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Abstract

Quantum states cannot be cloned. I show how to extend this property to classical messages encoded using quantum
states, a task I call “uncloneable encryption.” An uncloneable encryption scheme has the property that an eavesdrop-
per Eve not only cannot read the encrypted message, but she cannot copy it down for later decoding. She could steal
it, but then the receiver Bob would not receive the message, and would thus be alerted that something was amiss. I
prove that any authentication scheme for quantum states acts as a secure uncloneable encryption scheme. Uncloneable
encryption is also closely related to quantum key distribution (QKD), demonstrating a close connection between cryp-
tographic tasks for quantum states and for classical messages. Thus, studying uncloneable encryption and quantum
authentication allows for some modest improvements in QKD protocols. While the main results apply to a one-time
key with unconditional security, I also show uncloneable encryption remains secure with a pseudorandom key. In
this case, to defeat the scheme, Eve must break the computational assumption behind the pseudorandom sequence
before Bob receives the message, or her opportunity is lost.This means uncloneable encryption can be used in a
non-interactive setting, where QKD is not available, allowing Alice and Bob to convert a temporary computational
assumption into a permanently secure message.

1 Introduction

The primary application of cryptography is to send secret messages. Typically, there is a sender Alice who wishes
to communicate with a receiver Bob, but an eavesdropper Eve is listening to their messages. To stop her, Alice will
encrypt anything she wishes to say. In order to decrypt thesemessages, Bob must possess a secret key which is
unknown to Eve, giving him an advantage over Eve. While Bob can easily read the secret message, Eve, lacking the
key, will find it much harder to do so, or even impossible. Another common task is authentication of a message: Alice
and Bob do not care if Eve reads the message, but want to make sure she does not change it. Naturally, a message can
be both encrypted and authenticated.

Many cryptographic systems are based on computational assumptions. In this case, Eve’s task of learning the
contents of a message (or even learning a single bit of information about the message) is equivalent to solving some
computationally difficult problem, one that cannot be answered in polynomial time in some security parameters.
These cryptosystems come in two flavors: symmetric systems,in which Alice’s encryption key is the same as Bob’s
decryption key; and asymmetric systems, in which they are different. Asymmetric systems are usually public key
systems in which Alice’s encryption key is also known to Eve.However, Bob’s key must always be secret, or else Eve
can decode the message just as easily as Bob.

Stronger security can be provided by the one-time pad. In this scheme, Alice and Bob share a secret key that is
as long as the message. The ciphertext for the encrypted message consists of the bits of the original plaintext XORed
with the corresponding bits of the key. When the key is only used once, this scheme is unconditionally secure: lacking
information about the key, Eve cannot learn anything at all about the message, no matter what computational power
she has.

However, the following “cloning” attack will break even theone-time pad:

1. Alice and Bob share a secret (classical) keyk.

2. Alice encrypts a (classical) messagem to Bob using an encryption scheme with the keyk.

3. Eve receives the message, and performs an attack of her choice. In particular, she attempts to copy the encrypted
message.
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4. Eve passes the original message on to Bob, who checks if it has been tampered with.

5. Eve acquires a copy of the secret keyk.

When the ciphertext is classical, Eve can copy the message without changing it at all. Therefore, when Bob receives
the message, he does not know Eve has interfered with the transmission. Still, when Eve learns the key in the final
step, she can read the message without difficulty.

For the one-time pad, perhaps this attack is not a severe worry. Since the key is not needed again once the message
is read, it makes sense to destroy it immediately. However, this is not as easy as it sounds: typically the key must
be stored for a while, perhaps on a magnetic medium such as a hard drive. Simply asking a computer to “delete” a
file only eliminates the directory entry for the file. Actually erasing a file requires a separate program to overwrite
the bits of the file. Even then, traces remain which are accessible to forensic techniques. Schneier [1], for instance,
recommends multiple overwriting or physical destruction of magnetic media containing expired keys. The message,
in contrast, can be deleted immediately upon being read, andneed never leave RAM. It is thus much easier to erase
without leaving any traces behind.

The cloning attack is a more serious problem for computationally secure schemes. In such schemes, the same key
is typically used repeatedly, giving Eve more opportunity to steal it, enabling her to read not only future messages, but
past ones as well. In fact, Eve may not even need to steal the key: she can simply copy down the message and begin
a time-consuming brute-force attack on the computational assumption. Alternately, she could wait in the hopes that
future improvements in computer hardware or algorithms make it easier to break the encryption scheme. Furthermore,
having the ciphertext of many encrypted messages to examineis very helpful when performing cryptanalysis.

Quantum states have the property that they cannot be copied [2, 3]. (See [4] for a textbook on quantum informa-
tion.) However, on the surface, this only applies to superpositions of states. For instance, if a classical message is
sent using a standard set of basis states, it can easily be copied without being disturbed. In general, an unencrypted
classical message can always be copied: reading it constitutes making a copy. However, when we move toencrypted
classical messages, the picture is very different. By encrypting a classical message using quantum states, we can pro-
duceuncloneable encryptionschemes, which are secure even against the cloning attack. In particular, for any attack
by Eve, either she gets caught by Bob with high probability (for instance, if she steals the message), or she gets almost
no information about the message.

