list. This is good too!

• How do we decide whether it’s a good method?

smaller

Joelle Pineau19COMP-102: Computers and Computing

A simple way to sort: Bubble sort

• Compare the first two values. If the second is larger, then swap.

• Continue with the 2nd and 3rd values, and so on.

• When you get to the end, start again.

• Repeat until no values are swapped.

Lindsey

Christopher

Nicholas

Erica

Rahul

Jane

Christopher

Lindsey

Nicholas

Erica

Rahul

Jane

Original list: Partially sorted list:

Christopher

Lindsey

Nicholas

Erica

Rahul

Jane

Christopher

Lindsey

Erica

Nicholas

Rahul

Jane

Christopher

Lindsey

Erica

Nicholas

Rahul

Jane

Joelle Pineau20COMP-102: Computers and Computing

Let’s think about Bubble sort

• Is this a good way to sort items?

– Simple to implement. This is good!

– Guaranteed to find a fully sorted list. This is good too!

• How do we decide whether it’s a good method?

Joelle Pineau21COMP-102: Computers and Computing

Useful things to consider

• How long will it take?

• How much memory will it take?

• Is there a way we can measure this?

• Best criteria:

– number of basic machine operations: move, read, write data

– amount of machine memory

• Can we think of something similar, at a higher level?

Joelle Pineau22COMP-102: Computers and Computing

Predicting the “cost” of a sorting program

• Number of pairwise comparisons

For Bubble sort:

• Let’s say n is the number of items in the array.

• Need n-1 comparisons on every pass through the array.

• Need n passes in total (at most).

• So n*(n-1) pairwise comparisons.

• Amount of memory we need (in addition to the original array)

For Bubble sort:

• Everything happens within the original array.

• Need to keep track of the index of the current item being compared.

• Need to keep track, during each pass, of whether a swap was done.

• So only 1 integer and 1 bit of memory.

Joelle Pineau21COMP-102: Computers and Computing

Useful things to consider

• How long will it take?

• How much memory will it take?

• Is there a way we can measure this?

• Best criteria:

– number of basic machine operations: move, read, write data

– amount of machine memory

• Can we think of something similar, at a higher level?

Joelle Pineau22COMP-102: Computers and Computing

Predicting the “cost” of a sorting program

• Number of pairwise comparisons

For Bubble sort:

• Let’s say n is the number of items in the array.

• Need n-1 comparisons on every pass through the array.

• Need n passes in total (at most).

• So n*(n-1) pairwise comparisons.

• Amount of memory we need (in addition to the original array)

For Bubble sort:

• Everything happens within the original array.

• Need to keep track of the index of the current item being compared.

• Need to keep track, during each pass, of whether a swap was done.

• So only 1 integer and 1 bit of memory.

Joelle Pineau23COMP-102: Computers and Computing

A more intuitive sort method: Selection sort

• Scan the full array to find the first element, and put it into 1st position.

• Repeat for the 2nd position, the 3rd, and so on until array is sorted.

Lindsey

Christopher

Nicholas

Erica

Rahul

Jane

Original list: Partially sorted list:

Christopher

Lindsey

Nicholas

Erica

Rahul

Jane

Christopher

Erica

Nicholas

Lindsey

Rahul

Jane

Christopher

Erica

Jane

Lindsey

Rahul

Nicholas

Christopher

Erica

Jane

Lindsey

Rahul

Nicholas

Joelle Pineau24COMP-102: Computers and Computing

What is the “cost” of Selection sort?

• Number of pairwise comparisons

– Let’s say n is the number of items in the array.

– Need n-1 comparisons on the 1st pass through the array.

– Need n-2 comparisons on the 2nd pass through the array.

– And so on until we reach the last two elements.

– So in total: (n-1) + (n-2) + (n-3) + … + 1 = n * (n-1) / 2 pairwise comparisons.

– This is better than Bubble sort. (But only by a factor of 2.)

• Amount of memory we need (in addition to the original array)

– Everything happens within the original array.

– Need to keep track of the index of the current item being compared.

– Need to keep track, during each pass, of the index of the best value found so far.

– So only 2 integers in memory. Roughly the same as Bubble sort.

Joelle Pineau23COMP-102: Computers and Computing

A more intuitive sort method: Selection sort

• Scan the full array to find the first element, and put it into 1st position.

• Repeat for the 2nd position, the 3rd, and so on until array is sorted.

Lindsey

Christopher

Nicholas

Erica

Rahul

Jane

Original list: Partially sorted list:

Christopher

Lindsey

Nicholas

Erica

Rahul

Jane

Christopher

Erica

Nicholas

Lindsey

Rahul

Jane

Christopher

Erica

Jane

Lindsey

Rahul

Nicholas

Christopher

Erica

Jane

Lindsey

Rahul

Nicholas

Joelle Pineau24COMP-102: Computers and Computing

What is the “cost” of Selection sort?

• Number of pairwise comparisons

– Let’s say n is the number of items in the array.

– Need n-1 comparisons on the 1st pass through the array.

– Need n-2 comparisons on the 2nd pass through the array.

– And so on until we reach the last two elements.

– So in total: (n-1) + (n-2) + (n-3) + … + 1 = n * (n-1) / 2 pairwise comparisons.

– This is better than Bubble sort. (But only by a factor of 2.)

• Amount of memory we need (in addition to the original array)

– Everything happens within the original array.

– Need to keep track of the index of the current item being compared.

– Need to keep track, during each pass, of the index of the best value found so far.

– So only 2 integers in memory. Roughly the same as Bubble sort.

Joelle Pineau25COMP-102: Computers and Computing

Why do we care about the “cost”?

• Need to know whether we can use our program or not!

• Can we use Selection sort to alphabetically sort the words in the

English Oxford dictionary?

– About 615,000 entries in the 2nd edition (1989).

– So we would need 189 trillion pairwise comparisons!

• What if we try to sort websites according to hostnames:

– About 127.4 million active domain names (as of January 2011).

– So we would need 8.06*1015 pairwise comparisons!

• Fortunately, not much “extra” memory is needed :-))

Joelle Pineau26COMP-102: Computers and Computing

Let’s find a better way: Merge sort

• Divide-and-Conquer! (This is our old friend “Recursion”.)

• Main idea:

1. Divide the problem into subproblems.

2. Conquer the sub-problems by solving them recursively.

3. Merge the solution of each subproblem into the solution of the

original problem.

• What does this have to do with sorting?