Quantum mechanics has other cryptographic applications aswell (see [5] for a survey). The best-known is quantum
key distribution (QKD) [6], which enables Alice and Bob to create a secure classical secret key despite the potential
presence of an eavesdropper. QKD requires only an insecure quantum channel and authenticated (but unencrypted)
classical channels, but unfortunately requires multiple rounds of back-and-forth communication between Alice and
Bob. The primary proposed application of QKD is to create a secret key which is then used with the one-time pad
to send unconditionally secure messages. In contrast, uncloneable encryption is a noninteractive protocol which can
be used to enhance the security of the one-time pad or computationally secure encryption schemes. Alternatively, it
can be used to perform QKD in a way requiring relatively little interaction, and with other small improvements in
efficiency and security. Noninteractivity is useful in a variety of contexts. It is essential for storage of information,
and important when there is a substantial transmission lag (for instance, when communicating with a space probe in
the outer solar system). It is also very convenient for more mundane communication contexts where there is a modest,
but not completely negligible, time cost for transmissions. Uncloneable encryption is closely related to some forms
of QKD, but it can be best viewed as a stronger version of symmetric encryption that shares the intrusion-detection
ability of quantum key distribution. Another related concept is that of “secure direct communication,” [7] which is,
however, also explicitly interactive.

Another side of the subject of quantum cryptography is to create cryptographic protocols to protect quantum
states. For instance, protocols for encryption [8, 9] and authentication [10] of quantum states exist. The quantum
authentication schemes, in particular, differ substantially from classical schemes in that any quantum authentication
scheme must also encrypt a message. It turns out that quantumauthentication protocols have precisely the properties
needed to create uncloneable encryption schemes. In the past, cryptographic protocols for quantum and classical
messages have been viewed largely as parallel subjects which have a good deal of similarity, but little direct connection;
this result establishes a more intimate relationship, where a protocol for quantum states can be used to perform a task
protecting classical data.

In section 2, I give a technical definition of uncloneable encryption, and show that any authentication scheme for
quantum states can be used as a secure uncloneable encryption scheme. In section 3, I go on to discuss the relation-
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ship between uncloneable encryption and QKD. Section 4 describes a “prepare-and-measure” uncloneable encryption
scheme similar to the well-known BB84 QKD protocol. Such a scheme does not require entangling quantum opera-
tions or a quantum memory, and therefore might be experimentally implementable in the near future. In section 5, I
show that uncloneable encryption remains secure when the key is not a single-use item, but is instead generated with
a pseudorandom number generator based on a computational assumption. Finally, I conclude in section 6 with some
remaining open questions.

2 Uncloneable Encryption and Quantum Authentication

I will suppose throughout most of this paper that Alice and Bob share a secret classical keyk ∈ K which they will
only use to send one message. If Alice wants to send a classical messagem to Bob, she will use some encoding that
depends onk; in general this could be a mixed stateσk(m). In order for this to be a good encryption scheme, the
transmitted density matrix, averaged over possible valuesof the key, should not depend on the message:

Definition 1 Letσ(m) = (
∑

k σk(m))/|K|. Thenσk(m) is an (unconditionally secure) encryption scheme with error
ε if the trace distanceD(σ(m), σ(m′)) = 1

2
Tr |σ(m) − σ(m′)| ≤ ε for m 6= m′.

That is, someone who does not know the key has essentially no information about the message. Definition 1 only
addresses the secrecy of the message; for a useful protocol,we also require that someone who does know the key is
able to read the message. In fact, we usually restrict attention to encoding schemes for which there are computationally
efficient procedures to encode(m, k) 7→ σk(m) and decode(σk(m), k) 7→ m.

In order to have an uncloneable encryption scheme, we need anadditional condition. A general attack by Eve is
a superoperatorA acting onσk(m). This represents the action Eve performs when she first gets the encrypted state,
before she learns the key, soA cannot depend onk. The output ofA can be divided into two parts, a density matrix
σBob,k(m) which is sent on to Bob and the remainder which is kept by Eve.

To take the next step, we must assume Bob has some efficient checking procedure(σBob,k(m), k) 7→ {ACC,REJ}
which allows him to detect Eve’s tampering. He accepts the message when he gets outcomeACC; when he gets
outcomeREJ he concludes Eve may have stolen the encrypted message, and he and Alice can take whatever steps are
necessary to protect themselves. They may need to protect the keyk especially well, for instance, or act to neutralize
any damage caused if Eve learnsm. We letρk(m) be Eve’s residual density matrix conditioned on the case that Bob
gets outcomeACC, and letPk(m) be the probability that Bob accepts the messagem. In general,ρk(m) andPk(m)
can depend on the attackA. For notational simplicity, I will hereafter writePk(m) simply asP (m).

Definition 2 An encryption schemeσk(m) with error ε is an uncloneable encryption scheme with errorε if, for any
two messagesm 6= m′ and all attacksA by Eve, for a fraction of at least1 − ε of the possible values of the keyk, the
trace distanceD

(

P (m)ρk(m), P (m′)ρk(m′)
)

≤ ε.

Note that it is easy from this definition to prove two useful properties: that|P (m) − P (m′)| is small and that,
except whenP (m) is very small,D(ρk(m), ρk(m′)) is small. That is, Eve’s chance of being caught does not depend
much on the message being sent, and, unless she has a large chance of being caught, she has little information about
the message, even after learning the key. In particular, Evecannot tell whether the message wasm orm′. Note that
an uncloneable encryption scheme by definition must also encrypt the message, so that Eve, even if she gets caught,
cannot read the message until she learns the key. It is unclear whether this is an independent condition, or whether
it would follow from the uncloneability requirement alone.(A classical message sent completely unencrypted can
always be copied, but it may be possible to create partially encrypted messages which are uncloneable.)

To create uncloneable encryption schemes, we can use quantum authentication schemes. A quantum authentication
scheme is an encoding that works on unknown quantum states:(|ψ〉, k) 7→ σk(|ψ〉), where|ψ〉 is from some Hilbert
spaceH. This map should be a quantum operation (for instance, it must be linear on the Hilbert space for|ψ〉) and
should be implementable efficiently. Eve then performs an attackA, producing a stateσBob,k(|ψ〉) which is sent on
to Bob. Bob then has an efficient decoding quantum operationD(σBob,k(|ψ〉), k). The image ofD isH2 ⊗H, where
H2 is a two-dimensional Hilbert space with basis|ACC〉, |REJ〉.

A secure authentication scheme should, for any attackA, produce either the outcome|REJ〉 or the original state
|ψ〉. Of course, for a quantum system, a superposition of these would also be acceptable. Therefore, we letΠ(|ψ〉)
be the projector onto the “bad” subspace containing states|ACC〉 ⊗ |φ〉, where|φ〉 is orthogonal to|ψ〉. We can then
define a secure quantum authentication scheme:
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Definition 3 The encodingσk(|ψ〉) is a quantum authentication scheme with errorε if, for all |ψ〉,

1

|K|
∑

k

Tr [Π(|ψ〉)D(σBob,k(|ψ〉), k)] ≤ ε. (1)

The following theorem was proved in [10]:

Theorem 4 A quantum authentication scheme with errorε is an encryption scheme with error at most4ε1/6.

In fact, the family of quantum authentication schemes presented in [10] all provided perfect encryption. As a
consequence of theorem 4, if we send a classical message as a basis state for a quantum authentication scheme, it
is necessarily encrypted as well. In fact, we can go even further: it satisfies definition 2 for security against cloning
attacks.

Theorem 5 A quantum authentication scheme with errorε is an uncloneable encryption scheme with error at most
(15/2)ε1/6 (for smallε).

Proof:
We can work with a purification of the original quantum authentication scheme, so that Alice’s encoding of a pure

state|ψ〉 is again a pure state for a given valuek of the classical key. Then for a particular value of the key, after Eve’s
attack and Bob’s decoding, we can write the state as

|ACC〉|ψ〉|φk〉 + |REJ〉|ξk〉 + |ACC〉|ηk〉, (2)

where|ξk〉 and|ηk〉 are split between Bob and Eve, with|ηk〉 orthogonal to|ψ〉. |φk〉 is held by Eve. Since this is a
secure authentication scheme,(

∑

k ‖|ηk〉‖2)/|K| ≤ ε. In general, the various states depend on|ψ〉 as well ask andA.
When we send two possible classical messagesm andm′ with this authentication scheme, we get

m 7→ |ACC〉|m〉|φk(m)〉 + |REJ〉|ξk(m)〉 + |ACC〉|ηk(m)〉, (3)

m′ 7→ |ACC〉|m′〉|φk(m′)〉 + |REJ〉|ξk(m′)〉 + |ACC〉|ηk(m′)〉. (4)

However, since it is a quantum authentication scheme, Alicecould have sent|m〉 + |m′〉 and it would have arrived
safely:

(|m〉 + |m′〉) 7→ |ACC〉
(

|m〉 + |m′〉
)

|φk〉 + |REJ〉|ξk〉 + |ACC〉|ηk〉. (5)

(Since|m〉+ |m′〉 is not normalized,|φk〉, |ξk〉, and|ηk〉 are all bigger by a factor of
√

2 than the corresponding terms
in (2).) By linearity,

|m〉 + |m′〉 7→ |ACC〉
(

|m〉|φk(m)〉 + |m′〉|φk(m′)〉
)

(6)

+|REJ〉
(

|ξk(m)〉 + |ξk(m′)〉
)

+ |ACC〉
(

|ηk(m)〉 + |ηk(m′)〉
)

.

The first term is the most interesting: if Eve’s residual states |φk(m)〉 and |φk(m′)〉 are too different, they become
entangled with the message ket, and the state received by Bobis no longer the superposition|m〉+ |m′〉, but a mixture
of |m〉 and|m′〉. In particular, we can write

|m〉|φk(m)〉 + |m′〉|φk(m′)〉 =
(

|m〉 + |m′〉
)

⊗
(

|φk(m)〉 + |φk(m′)〉
)

/2

+
(

|m〉 − |m′〉
)

⊗
(

|φk(m)〉 − |φk(m′)〉
)

/2. (7)

Thus
|ηk〉 = |ηk(m)〉 + |ηk(m′)〉 +

(

|m〉 − |m′〉
)

⊗
(

|φk(m)〉 − |φk(m′)〉
)

/2. (8)

(Actually, some part of the first two terms could conceivablycontribute to|φk〉, but that will only help the bound
of equation (10).) Since|ηk〉, |ηk(m)〉, and|ηk(m′)〉 must all have small norm for mostk, so must the difference
|φk(m)〉 − |φk(m′)〉. In particular, for a fraction at least1 − 1/q values ofk, ‖|ηk(m)〉‖2 ≤ qε, and similarly for
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|ηk(m′)〉 (with q > 1). ‖|ηk(m)〉‖2 ≤ 2qε instead, because of normalization. Thus, for a fraction at least1 − 3/q, all
three of the norms squared are less thanqε (or 2qε). From (8),

∥

∥

∥
|φk(m)〉 − |φk(m′)〉

∥

∥

∥
/
√

2 ≤
∥

∥|ηk〉
∥

∥ +
∥

∥|ηk(m)〉
∥

∥ +
∥

∥|ηk(m′)〉
∥

∥. (9)

It follows that
∥

∥

∥
|φk(m)〉 − |φk(m′)〉

∥

∥

∥
≤ 2(1 +

√
2)
√
qε ≤ 5

√
qε (10)

for the same fraction at least1− 3/q of thek’s. At this point, we are effectively done, since we have shown that Eve’s
residual states are very similar for the two messages. The remainder of the proof is just massaging the formulas to get
back to the correct form for the definition of security.