Joelle Pineau25COMP-102: Computers and Computing

Why do we care about the “cost”?

• Need to know whether we can use our program or not!

• Can we use Selection sort to alphabetically sort the words in the

English Oxford dictionary?

– About 615,000 entries in the 2nd edition (1989).

– So we would need 189 trillion pairwise comparisons!

• What if we try to sort websites according to hostnames:

– About 127.4 million active domain names (as of January 2011).

– So we would need 8.06*1015 pairwise comparisons!

• Fortunately, not much “extra” memory is needed :-))

Joelle Pineau26COMP-102: Computers and Computing

Let’s find a better way: Merge sort

• Divide-and-Conquer! (This is our old friend “Recursion”.)

• Main idea:

1. Divide the problem into subproblems.

2. Conquer the sub-problems by solving them recursively.

3. Merge the solution of each subproblem into the solution of the

original problem.

• What does this have to do with sorting?

Joelle Pineau27COMP-102: Computers and Computing

Merge sort

• Example:

– Sort an array of names to be in alphabetical order.

• Algorithm:

1. Divide the array into left and right halves.

2. Conquer each half by sorting them (recursively).

3. Merge the sorted left and right halves into a fully sorted array.

Joelle Pineau28COMP-102: Computers and Computing

Merge sort: An example

Lindsey

Christopher

Nicholas

Erica

Rahul

Jane

Original list:

Erica

Rahul

Jane

Erica

Rahul

Erica

Rahul

Jane

Nicholas

Lindsey

Christopher

Erica

Rahul

Jane

Nicholas

Divide in 2

Lindsey

Christopher

Nicholas

Divide again

Lindsey

Christopher

Divide again

Christopher

Lindsey

Start merging
Merge

again…

Nicholas

Jane

Joelle Pineau27COMP-102: Computers and Computing

Merge sort

• Example:

– Sort an array of names to be in alphabetical order.

• Algorithm:

1. Divide the array into left and right halves.

2. Conquer each half by sorting them (recursively).

3. Merge the sorted left and right halves into a fully sorted array.

Joelle Pineau28COMP-102: Computers and Computing

Merge sort: An example

Lindsey

Christopher

Nicholas

Erica

Rahul

Jane

Original list:

Erica

Rahul

Jane

Erica

Rahul

Erica

Rahul

Jane

Nicholas

Lindsey

Christopher

Erica

Rahul

Jane

Nicholas

Divide in 2

Lindsey

Christopher

Nicholas

Divide again

Lindsey

Christopher

Divide again

Christopher

Lindsey

Start merging
Merge

again…

Nicholas

Jane

Joelle Pineau29COMP-102: Computers and Computing

Another example of Merge sort

• Consider sorting an array of numbers:

Joelle Pineau30COMP-102: Computers and Computing

Let’s think about Merge sort

• Possibly harder to implement than Bubble sort or Selection sort.

• Number of pairwise comparisons:

– How many times we divide into left/right sets? At most log2(n)

– How many items to sort once everything is fully split? None!

– How many comparisons during merge, if subsets are sorted?

• Need about n comparisons if sorted subsets have n/2 items each.

– So in total: n comparisons per level * log2(n) levels = n * log2(n)

– This is better than Bubble sort and Selection sort (by a lot).

• Amount of memory we need (in addition to the original array):

– Every time we merge 2 lists, we need extra memory.

– For the last merge, we need a full n-item array of extra memory.

– This is worse than Bubble sort and Selection sort, but not a big deal.

– We also need 2 integers (1 for each list) to keep track of where we are during merging.

Joelle Pineau29COMP-102: Computers and Computing

Another example of Merge sort

• Consider sorting an array of numbers:

Joelle Pineau30COMP-102: Computers and Computing

Let’s think about Merge sort

• Possibly harder to implement than Bubble sort or Selection sort.

• Number of pairwise comparisons:

– How many times we divide into left/right sets? At most log2(n)

– How many items to sort once everything is fully split? None!

– How many comparisons during merge, if subsets are sorted?

• Need about n comparisons if sorted subsets have n/2 items each.

– So in total: n comparisons per level * log2(n) levels = n * log2(n)

– This is better than Bubble sort and Selection sort (by a lot).

• Amount of memory we need (in addition to the original array):

– Every time we merge 2 lists, we need extra memory.

– For the last merge, we need a full n-item array of extra memory.

– This is worse than Bubble sort and Selection sort, but not a big deal.

– We also need 2 integers (1 for each list) to keep track of where we are during merging.

Joelle Pineau31COMP-102: Computers and Computing

Merge sort is a bargain!

• Using Merge sort to alphabetically sort the words in the English Oxford

dictionary.

– Recall: about 615,000 entries in the 2nd edition (1989).

– So we would need 11.8 million pairwise comparisons.

– Versus 1.89 trillion if using Selection sort!

• Using Merge sort to organize websites according to hostnames:

– Recall: about 127.4 million active domain names (as of January 2011).

– So we would need 3.4 billion pairwise comparisons.

– Versus 8.06*1015 if using Selection sort!

Joelle Pineau32

Number of comparions

• Between Dec. 2007 and Jan. 2011 number of domains names grew from 62

millions to 127 millions.

• Number of comparisons with Bubblesort grows from 3.4*1015 to 1.6*1016.

• Number of comparisons with Mergesort grows from 1.6 to to 3.4 billion comparisons.

COMP-102: Computers and Computing

Joelle Pineau31COMP-102: Computers and Computing

Merge sort is a bargain!

• Using Merge sort to alphabetically sort the words in the English Oxford

dictionary.

– Recall: about 615,000 entries in the 2nd edition (1989).

– So we would need 11.8 million pairwise comparisons.

– Versus 1.89 trillion if using Selection sort!

• Using Merge sort to organize websites according to hostnames:

– Recall: about 127.4 million active domain names (as of January 2011).

– So we would need 3.4 billion pairwise comparisons.

– Versus 8.06*1015 if using Selection sort!

Joelle Pineau32

Number of comparions

• Between Dec. 2007 and Jan. 2011 number of domains names grew from 62

millions to 127 millions.

• Number of comparisons with Bubblesort grows from 3.4*1015 to 1.6*1016.

• Number of comparisons with Mergesort grows from 1.6 to to 3.4 billion comparisons.

COMP-102: Computers and Computing

Joelle Pineau33COMP-102: Computers and Computing

Quick recap on the number of operations

• Number of operations (y) as a function of the problem size (n)

– Constant: y = c Best

– Linear: y = n

– Log-linear: y = n*log2(n)

– Quadratic: y = n2

– Exponential: y = 2n Worse

• Bubble sort and Selection sort take a quadratic number of comparisons.

– This is as bad as it gets, for sorting algorithms.

• Merge sort takes a linear*log number of comparisons.

– This is as good as it gets, for sorting algorithms.

• This is a worst-case analysis (i.e. maximum number of operations.)

Joelle Pineau34COMP-102: Computers and Computing

A word about memory

• Merge sort uses twice as much memory as Selection sort.

– This is not a big deal. If you can store the array once, you can probably store it

twice.

• But computers have 2 types of memory:

– RAM (rapid-access memory) and hard-disk memory.

– RAM is much faster, but usually there is less of it.

– As long as everything fits into RAM, no problem!

• If array is too large for RAM, then you need to worry about:

– Number of times sections of the array are copied / swapped to and from disk.

Worse

Best

Worse

(…for natural algorithms…)

Joelle Pineau33COMP-102: Computers and Computing

Quick recap on the number of operations

• Number of operations (y) as a function of the problem size (n)

– Constant: y = c Best

– Linear: y = n

– Log-linear: y = n*log2(n)

– Quadratic: y = n2

– Exponential: y = 2n Worse

• Bubble sort and Selection sort take a quadratic number of comparisons.

– This is as bad as it gets, for sorting algorithms.

• Merge sort takes a linear*log number of comparisons.

– This is as good as it gets, for sorting algorithms.

• This is a worst-case analysis (i.e. maximum number of operations.)

Joelle Pineau34COMP-102: Computers and Computing

A word about memory

• Merge sort uses twice as much memory as Selection sort.

– This is not a big deal. If you can store the array once, you can probably store it

twice.

• But computers have 2 types of memory:

– RAM (rapid-access memory) and hard-disk memory.

– RAM is much faster, but usually there is less of it.

– As long as everything fits into RAM, no problem!

• If array is too large for RAM, then you need to worry about:

– Number of times sections of the array are copied / swapped to and from disk.

Joelle Pineau35COMP-102: Computers and Computing

Take-home message

• Sorting is one of the most useful algorithms.

– Applications are everywhere.

• There are many ways to solve a problem.

– For sorting: Bubble sort, Selection sort, Merge sort, and many more.

– Some methods use n*log2(n) comparisons and (almost) no extra memory!

• When choosing an algorithm to solve a problem, it’s important to think

about the cost (= time and memory) of this algorithm.

• It’s also useful to think about how “easy” the algorithm is to program

(more complicated = more possible mistakes), but this is harder to

quantify.

Sorting Out Sorting

Sorting Out Sorting

COMP 102: Excursions in Computer Science

Lecture 10: Searching

Instructor: Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp102

Joelle Pineau2COMP-102: Computers and Computing

Quick recap of searching and sorting

• Recall our example last week about finding the minimum.

• I argued that this could be done much faster if the list was sorted first.

• Then I taught you how to sort lists.

• Now let’s talk about searching.

Joelle Pineau3COMP-102: Computers and Computing

Searching example

• Given: A list of names of students and their favourite colour.

• Problem: Find the favourite colour of the student named Alice,

if she is in the class.

Joelle Pineau4COMP-102: Computers and Computing

Sequential Search

• Process each list entry from first to last.

– Check if each entry processed is the entry for “Alice”.

– If we find the “Alice” entry,

• Note Alice’s favourite colour.

• Stop searching.

• How many entries in the list are

processed before Alice is found?

Joelle Pineau3COMP-102: Computers and Computing

Searching example

• Given: A list of names of students and their favourite colour.

• Problem: Find the favourite colour of the student named Alice,

if she is in the class.

Joelle Pineau4COMP-102: Computers and Computing

Sequential Search

• Process each list entry from first to last.

– Check if each entry processed is the entry for “Alice”.

– If we find the “Alice” entry,

• Note Alice’s favourite colour.

• Stop searching.

• How many entries in the list are

processed before Alice is found?

Joelle Pineau5COMP-102: Computers and Computing

Sequential search

• How many entries in the list are

processed before Alice is found?

Joelle Pineau6COMP-102: Computers and Computing

Sequential Search on a Sorted List

• Can you speed-up the search if the list is sorted?

Yes! If you are looking for Alice.

What if you are looking for Joe’s

favourite colour?

Sorting won’t help. Or can it?

Joelle Pineau5COMP-102: Computers and Computing

Sequential search

• How many entries in the list are

processed before Alice is found?

Joelle Pineau6COMP-102: Computers and Computing

Sequential Search on a Sorted List

• Can you speed-up the search if the list is sorted?

Yes! If you are looking for Alice.

What if you are looking for Joe’s

favourite colour?

Sorting won’t help. Or can it?

Joelle Pineau7COMP-102: Computers and Computing

Binary Search

• Search algorithm for sorted lists.

• How do you find a word in the dictionary?

E.g. “Joe”

Joelle Pineau8COMP-102: Computers and Computing

Binary Search on a Dictionary

• Look at the middle page of the dictionary.

– Read the words on this page.

• If the word you are looking for comes after these words:

– Search among the pages of the dictionary that come after this

page.

• If the word you are looking for comes before these words:

– Search among the pages of the dictionary that come before.

• If the word you are looking for is on this page,

– Stop searching!

Joelle Pineau7COMP-102: Computers and Computing

Binary Search

• Search algorithm for sorted lists.

• How do you find a word in the dictionary?

E.g. “Joe”

Joelle Pineau8COMP-102: Computers and Computing

Binary Search on a Dictionary

• Look at the middle page of the dictionary.

– Read the words on this page.

• If the word you are looking for comes after these words:

– Search among the pages of the dictionary that come after this

page.

• If the word you are looking for comes before these words:

– Search among the pages of the dictionary that come before.

• If the word you are looking for is on this page,

– Stop searching!

Joelle Pineau9COMP-102: Computers and Computing

Binary Search for “Joe”

First, try the middle.

Second, try the middle

of the second half.

Third try, got it!

Joelle Pineau10COMP-102: Computers and Computing

Comparing Search Algorithms

• Sequential search: 5 items examined to find “Joe”.

• Binary search: 3 items examined to find “Joe”.

• Which would choose?

Joelle Pineau9COMP-102: Computers and Computing

Binary Search for “Joe”

First, try the middle.

Second, try the middle

of the second half.

Third try, got it!