Claim 6 For thoseks satisfying the above constraints,

D
(

P (m)ρk(m), P (m′)ρk(m′)
)

≤ qε+
√

20
√
qε+ 5

√
qε (11)

The proof of this claim is fairly mechanical, and is given in appendix A.
Equation (11) is valid for a fraction1 − 3/q of the possible values ofk. If we setq = 2/(5ε1/5) (which will be

greater than1 for smallε), we find that

D
(

P (m)ρk(m), P (m′)ρk(m′)
)

≤ (1/2)ε4/5 + 3.6ε1/5 + 3.2ε2/5 ≤ 15

2
ε1/6 (12)

Note that3/q is also less than(15/2)ε1/6, completing the proof of the theorem. �

Theorem 5 provides a good way of constructing uncloneable encryption schemes. We need to come up with effi-
cient quantum authentication schemes, such as those given in [10], and that gives us uncloneable encryption schemes.
However, it is not clear if this is theonly way to produce uncloneable encryption protocols. Quantum authentication
schemes must authenticate the data in both the computational and Fourier-transformed basis. The proof of theorem 5
suggests that authenticating in the Fourier basis is what produces the uncloneability property, but there is no apparent
reason we need to also authenticate in the computational basis. I therefore conjecture that uncloneable encryption
schemes exist which do not authenticate the classical message and do not come from quantum authentication schemes,
but I am not aware of any examples. If true, the conjecture would imply that quantum authentication is a strictly
stronger property than uncloneability.

There is another point worth noting about theorem 5: it is an efficient reduction. That is, given an attack against
the uncloneable encryption scheme, we can efficiently generate an attack against the parent quantum authentica-
tion scheme. This fact will be critical in section 5, which discusses computationally secure uncloneable encryption
schemes.

3 Uncloneable Encryption and QKD

A careful consideration of uncloneable encryption revealsthat it is closely related to another well-known quantum
cryptographic task: quantum key distribution. In fact, anyuncloneable encryption scheme can be used to perform
secure quantum key distribution. In QKD, Alice and Bob shareauthenticated classical channels and an insecure
quantum channel, and use just those resources to create a shared secret key. Alice and Bob do not (generally) use any
pre-existing secret key beyond whatever is used in the classical authentication.

Given these same resources and an uncloneable encryption scheme, Alice can perform QKD with the following
protocol:

1. Alice generates random stringsk andx.

2. Alice sends the messagex to Bob using the uncloneable encryption scheme with keyk.

3. Bob announces (on the authenticated classical channel) that he received the message.

4. Alice announcesk (again using the authenticated classical channel).
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5. Bob checks if the message is valid, and reports the result.If it is, Alice and Bob usex as their new secret key.

The properties of uncloneable encryption guarantee that this is a secure QKD scheme: Eve gets the quantum state
and then later learns the key, but we know that her residual density matrices, conditioned on Bob’s accepting the
transmission, are very similar. Therefore, she almost always (for most values ofk) has little information about the
established keyx.1

In fact, this is a stronger security condition than what is usually proved about QKD: most proofs only let Eve retain
classicalinformation after QKD terminates, whereas here we are letting Eve retainquantuminformation (although [11]
contains a very similar statement imbedded in the proof). This is an important improvement, since it makes it much
easier to prove that the key generated via QKD can be used in other cryptographic tasks. For instance, a proof of the
security of the one-time pad goes as follows: We wish to show that Eve cannot distinguish between two messages
a andb given the ciphertexty. But this is equivalent to Eve distinguishing between the two keysx = a ⊕ y and
x′ = b ⊕ y, and we know that the trace distance between Eve’s residual density matrices for these two cases is very
small. Therefore, Eve has little chance of being able to distinguish the messagesa andb.

While we can produce a QKD protocol from any uncloneable encryption scheme, the converse is not necessarily
true. We shall see in the next section that there is an uncloneable encryption scheme that corresponds very closely to
the BB84 QKD protocol, but there are other QKD protocols which do not appear to have any uncloneable encryption
analogue. For instance, QKD protocols with two-way classical post-processing [12] are too interactive to become
uncloneable encryption schemes, but this is perhaps not an important distinction since there are certainly interactive
quantum authentication schemes of the same form.

More interesting is the B92 QKD protocol [13]. In B92, Alice sends one of two nonorthogonal states. Each is part
of a particular basis for the Hilbert space. Bob, when he receives the transmission, randomly chooses one of the two
bases to measure in for each qubit. If he chooses the wrong basis, he has a chance of getting a state orthogonal to the
one Alice could have sent; in that case, heknowshe chose the wrong basis, and therefore knows which basis Alice
used. In all other cases, the qubit is discarded and does not influence the final key. In BB84, many qubits are also
discarded, but this is simply an artifact of Bob’s initial ignorance of the basis, and is unnecessary if Bob has quantum
storage or, in the case of uncloneable encryption, prior information about what the basis will be. In contrast, in B92,
the basis choice determines the message sent, so Alice cannot ever announce it and Bob cannot know it ahead of time.
Consequently, discarding transmitted states is an intrinsic part of the protocol. For this reason, there does not appear
to be an uncloneable encryption analogue of B92.

We therefore have a situation where quantum authenticationis slightly stronger than uncloneable encryption, which
is in turn slightly stronger than quantum key distribution.Nevertheless, the differences are really quite small, meaning
quantum authentication and quantum key distribution are closely related. This is rather surprising, given that the tasks
of authenticating quantum information and encrypting classical information at first sight appear completely unrelated.

The connection between quantum authentication and quantumkey distribution helps us understand the conceptual
structure of QKD. The Shor-Preskill proof of security [14] showed us that the error correction and privacy amplification
steps of QKD could be seen as parts of a virtual quantum error correction procedure taking place on some purification
of the state. Similarly, the process of testing bit error rate can now be seen as coming from quantum authentication:
the error test in QKD comes from the authentication test in the parent quantum authentication protocol.

4 Uncloneable Encryption Without Entangled States

In order to realize uncloneable encryption with near-future technology, it is necessary to have a protocol which does
not require much in the way of coherent quantum manipulations, transmission, or storage. QKD is a good source of
models; for instance, both BB84 and B92 are “prepare-and-measure” protocols where Alice sends unentangled qubits
to Bob and Bob measures them immediately upon receiving them, without having to store them at all. We now wish
to find an uncloneable encryption protocol with this same structure.