Joelle Pineau10COMP-102: Computers and Computing

Comparing Search Algorithms

• Sequential search: 5 items examined to find “Joe”.

• Binary search: 3 items examined to find “Joe”.

• Which would choose?

Joelle Pineau11COMP-102: Computers and Computing

Binary Search for “Walter”

1st try

2nd try

3rd try

4th try

Joelle Pineau12COMP-102: Computers and Computing

Comparing Search Algorithms

• Searching for “Joe”:

– Sequential search: 5 items examined.

– Binary search: 3 items examined.

• Searching for “Walter”

– Sequential search: 11 items examined.

– Binary search: 4 items examined.

• Which would choose?

Joelle Pineau11COMP-102: Computers and Computing

Binary Search for “Walter”

1st try

2nd try

3rd try

4th try

Joelle Pineau12COMP-102: Computers and Computing

Comparing Search Algorithms

• Searching for “Joe”:

– Sequential search: 5 items examined.

– Binary search: 3 items examined.

• Searching for “Walter”

– Sequential search: 11 items examined.

– Binary search: 4 items examined.

• Which would choose?

Joelle Pineau13COMP-102: Computers and Computing

Worst-Case Analysis

• Binary search seems faster than sequential search for sorted lists.

• Let’s think about the maximum possible number of items we need to

check.

– With sequential search: N elements

where N = numbers of items in the sorted list.

“ If there are 7 elements in the list, then in the worst-case, sequential search

looks at 7 elements before finding the answer. “

– With binary search: ???

Joelle Pineau14COMP-102: Computers and Computing

Worst-case Complexity of Binary Search

• Here, at most 3 elements

of the list need to be

analyzed.

Joelle Pineau13COMP-102: Computers and Computing

Worst-Case Analysis

• Binary search seems faster than sequential search for sorted lists.

• Let’s think about the maximum possible number of items we need to

check.

– With sequential search: N elements

where N = numbers of items in the sorted list.

“ If there are 7 elements in the list, then in the worst-case, sequential search

looks at 7 elements before finding the answer. “

– With binary search: ???

Joelle Pineau14COMP-102: Computers and Computing

Worst-case Complexity of Binary Search

• Here, at most 3 elements

of the list need to be

analyzed.

Joelle Pineau15COMP-102: Computers and Computing

Worst-case Complexity of Binary Search

• Here, at most 4 elements

of the list need to be

analyzed.

Joelle Pineau16COMP-102: Computers and Computing

Why should you care?

• If your database has 8,388,607 names (e.g. the telephone

book), using sequential search may examine all 8,388,607

names.

• To search a list of 8,388,607 names using binary search

examines how many names at most?

23

Joelle Pineau15COMP-102: Computers and Computing

Worst-case Complexity of Binary Search

• Here, at most 4 elements

of the list need to be

analyzed.

Joelle Pineau16COMP-102: Computers and Computing

Why should you care?

• If your database has 8,388,607 names (e.g. the telephone

book), using sequential search may examine all 8,388,607

names.

• To search a list of 8,388,607 names using binary search

examines how many names at most?

23

Joelle Pineau17COMP-102: Computers and Computing

How do we get this?

If you have 1 names in the list, need at most 1 check.

If you have 2 names in the list, need at most 2 checks.

If you have 4 names in the list, need at most 3 checks.

If you have 8 names in the list, need at most 4 checks.

If you have 16 names in the list, need at most 5 checks.

…..

If you have N names in the list, need at most log2(N)+1 checks.

Joelle Pineau18COMP-102: Computers and Computing

But!

• Binary search only works on sorted lists.

• In the worst-case, if you sort using Bubble sort, you will need:

n*(n-1) comparisons for Bubble sort + log2(n) comparisons for Binary search

• In the worst-case, if you sort using Merge sort, you will need:

n*log2(n) comparisons for Merge sort + log2(n) comparisons for Binary search

• So why not keep things simple and use:

n comparisons for Sequential search (no sorting necessary) ?

Joelle Pineau17COMP-102: Computers and Computing

How do we get this?

If you have 1 names in the list, need at most 1 check.

If you have 2 names in the list, need at most 2 checks.

If you have 4 names in the list, need at most 3 checks.

If you have 8 names in the list, need at most 4 checks.

If you have 16 names in the list, need at most 5 checks.

…..

If you have N names in the list, need at most log2(N)+1 checks.

Joelle Pineau18COMP-102: Computers and Computing

But!

• Binary search only works on sorted lists.

• In the worst-case, if you sort using Bubble sort, you will need:

n*(n-1) comparisons for Bubble sort + log2(n) comparisons for Binary search

• In the worst-case, if you sort using Merge sort, you will need:

n*log2(n) comparisons for Merge sort + log2(n) comparisons for Binary search

• So why not keep things simple and use:

n comparisons for Sequential search (no sorting necessary) ?

Joelle Pineau19COMP-102: Computers and Computing

Binary search vs Sequential search

• In general, you need to sort only once, and then you can search

the sorted list as many times as we want.

• If you don’t need to do multiple searches, then it is better to just

do sequential search, without any pre-sorting.

Joelle Pineau20COMP-102: Computers and Computing

Quick Recap

• Searching is as useful as (if not more than) sorting.

• So far we have seen searching on arrays (sorted or not).

• This is interesting, but the fun is only beginning!

• In many problems, data is not stored in an array.

Joelle Pineau19COMP-102: Computers and Computing

Binary search vs Sequential search

• In general, you need to sort only once, and then you can search

the sorted list as many times as we want.

• If you don’t need to do multiple searches, then it is better to just

do sequential search, without any pre-sorting.

Joelle Pineau20COMP-102: Computers and Computing

Quick Recap

• Searching is as useful as (if not more than) sorting.

• So far we have seen searching on arrays (sorted or not).

• This is interesting, but the fun is only beginning!

• In many problems, data is not stored in an array.

Joelle Pineau21

• You excavated a fossil, and are trying to identify its species.

– In what order do you consider the nodes in the tree?

Searching data organized in a tree

COMP-102: Computers and Computing

Joelle Pineau22COMP-102: Computers and Computing

Searching through a maze

• Interesting questions:

– How do we search through the maze?

– How do we encode this problem for the computer?

Joelle Pineau21

• You excavated a fossil, and are trying to identify its species.

– In what order do you consider the nodes in the tree?

Searching data organized in a tree

COMP-102: Computers and Computing

Joelle Pineau22COMP-102: Computers and Computing

Searching through a maze

• Interesting questions:

– How do we search through the maze?

– How do we encode this problem for the computer?

Joelle Pineau23COMP-102: Computers and Computing

Searching through the subway system

What is the shortest path from the Université de Montréal station to

the McGill station?

How should we encode

this problem?

Can’t store the list of

stations in a simple array.

This is an example

of a graph.

Joelle Pineau24COMP-102: Computers and Computing

Graphs

A graph is an abstract representation defined by a pair (N, E), where

N is a collection of nodes (or objects)

E is a collection of pairs of nodes, called edges (representing the

relations between the objects.)

In the Montreal metro system:

– What are the nodes?

The metro stations.

– What are the edges?

Rail link between neighbouring stations.

Joelle Pineau23COMP-102: Computers and Computing

Searching through the subway system

What is the shortest path from the Université de Montréal station to

the McGill station?

How should we encode

this problem?

Can’t store the list of

stations in a simple array.

This is an example

of a graph.

Joelle Pineau24COMP-102: Computers and Computing

Graphs

A graph is an abstract representation defined by a pair (N, E), where

N is a collection of nodes (or objects)

E is a collection of pairs of nodes, called edges (representing the

relations between the objects.)

In the Montreal metro system:

– What are the nodes?

The metro stations.

– What are the edges?

Rail link between neighbouring stations.

Joelle Pineau25COMP-102: Computers and Computing

Paths

• A path is a sequence of adjacent nodes.

E.g. “McGill” - “Place-des-Arts” - “St-Laurent” - “Berri-UQAM”

• The path length is the total number of nodes along a path.

• We can store a graph in memory using an adjacency matrix,

which defines which nodes are next to each other.

Joelle Pineau26COMP-102: Computers and Computing

Adjacency matrix

• Consider a 2-D matrix, showing the relation between any pair of

nodes (1=neighbours, 0=not neighbours).

Example A B C D E

A 0 1 0 0 1

B 1 0 1 0 0

C 0 1 0 0 1

D 0 0 0 1 1

E 1 0 1 1 0

A B

C

D

E

Joelle Pineau25COMP-102: Computers and Computing

Paths

• A path is a sequence of adjacent nodes.

E.g. “McGill” - “Place-des-Arts” - “St-Laurent” - “Berri-UQAM”

• The path length is the total number of nodes along a path.

• We can store a graph in memory using an adjacency matrix,

which defines which nodes are next to each other.

Joelle Pineau26COMP-102: Computers and Computing

Adjacency matrix

• Consider a 2-D matrix, showing the relation between any pair of

nodes (1=neighbours, 0=not neighbours).

Example A B C D E

A 0 1 0 0 1

B 1 0 1 0 0

C 0 1 0 0 1

D 0 0 0 1 1

E 1 0 1 1 0

A B

C

D

E

Joelle Pineau27

Downtown Montreal map

• Nodes?

• Edges?

• Path?

COMP-102: Computers and Computing

Joelle Pineau28COMP-102: Computers and Computing

Interesting questions on graphs

Question #1: What is the shortest path between two given (non-

neighbour) nodes?

Question #2: What is the best path to visit all nodes with

minimum overall travel time?

Question #3: What is the overall topology of the graph?

Many more interesting questions!

Joelle Pineau27

Downtown Montreal map

• Nodes?

• Edges?

• Path?

COMP-102: Computers and Computing

Joelle Pineau28COMP-102: Computers and Computing

Interesting questions on graphs

Question #1: What is the shortest path between two given (non-

neighbour) nodes?

Question #2: What is the best path to visit all nodes with

minimum overall travel time?

Question #3: What is the overall topology of the graph?

Many more interesting questions!

Joelle Pineau29COMP-102: Computers and Computing

A few more definitions

• A directed graph, is a graph where there may be an edge from A to B,

but not from B to A. So we say there is a direction to each edge.

• In undirected graphs, each connected pairs of nodes is connected in

both directions.

• A cycle is a path in which the first and last nodes are the same.

• A tree is a graph that has no cycle.

Joelle Pineau30COMP-102: Computers and Computing

Example of a Cycle

• Nodes A-B-C-E form a cycle.

• Node D forms a cycle.

A B

C

D

E

Joelle Pineau29COMP-102: Computers and Computing

A few more definitions

• A directed graph, is a graph where there may be an edge from A to B,

but not from B to A. So we say there is a direction to each edge.

• In undirected graphs, each connected pairs of nodes is connected in

both directions.

• A cycle is a path in which the first and last nodes are the same.

• A tree is a graph that has no cycle.

Joelle Pineau30COMP-102: Computers and Computing

Example of a Cycle

• Nodes A-B-C-E form a cycle.

• Node D forms a cycle.

A B

C

D

E

Joelle Pineau31COMP-102: Computers and Computing

Example of a Tree

• The following graph is a tree.

A B

C

D

E

Joelle Pineau32COMP-102: Computers and Computing

Example of an Undirected Graph

If A is a neighbour of B,

then B is a neighbour of A

(and similarly for all nodes.)

Joelle Pineau31COMP-102: Computers and Computing

Example of a Tree

• The following graph is a tree.

A B

C

D

E

Joelle Pineau32COMP-102: Computers and Computing

Example of an Undirected Graph

If A is a neighbour of B,

then B is a neighbour of A

(and similarly for all nodes.)

Joelle Pineau33COMP-102: Computers and Computing

Example of a Directed Graph

• The internet!

– Nodes are the web-pages.

– Edges are the hyper-links, taking you from one page to another.

Joelle’s

homepage

Joelle’s

Research

page

Joelle’s

COMP-102

page

Reasoning

& Learning

Lab

Joelle’s

Students

page
Student

X

page

Joelle Pineau34COMP-102: Computers and Computing

Take-home message

• Searching is one of the most useful algorithms.

• You should understand sequential search and binary, and be

familiar with the pros/cons of each.

• Be able to recognize graphs, and define the key components

(nodes, edges, paths, etc.)

• Midterm: Oct.18, 11:30am, in class

Joelle Pineau33COMP-102: Computers and Computing

Example of a Directed Graph

• The internet!

– Nodes are the web-pages.

– Edges are the hyper-links, taking you from one page to another.

Joelle’s

homepage

Joelle’s

Research

page

Joelle’s

COMP-102

page

Reasoning

& Learning

Lab

Joelle’s

Students

page
Student

X

page

Joelle Pineau34COMP-102: Computers and Computing

Take-home message

• Searching is one of the most useful algorithms.