One straightforward solution is simply to take BB84 and add alayer of encryption. That is, Alice encrypts her
message with a one-time pad, encodes it with an error-correcting code, and further encodes it as a set of parity checks

1In fact, most QKD schemes ask for an additional property: that Alice and Bob should have the same value for the agreed-on key. Since
we do not require that an uncloneable encryption scheme authenticate the classical message, we do not necessarily have this property of QKD.
However, it can easily be guaranteed in one of two ways: either classically authenticatex before sending it with the uncloneable encryption, or use
an uncloneable encryption scheme derived from quantum authentication, which will automatically authenticate the classical message as well.
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(coming from privacy amplification). Then she sends each bitof the resulting expanded message in one of two
bases, and intersperses at random a number of check bits. Thestate of the check bits, as well as the bases and other
parameters, are determined by the key, and Bob accepts the message only if the error rate on the check bits is within
an acceptable range.

The above proposal, when appropriately fleshed out, gives a secure uncloneable encryption protocol. However,
the connection with quantum authentication suggests more efficient ways of checking for eavesdropping. To start, I
will construct a quantum authentication protocol, and thenuse theorem 5 to convert it to an uncloneable encryption
protocol. The resulting protocol will involve a good deal ofentanglement. Then I will use the technique of Shor and
Preskill [14] to convert this to a “prepare-and-measure” protocol free of entanglement. The details of the construction
require a certain amount of technical background beyond thescope of this paper, so I postpone the derivation and
proof of security to appendix B. In this section, I simply present the resulting “prepare-and-measure” protocol and
discuss some extensions and applications to QKD.

The uncloneable encryption scheme will be designed to work through a noisy channel and will depend on a choice
of two classical linear codes.C1 will be used to correct bit flip errors in the data. Letδ be the average of the rates of bit
flip and phase errors introduced by the noisy channel; since the qubits transmitted will be sent in one of two bases,δ
will be the actual rate of errors in the transmitted message in the absence of an eavesdropper.C1 will encodeK bits in
N bits and will have distance2δN ; that is, it will correct a fractionδ errors. By the Gilbert-Varshamov bound, such a
code exists (for largeN ) withK/N ≥ 1−h(2δ), whereh(x) = −x log2 x− (1−x) log2(1−x) is the binary entropy
function.C1 is defined byN −K parity checks, which can be encapsulated in a parity check matrix H . The set of
vectorsv with a particular value forHv is called a coset ofC1; the error-correcting code is generally considered to
be the coset withHv = 0, but all the other cosets have the same error-correcting properties. We have, for a particular
C1, some standard decoding algorithmM which maps elements of one coset into another. Since the codehas distance
2δN , different errors of weight less thanδN take us to different cosets, andM can therefore be chosen to correct any
such error. In order to have a practical protocol, we actually need to choose a carefully-constructedC1 so thatM can
be implemented efficiently. This is a challenging task, and the focus of much of classical coding theory, and I will for
this paper simply assume that we have an efficient decoding algorithm.

The second classical code,C2, is used to perform what, in the context of BB84, would be called privacy am-
plification. Eve might choose to measure only a few of the transmitted qubits, in which case she is unlikely to be
detected by Bob; if she gets lucky in choosing bases, we need to be sure she still gets little information about the
data (after she learns the key).C2 must correct a slightly larger fraction of errors thanC1, so we will give it distance
2(δ + η)N . C2 encodesK ′ bits in N bits and satisfiesC⊥

2 ⊂ C1 (whereC⊥
2 is the standard classical dual code

containing all vectors orthogonal toC2 in the usual binary inner product). We can choose aC2 with these properties
andK ′/N ≥ 1 − h(2δ + 2η) [15]. We will not require thatC2 have an efficient decoding algorithm.

The actual uncloneable encryption protocol will encrypt a messagem of lengthn bits. There will be a security
parameters and we will chooseK +K ′ − N = n + s. The protocol will transmitN qubits and will use a classical
key consisting of four parts:(k, e, c1, b). All are chosen uniformly at random; their lengths are described below.

1. Divide then input bits intor groups of sizes. View each group ofs bits as an element of the finite fieldGF (2s).
k is a string of sizes, and we can also view it as an element ofGF (2s).

2. Ther resulting registersm0, . . . ,mr−1 can be viewed as the firstr coefficients of a degreer polynomialf . The
final coefficientmr, the constant term, is chosen so thatf(k) = 0. That is,

∑

imik
r−i = 0 (in GF (2s)).

3. Alice XORs the string(m0, . . . ,mr) with the(n+ s)-bit stringe, producing a new classical stringy of length
n+ s bits.

4. Alice considers the particular coset of the classical error-correcting codeC1 given by the syndromec1; that is,
she considers the coset satisfyingHv = c1. (The length ofc1 is equal to the number of parity checks, namely
N −K.)

5. Within that coset ofC1 are various cosets ofC⊥

2
(which, recall, is a subset ofC1). In fact, there are exactly

n+ s of them, and they can be distinguished by parity checks whichare elements of the codeC2 but are not in
C⊥

1
(since all elements of a given coset ofC1 have the same value for parity checks fromC⊥

1
). There is thus a

correspondence between the cosetsC1/C
⊥
2 and stringsy (from step3). Alice selects the coset corresponding to

y and then picks a randomN -bit stringz within that coset.
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6. Alice transmitsN qubits as follows: When theith bit of b is 0, Alice transmits theith bit of z in theZ basis
(|0〉, |1〉). When theith bit of b is 1, Alice transmits theith bit of z in theX basis (|0〉 + |1〉, |0〉 − |1〉).