• You should understand sequential search and binary, and be

familiar with the pros/cons of each.

• Be able to recognize graphs, and define the key components

(nodes, edges, paths, etc.)

• Midterm: Oct.18, 11:30am, in class

COMP 102: Excursions in Computer Science

Lecture 11: Graphs

Instructor: Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp102

Joelle Pineau2COMP-102: Computers and Computing

Quick Review of Graphs

• A graph is an abstract representation defined by a pair (N, E), where

– N is a collection of nodes (or objects)

– E is a collection of pairs of nodes, called edges (representing the relations

between the objects.)

• What is a path? What is the path length?

• What is an adjacency matrix?

• What is the difference between directed

and undirected graphs?

• What is a cycle? What is a tree?

A B

C

D

E

Joelle Pineau3

Example: A friendship network

• Graphs are sometimes

also called networks.

• Graph analysis tool

on Facebook to analyze

patterns of friendships.

– Nodes: people

– Edges: friendships

• Could annotate the

types of relationships.

Joelle Pineau4COMP-102: Computers and Computing

Example: Scientific collaborations

• Nodes correspond to

scientists in residence at

the Santa Fe Institute in

1999-2000, and their

collaborators.

• An edge is drawn between

a pair of scientists if they

coauthored one or more

articles during this time

period.

• The research topics are

shown as different colours.

These are identified

automatically using a

clustering algorithm. http://arxiv.org/pdf/cond-mat/0112110v1

Joelle Pineau3

Example: A friendship network

• Graphs are sometimes

also called networks.

• Graph analysis tool

on Facebook to analyze

patterns of friendships.

– Nodes: people

– Edges: friendships

• Could annotate the

types of relationships.

Joelle Pineau4COMP-102: Computers and Computing

Example: Scientific collaborations

• Nodes correspond to

scientists in residence at

the Santa Fe Institute in

1999-2000, and their

collaborators.

• An edge is drawn between

a pair of scientists if they

coauthored one or more

articles during this time

period.

• The research topics are

shown as different colours.

These are identified

automatically using a

clustering algorithm. http://arxiv.org/pdf/cond-mat/0112110v1

Joelle Pineau5COMP-102: Computers and Computing

Example: Food web

http://arxiv.org/pdf/cond-mat/0112110v1

• Nodes correspond to the

most prevalent marine

organisms living in the

Chesapeake Bay (USA).

• An edge is drawn between

a pair if one of the

organisms eats the other.

• Graph suggests there are

two well-defined

communities.

• These correspond quite

closely to pelagic

organisms (those that live

near the surface) and

benthic organisms (those

that live near the bottom).

Joelle Pineau6COMP-102: Computers and Computing

Example: Protein-protein interaction network

Interaction of protein

molecules from the

perspective of

biochemistry and

signal transduction.

E.g. R. Palustris

protein-protein

interaction

network.

http://mippi.ornl.gov/areas/bioinfo.shtml

Joelle Pineau11COMP-102: Computers and Computing

Searching over Graphs

• Your graph is defined by a set of nodes and an adjacency matrix.

• You also need to know the start node and the end node.

• The goal is to explore all possible paths and return the shortest

one.

Warning! Need to be systematic about the order in which you

explore these paths.

Joelle Pineau12COMP-102: Computers and Computing

Breadth-first search

• Start at some node n. Say we start with F.

• Explore all the neighbors of n. Explore D, G, I and H.

• Then explore all the unvisited neighbours of the neighbours of n. B, E, K, J

• Then visit unvisited neighbours of those. C

• Continue until no more unvisited nodes remain. A

Visitation order: F, D, G, I, H, B, E, K, J, C, A

Visitation path: F - D - F - G - F - I - F - H - F - D - B - D - F - G

- E - G - F - H - K - H - J - H - F - D - B - C - A

D

F

GC

B
A H

I

K

E

J

Joelle Pineau11COMP-102: Computers and Computing

Searching over Graphs

• Your graph is defined by a set of nodes and an adjacency matrix.

• You also need to know the start node and the end node.

• The goal is to explore all possible paths and return the shortest

one.

Warning! Need to be systematic about the order in which you

explore these paths.

Joelle Pineau12COMP-102: Computers and Computing

Breadth-first search

• Start at some node n. Say we start with F.

• Explore all the neighbors of n. Explore D, G, I and H.

• Then explore all the unvisited neighbours of the neighbours of n. B, E, K, J

• Then visit unvisited neighbours of those. C

• Continue until no more unvisited nodes remain. A

Visitation order: F, D, G, I, H, B, E, K, J, C, A

Visitation path: F - D - F - G - F - I - F - H - F - D - B - D - F - G

- E - G - F - H - K - H - J - H - F - D - B - C - A

D

F

GC

B
A H

I

K

E

J

Joelle Pineau13COMP-102: Computers and Computing

Comments on breadth-first search

• Breadth-first search explores the graph layer by layer.

E.g. For web-browsing, all n-away links are explored.

IMPORTANT:

– Need to decide before-hand on the order of neighbours (e.g. clockwise)

– Need to keep track of nodes you’ve already explored.

• Pro: Good algorithm if you want to find the shortest path between the start

node, and another node. (As soon as you find that node, you know you have

found the shortest path to it.)

• Con: Often requires a lot of backtracking (= visitation path goes through visited

nodes again and again.)

Can we avoid all this backracking?

Joelle Pineau14COMP-102: Computers and Computing

Depth-first search

• Start at some node n. Say we start with F.

• Then explore the first unvisited neighbour of n (call this n’). Explore D.

• Then explore the first unvisited neighbour n’, and so on until you hit a node with

no unexplored neighbours. B, C, A

• Then backtrack 1 level to explore the next unvisited neighbour. E, G, etc.

Visitation order: F, D, B, C, A, E, G, I, H, K, J

Visitation path: F - D - B - C - A - C - B - E - G - E - B - D - F

- I - F - H - K - J

D

F

GC

B
A H

I

K

E

J

Joelle Pineau13COMP-102: Computers and Computing

Comments on breadth-first search

• Breadth-first search explores the graph layer by layer.

E.g. For web-browsing, all n-away links are explored.

IMPORTANT:

– Need to decide before-hand on the order of neighbours (e.g. clockwise)

– Need to keep track of nodes you’ve already explored.

• Pro: Good algorithm if you want to find the shortest path between the start

node, and another node. (As soon as you find that node, you know you have

found the shortest path to it.)

• Con: Often requires a lot of backtracking (= visitation path goes through visited

nodes again and again.)

Can we avoid all this backracking?

Joelle Pineau14COMP-102: Computers and Computing

Depth-first search

• Start at some node n. Say we start with F.

• Then explore the first unvisited neighbour of n (call this n’). Explore D.

• Then explore the first unvisited neighbour n’, and so on until you hit a node with

no unexplored neighbours. B, C, A

• Then backtrack 1 level to explore the next unvisited neighbour. E, G, etc.

Visitation order: F, D, B, C, A, E, G, I, H, K, J

Visitation path: F - D - B - C - A - C - B - E - G - E - B - D - F

- I - F - H - K - J

D

F

GC

B
A H

I

K

E

J

Joelle Pineau15COMP-102: Computers and Computing

Comments on depth-first search

• Depth-first search explores graph by going deeper whenever possible.

E.g. For web-browsing, always click on 1st link until you hit a dead-end.

IMPORTANT:

– Need to decide before-hand on the order of neighbours (e.g. clockwise)

– Need to keep track of nodes you’ve already explored.

• Pro: Usually uses much less backtracking to explore the full graph

than breadth-first search. How much less depends on neighbourhood

ordering (sometimes lucky, sometimes not)

• Con: Not guaranteed to find the shortest path, unless you explore the

full graph.

– E.g. After 3 rounds, found path to “E”: F-D-B-E, which is longer than F-G-E.

Joelle Pineau16COMP-102: Computers and Computing

Can we try a Best-first search?

• Start at some node n. Say we start with F.

• Pick a score function. Say score = alphabetical order.

• Add its neighbours to the list of candidate nodes. Add D(=4), G(=7), I(=9), H(=8).

• Pick candidate node with best score. Pick D.

• Add its neighbours to the list of candidate nodes. Add B(=2).

• Continue until no more unexplored nodes. Pick B, Add C(=3) and E(=5), etc.

Exploration order: F, D, B, C, A, E, G, H, I, J, K

Candidate list: D, G, I, H, B, C, E, A, K, J

D

F

GC

B
A H

I

K

E

J

Joelle Pineau15COMP-102: Computers and Computing

Comments on depth-first search

• Depth-first search explores graph by going deeper whenever possible.

E.g. For web-browsing, always click on 1st link until you hit a dead-end.

IMPORTANT:

– Need to decide before-hand on the order of neighbours (e.g. clockwise)

– Need to keep track of nodes you’ve already explored.

• Pro: Usually uses much less backtracking to explore the full graph

than breadth-first search. How much less depends on neighbourhood

ordering (sometimes lucky, sometimes not)

• Con: Not guaranteed to find the shortest path, unless you explore the

full graph.

– E.g. After 3 rounds, found path to “E”: F-D-B-E, which is longer than F-G-E.

Joelle Pineau16COMP-102: Computers and Computing

Can we try a Best-first search?

• Start at some node n. Say we start with F.

• Pick a score function. Say score = alphabetical order.

• Add its neighbours to the list of candidate nodes. Add D(=4), G(=7), I(=9), H(=8).

• Pick candidate node with best score. Pick D.

• Add its neighbours to the list of candidate nodes. Add B(=2).

• Continue until no more unexplored nodes. Pick B, Add C(=3) and E(=5), etc.

Exploration order: F, D, B, C, A, E, G, H, I, J, K

Candidate list: D, G, I, H, B, C, E, A, K, J

D

F

GC

B
A H

I

K

E

J

Joelle Pineau17COMP-102: Computers and Computing

Comments on best-first search

• Best-first search explores graph by according to priority order.

E.g. For web-browsing, always explore link with highest PageRank.

IMPORTANT:

– Need to have a score function, which can be calculated for each node.

– Need to keep track of candidate nodes.

• Pro: Usually much faster to reach a goal node (e.g. let’s say we stop when we

reach “A”.)

• Con: No advantage if you want to explore the full graph.

Joelle Pineau18COMP-102: Computers and Computing

Graph Topologies

• Topology = The arrangement in which the nodes of a graph are

connected to each other.

• Common types of graphs:

– Regular graph

– Complete graph

– Random graph

Joelle Pineau17COMP-102: Computers and Computing

Comments on best-first search

• Best-first search explores graph by according to priority order.

E.g. For web-browsing, always explore link with highest PageRank.

IMPORTANT:

– Need to have a score function, which can be calculated for each node.

– Need to keep track of candidate nodes.

• Pro: Usually much faster to reach a goal node (e.g. let’s say we stop when we

reach “A”.)

• Con: No advantage if you want to explore the full graph.

Joelle Pineau18COMP-102: Computers and Computing

Graph Topologies

• Topology = The arrangement in which the nodes of a graph are

connected to each other.

• Common types of graphs:

– Regular graph

– Complete graph

– Random graph

Joelle Pineau19COMP-102: Computers and Computing

Regular graph

• Main characteristic: Each node has same number of neighbours.

http://en.wikipedia.org/wiki/Regular_graph

Joelle Pineau20COMP-102: Computers and Computing

Special regular graph: the Ring

http://geza.kzoo.edu/~csardi/module/html/

Joelle Pineau19COMP-102: Computers and Computing

Regular graph

• Main characteristic: Each node has same number of neighbours.

http://en.wikipedia.org/wiki/Regular_graph

Joelle Pineau20COMP-102: Computers and Computing

Special regular graph: the Ring

http://geza.kzoo.edu/~csardi/module/html/

Joelle Pineau21COMP-102: Computers and Computing

Special regular graph: the Lattice

• This is a common topology

to model road networks

(in 2-D).

• Also common for molecular

diagrams (in 3-D).

http://geza.kzoo.edu/

~csardi/module/html/

http://www.dkimages.com

Joelle Pineau22COMP-102: Computers and Computing

Complete graph (also a regular graph)

• Main characteristic: All pairs of nodes are connected by an edge.

http://en.wikipedia.org/wiki/Complete_graph

Joelle Pineau21COMP-102: Computers and Computing

Special regular graph: the Lattice

• This is a common topology

to model road networks

(in 2-D).

• Also common for molecular

diagrams (in 3-D).

http://geza.kzoo.edu/

~csardi/module/html/

http://www.dkimages.com

Joelle Pineau22COMP-102: Computers and Computing

Complete graph (also a regular graph)

• Main characteristic: All pairs of nodes are connected by an edge.

http://en.wikipedia.org/wiki/Complete_graph

Joelle Pineau23COMP-102: Computers and Computing

Random graph

• Basic construction: Start with a set of nodes. With probability p,

randomly add an edge between any pair of nodes.