To decode, Bob simply reverses this series of actions:

1. Bob receivesN qubits. When theith bit of b is 0, he measures theith qubit in theZ basis; when theith bit of b
is 1, he measures theith qubit in theX basis. He now has anN -bit classical stringz.

2. Bob calculates the parity checks of the classical codeC⊥

1 . If they are not equal to the stringc1, there are errors
in the state, which he corrects using the standard decoding mapM .

3. Bob evaluates the parity checks ofC2/C
⊥

1 , producing a(n+ s)-bit stringy. (This step is effectively the privacy
amplification step in BB84.)

4. Bob XORsy with the(n+ s)-bit stringe, producing a new string(m0, . . . ,mr).

5. Bob has now received then-bit message(m0, . . . ,mr−1). To check whether he accepts this or not (that is, to de-
tect eavesdropping by Eve), he considers thes-bit registersm0, . . . ,mr as elements ofGF (2s) and coefficients
of a degreer polynomialf overGF (2s). He evaluatesf(k) and accepts the message only iff(k) = 0.

The shared classical key, as noted above, consists of(k, e, c1, b). k is ans-bit string,e is n + s bits long,c1 is
N −K ≤ h(2δ)N bits, andb isN bits long.s andη

√
N are the security parameters: the securityε of the uncloneable

encryption protocol is exponentially small when the two security parameters are large. In particular,η can go to
0 asn becomes large without severely impacting the security of the protocol. All in all, then, Alice and Bob use
n + 2s + N −K bits of key. In the limit of a perfect channel (i.e.,δ = 0), they usen + 2s + (n + s)/[1 − h(2η)]
bits of key, which asymptotes to2n+3s asn becomes large andη becomes small. In addition, Alice choosesN −K ′

random bits which are not part of the key. Bob need not know thevalues of these bits ahead of time. On the other hand,
these random bits must never be revealed to Eve, even after Bob has successfully received the transmission (when, by
the uncloneability property, it is safe for Eve to learn the key). Otherwise the benefits of the privacy amplification step
would be eliminated, and Eve could possibly learn a few bits of information about the message (though only if she
also knowse).

For the basic protocol, we assume the full key is used for justa single message, which would suggest uncloneable
encryption uses up more than twice as much key as the one-timepad. However, we can partially lift this restriction
by encrypting the whole message. Instead of the secret keyse andc1, we use a keye′ of lengthN to encrypt the
final stringz before encoding it as quantum states. Because of this encoding, the state being transmitted is the identity
density matrix, and therefore Eve, even if she knows the original messagem, has no information about the keysk and
b. (She does learn something aboute′, though.) We can therefore reuse the keysk andb in later messages and the
system remains secure, so long as we use a newe′ for each message. This gives us a reusable key(k, b) of sizes+N
and a one-time keye′ of lengthN which must be refreshed for each new message. In the limit of long messages and
low channel error rate, the key expended per uncloneably encrypted message is asymptotically the same as that used
by a message encrypted with the one-time pad.

In a very real sense, the reusable key provides the uncloneability property and the one-time key provides the
encryption. If Eve, after seeing many messages, ever learnsthe reusable key(k, b), by the uncloneability property, she
still has no information about past messages. Future messages remain encrypted with the one-time pad, since they use
new values ofe′, but Eve can easily copy these messages, and if she eventually learnse′ for one of these later messages,
she can read the message. On the other hand, if after transmission, Eve ever learnse′ for a particular message, she
again has no information about that message (by uncloneability), but she might be able to learn information about the
values ofk and/orb used for that message. This would imperil unclonability of future messages.

The above protocol has a “prepare-and-measure” form and therefore might be suited to experimental realization
sometime in the near future. However, it is somewhat more challenging than the closely related BB84 QKD protocol.
In particular, in BB84, it is harmless to discard any qubits which are not received by Bob for whatever reason. In
contrast, for uncloneable encryption, discarded bits cut away at the error-correcting code protecting the data. In fact,
they act as erasure errors and should be treated as such. A quantum error-correcting code can only tolerate a certain
proportion of erasures (half if there are no other errors in the system), and therefore uncloneable encryption will only
work if the rate of photon absorption is not too high. Therefore, uncloneable encryption requires high efficiency
single-photon sources and detectors, which are useful for QKD but not required. This restriction can be seen as a cost
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of going to a non-interactive uncloneable encryption protocol rather than an interactive QKD protocol. One possible
solution is to use a squeezed-state cryptographic scheme (e.g., [16]), which largely avoids this problem.

Alternatively, it is straightforward to use the above protocol for QKD. Alice simply sends a string of bits in some
series of basesb, Bob measures in whichever bases he likes, and they keep onlythose qubits which are received and
for which their bases agree. Alice announcesb along with randomly chosen values for the other parts of the key,
and then does the same decoding procedure as Bob, ensuring that they agree on a final secret key. There are a few
advantages to doing this over the usual approach to QKD. First, we get the strong security condition described in
section 3. Second, because of the connection with quantum authentication, it is clear how to create protocols like the
one from this section which use a much more efficient test for eavesdropping than the usual prescription for BB84
(which reveals a substantial fraction of the originally transmitted bits to compare error rates). Third, Alice and Bob
could take their bases from a pseudorandom sequence generated by a short shared key, as discussed in the next section.
Then, instead of discarding half of all bits received, Bob can be sure he measures every qubit in the same basis Alice
used. The result is no longer unconditionally secure, but they instead have unconditionalforward secrecy: provided
Eve is faced with a computational limitation during the initial transmission, she cannot ever learn the established key,
even after her computational bound is lifted. (This result will be shown in the following section.) Unconditional
forward secrecy is also available in some classical protocols, but those require an external source of randomness and
a potentially unrealistic temporarymemorybound on the adversary [17, 18, 19]. Efficient QKD protocols [20] (in
which Alice and Bob use the two bases with unequal probabilities) can also reduce the number of qubits discarded.
The efficient QKD protocols do not require even a temporary computational assumption, but also do not completely
eliminate wasted transmissions.