• Graph is denoted G(n,p), where n is the number of nodes and p is

the probability of a pairwise connection.

http://epress.anu.edu.au/cs/html/ch05s03.html http://aps.arxiv.org/PS_cache/cond-mat/pdf/0007/0007235v2.pdf

Joelle Pineau24COMP-102: Computers and Computing

Graphs in the real world

• Think back to our examples:

– Montreal metro system.

– Friendship networks.

– Roadmap of a city.

– The internet.

– A maze.

• Most biological, technological and social graphs/networks are

not exactly regular, complete or random.

• Next: explore a special class of graphs.

Joelle Pineau23COMP-102: Computers and Computing

Random graph

• Basic construction: Start with a set of nodes. With probability p,

randomly add an edge between any pair of nodes.

• Graph is denoted G(n,p), where n is the number of nodes and p is

the probability of a pairwise connection.

http://epress.anu.edu.au/cs/html/ch05s03.html http://aps.arxiv.org/PS_cache/cond-mat/pdf/0007/0007235v2.pdf

Joelle Pineau24COMP-102: Computers and Computing

Graphs in the real world

• Think back to our examples:

– Montreal metro system.

– Friendship networks.

– Roadmap of a city.

– The internet.

– A maze.

• Most biological, technological and social graphs/networks are

not exactly regular, complete or random.

• Next: explore a special class of graphs.

Joelle Pineau31COMP-102: Computers and Computing

Take-home message

• Main searching algorithms for graphs: Breadth-first search,

Depth-first search, Best-first search.

– Know the steps of each algorithm, and the pros/cons for each.

• Characteristics of the basic types of graphs (regular, complete,

random).

• Definition and characteristics of small-world networks.

• Understand how graphs and finite-state machines can be

combined to simulate real-world phenomena.

Joelle Pineau25COMP-102: Computers and Computing

Small-world networks

• A small-world network is a mix of a

regular graph and a random graph.

• Simple construction:

– Start with a ring made of n nodes

and k edges per node.

– Wire the k edges as for a regular

graph.

– With probability p, re-wire each

edge to another random node.

http://aps.arxiv.org/PS_cache/cond-mat/pdf/0303/0303516v1.pdf

Joelle Pineau26COMP-102: Computers and Computing

Characteristics of a small-world network

• Key parameters:

– n controls the size of the graph (= number of nodes)

– k controls the degree of connectedness (e.g. if k=n then we have a

complete graph.

– p controls the trade-off between “regular” (p=0) and “random” (p=1)

This correctly models many real-life networks!

Joelle Pineau25COMP-102: Computers and Computing

Small-world networks

• A small-world network is a mix of a

regular graph and a random graph.

• Simple construction:

– Start with a ring made of n nodes

and k edges per node.

– Wire the k edges as for a regular

graph.

– With probability p, re-wire each

edge to another random node.

http://aps.arxiv.org/PS_cache/cond-mat/pdf/0303/0303516v1.pdf

Joelle Pineau26COMP-102: Computers and Computing

Characteristics of a small-world network

• Key parameters:

– n controls the size of the graph (= number of nodes)

– k controls the degree of connectedness (e.g. if k=n then we have a

complete graph.

– p controls the trade-off between “regular” (p=0) and “random” (p=1)

This correctly models many real-life networks!

Joelle Pineau27COMP-102: Computers and Computing

Example: Model the spread of an infectious disease

Consider a population of n individuals, connected according to a given topology.

Basic model:

• On day 1: a number b of individuals are infected.

• On day 2 (and subsequent days): we see the effect of that infection

– Each infected individual can infect each of its neighbours with probability h.

– Each infected individual is cured with probability g.

We could complicate this model significantly, e.g.

– Individuals have probability of dying from the disease.

– Individuals develop immunity so can’t get the disease more than once.

– Individuals take a variable number of days to develop symptoms after contagion.

Joelle Pineau28COMP-102: Computers and Computing

Analysis of the model

Now we can ask lots of interesting questions!

• For what values of infection rate h and remission probability g can we

keep infection rate at less than 10% of the population?

• What is the critical base rate b at which the disease infects half of n in

less than a week?

• What is the impact of the graph topology on the spread of a disease?

• What is the impact of a specific intervention strategy (e.g. through

manipulating h) on the spread of the disease?

How do we get these results?

Joelle Pineau27COMP-102: Computers and Computing

Example: Model the spread of an infectious disease

Consider a population of n individuals, connected according to a given topology.

Basic model:

• On day 1: a number b of individuals are infected.

• On day 2 (and subsequent days): we see the effect of that infection

– Each infected individual can infect each of its neighbours with probability h.

– Each infected individual is cured with probability g.

We could complicate this model significantly, e.g.

– Individuals have probability of dying from the disease.

– Individuals develop immunity so can’t get the disease more than once.

– Individuals take a variable number of days to develop symptoms after contagion.

Joelle Pineau28COMP-102: Computers and Computing

Analysis of the model

Now we can ask lots of interesting questions!

• For what values of infection rate h and remission probability g can we

keep infection rate at less than 10% of the population?

• What is the critical base rate b at which the disease infects half of n in

less than a week?

• What is the impact of the graph topology on the spread of a disease?

• What is the impact of a specific intervention strategy (e.g. through

manipulating h) on the spread of the disease?

How do we get these results?

Joelle Pineau29COMP-102: Computers and Computing

Simulating a graph

• Need to simulate our graph, to capture the change of state in

the infected population.

• What do you remember about finite-state machines?

– States + Transition graph. Use this here!

• Pick values for n, b, g, and h.

• The state is described by a separate variable, ni = {healthy,

infected} for each node.

• The transition graph expresses the effect of the infection.

Joelle Pineau30

Scratch simulation

http://scratch.mit.edu/projects/zevbo/1372318

Joelle Pineau29COMP-102: Computers and Computing

Simulating a graph

• Need to simulate our graph, to capture the change of state in

the infected population.

• What do you remember about finite-state machines?

– States + Transition graph. Use this here!

• Pick values for n, b, g, and h.

• The state is described by a separate variable, ni = {healthy,

infected} for each node.

• The transition graph expresses the effect of the infection.

Joelle Pineau30

Scratch simulation

http://scratch.mit.edu/projects/zevbo/1372318