Note that it is insecure to combine the reusable key refinement with QKD. Since the one-time keye′ must be
announced when performing QKD, Eve learns it and can therefore learn information about the supposedly reusable
key (k, b). She could then use this information to break later QKD protocols which attempt to reuse(k, b).

5 Computational Security

The key requirements of uncloneable encryption are not immense (roughly2n for long messages), but are still more
than is desireable in a truly non-interactive setting (where QKD is not available to produce more key). In classical
cryptography, we frequently use a computational assumption to encrypt long messages with a short key. Does un-
cloneable encryption still work if the key is not truly random, but is instead apseudorandomsequence generated from
a much shorter secret key shared by Alice and Bob?

A similar question arises in the context of QKD. Alice must make a lot of random choices when preparing the
qubits to send to Bob. Generating truly random numbers can bea difficult task. If she instead generates a long
pseudorandom sequence, what does that do to the security of QKD?

In both cases, the answer is that Eve still cannot learn the secret message, provided she has no quantum algorithm
to break the pseudorandom sequence. Furthermore, even if she caneventuallybreak the computational assumption,
it will do her no good: in order to defeat Alice and Bob, Eve must break the pseudorandom sequence before Bob
receives the quantum transmission from Alice. Intuitively, this makes a lot of sense: unless she can defeat the scheme
during transmission, the uncloneability property holds, preventing her from copying the message down to work on it
later. (Note, though, that the values of the bits Alice transmits in QKD, including any lost to privacy amplification,
should be truly random or there is no hope of long-term security once the computational restriction is lifted.)

I will prove this in the case of an uncloneable encryption schemeS derived from quantum authentication schemes
under theorem 5. In particular, this holds for the uncloneable encryption scheme presented in section 4. The definition
of a pseudorandom sequence is one which a computationally-bounded Eve cannot distinguish from a truly random
sequence.

Theorem 7 If Eve can break uncloneable encryption schemeS (which is derived from a quantum authentication
scheme) with a pseudorandom key (from oracleK) using an attack of low complexity during transmission, then she
has an efficient quantum algorithm that can distinguishK from a truly random sequence.

Proof:
The proof is straightforward. Eve is given a stringk, and wishes to determine if it is a pseudorandom string

generated byK or a truly random sequence. Now, she has an attackA which breaks the uncloneable encryption
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schemeS when it uses a pseudorandom key. That is, there are two messagesm, m′ for which the probabilities
P (m), P (m′) of being accepted are not both small, and for which Eve’s residual density matricesρk(m), ρk(m′) are
substantially different.

By theorem 5, she therefore can efficiently generate an attack A′ against the quantum authentication schemeS
with key drawn fromK. That is, there is some input state|ψ〉 (which, by the proof of theorem 5, we know can be
chosen to be|m〉 + |m′〉) for which the output of the authentication scheme with attack A′ has a large component
which is accepted but is orthogonal to|ψ〉.

To break the pseudorandom sequence, Eve therefore creates asimulated Alice sending messages to a simulated
Bob using the quantum authentication schemeS and keyk. The pretend Alice repeatedly sends the message|ψ〉
to pretend Bob using this key. Each time, Eve performs the attackA and measures the state received by Bob in an
orthonormal basis including|ψ〉.

We know the quantum authentication scheme is secure when used with a truly random key. Therefore, if the key
is truly random, Eve will essentially always find that the simulated Bob either rejects the message or receives the state
|ψ〉. On the other hand, the attackA′ breaks the protocol when the key is pseudorandom, so whenk is generated
by K, Eve will occasionally find that the simulated Bob accepts a state which she measures to be orthogonal to|ψ〉.
Therefore, if Eve ever gets such an outcome, she concludesk is pseudorandom; otherwise, she decides it is random.
�

Note that, while the protocol given in section 4 does not comedirectly from a quantum authentication protocol,
it still is derived from one indirectly. In particular, combining theorem 5 and appendix B, we produce an efficient
reduction to a quantum authentication scheme. Thus, theorem 7 also holds for that protocol and similar prepare-and-
measure BB84 protocols.

6 Open Questions

One serious drawback of theorem 7 is that it only proves security when the pseudorandom sequence is secure against
quantumattacks. Intuitively, we should expect that if we use a “prepare-and-measure” protocol, such as that in
section 4, and Eve can make only attacks against individual photons, she should not be able to copy the state, even if
the pseudorandom sequence is only secure against classicalattacks. The whole protocol and attack can be simulated
classically, so Eve is not sneaking in any additional computational power with the attack, and therefore should not
be able to copy the state. It would be extremely useful to prove that under these circumstances, the uncloneability
property still holds. That would allow us, for instance, to perform “prepare-and-measure” uncloneable encryption for
messagem today based on an RSA-protected key, and still have information-theoretic security form in the distant
future once quantum computers able to break RSA become available.

A useful practical improvement for the “prepare-and-measure” protocol from section 4 would be to give it more
tolerance to channel noise. In particular, the requirementthatC1 andC2 have good minimum distance is rather strict.
Perhaps this can be improved to allowC1 andC2 to correct general errors, rather than worst-case errors, with error
ratesδ andδ + η.

One might also wish to give the uncloneability property to other types of classical protocols. For instance, one
can make a simple uncloneable secret sharing scheme with twoshares. To do this, take a classical secret stringm and
share it as(a0, a1) for random stringa0, anda1 = m ⊕ a0. Both shares are now needed to reconstructm. We can
make this scheme uncloneable by using an uncloneable encryption schemeSk. Encryptai with S using keyki. The
first share of the new uncloneable scheme is(Sk0

(a0), k1), and the second share is(Sk1
(a1), k0). That is, each share

contains an encrypted share of the original classical scheme, plus the key needed to decode the other share. Someone
with only one share of this new scheme cannot copy it without being detected, although of course anyone with both
shares can read them and copy them without difficulty. To create more complex secret-sharing schemes, we need a
good definition of uncloneable secret sharing in general. What shares is the adversary allowed access to, and when
(and with what shares) do the users check for intrusion?

One difficulty with such generalizations is that it is unclear to what extent the name “uncloneable encryption”
is really deserved. I have not shown that a message protectedby uncloneable encryption cannot be copied — only
that Eve cannot copy it without being detected. Is it possible for Eve to create two states, neither of which will pass
Bob’s test, but which can each be used (in conjunction with the secret key) to extract a good deal of information about

10



the message? Or can one instead prove bounds, for instance, on the sum of the information content of the various
purported copies?

Another interesting open question is to better understand the relationships of various cryptographic tasks. Is
quantum authentication exactly equivalent to quantum key distribution in some sense, or is there a real distinction
between the two? Also, are other cryptographic tasks for quantum information related to cryptographic tasks for
classical data? There may well be a rich structure of interconnections between quantum and classical protocols waiting
to be uncovered.

Finally, the task of uncloneable encryption is not really conceivable in a purely classical context. Are there other
useful tasks waiting to be discovered which simply make no sense for a classical protocol yet are acheivable with the
aid of quantum information?
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A Proof of Claim 6

We wish to show equation (11):

D
(

P (m)ρk(m), P (m′)ρk(m′)
)

≤ qε+
√

20
√
qε+ 5

√
qε. (13)

The residual density matricesρk for Eve in the case she is not caught are

ρk(m) =
|φk(m)〉 〈φk(m)| + Tr Bob|ηk(m)〉 〈ηk(m)|

N(m)2 + ‖|ηk(m)〉‖2
, (14)

ρk(m′) =
|φk(m′)〉 〈φk(m′)| + Tr Bob|ηk(m′)〉 〈ηk(m′)|

N(m′)2 + ‖|ηk(m′)〉‖2
, (15)

whereN(m) = ‖|φk(m)〉‖ andN(m′) = ‖|φk(m′)〉‖.
Then, by the triangle inequality,

D
(

P (m)ρk(m), P (m′)ρk(m′)
)

≤ D
(

P (m)ρk(m), |φk(m)〉 〈φk(m)|
)

+D
(

|φk(m)〉 〈φk(m)|, |φk(m′)〉 〈φk(m′)|
)

(16)

+D
(

P (m′)ρk(m′), |φk(m′)〉 〈φk(m′)|
)

.

Now,

D
(

P (m)ρk(m), |φk(m)〉 〈φk(m)|
)

=
1

2
Tr

∣

∣Tr Bob|ηk(m)〉 〈ηk(m)|
∣

∣ (17)

≤ qε/2, (18)

and similarly,

D
(

P (m′)ρk(m′), |φk(m′)〉 〈φk(m′)|
)

≤ qε/2. (19)

We need, therefore, only to boundD
(

|φk(m)〉 〈φk(m)|, |φk(m′)〉 〈φk(m′)|
)

. First, note that

D
(

|φk(m)〉 〈φk(m)|, |φk(m′)〉 〈φk(m′)|
)

≤ N(m)2D

(

1

N(m)2
|φk(m)〉 〈φk(m)|, 1

N(m′)2
|φk(m′)〉 〈φk(m′)|

)

+D

(

N(m)2

N(m′)2
|φk(m′)〉 〈φk(m′)|, |φk(m′)〉 〈φk(m′)|

)

(20)
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= N(m)2D

(

1

N(m)2
|φk(m)〉 〈φk(m)|, 1

N(m′)2
|φk(m′)〉 〈φk(m′)|

)

+
1

2

∣

∣N(m)2 −N(m′)2
∣

∣ . (21)

Now,

〈φk(m′)|φk(m′)〉 − 〈φk(m′)|φk(m)〉 = N(m′)2 −N(m)N(m′)F

(

1

N(m)
|φk(m)〉, 1

N(m′)
|φk(m′)〉

)

(22)

≤
∥

∥|φk(m′)〉
∥

∥ ·
∥

∥

∥
|φk(m)〉 − |φk(m′)〉

∥

∥

∥
(23)

≤ N(m′)5
√
qε, (24)

where the last line follows from equation (10). That is,

F

(

1

N(m)
|φk(m)〉, 1

N(m′)
|φk(m′)〉

)

≥ N(m′) − 5
√
qε

N(m)
(25)

= 1 − (N(m) −N(m′)) + 5
√
qε

N(m)
. (26)

By the triangle inequality and equation (10),

N(m) −N(m′) ≤ 5
√
qε, (27)

so

F

(

1

N(m)
|φk(m)〉, 1

N(m′)
|φk(m′)〉

)

≥ 1 − 10
√
qε

N(m)
. (28)

Thus,

D

(

1

N(m)2
|φk(m)〉 〈φk(m)|, 1

N(m′)2
|φk(m′)〉 〈φk(m′)|

)

≤
√

1 − F 2 (29)

≤
√

20
√
qε

N(m)
. (30)

Putting together equations (16), (18), (19), (21), and (30), we get

D
(

P (m)ρk(m), P (m′)ρk(m′)
)

≤ qε+N(m)
√

20N(m)
√
qε+

1

2

∣

∣N(m)2 −N(m′)2
∣

∣ (31)

≤ qε+
√

20
√
qε+ 5

√
qε, (32)

where we have usedN(m) ≤ 1 and equation (27) to bound|N(m)2 −N(m′)2|.

B Constructing a Prepare-and-Measure Protocol

We wish to construct a “prepare-and-measure” protocol by starting with a quantum authentication protocol of an
appropriate form. The easiest way to create an efficient quantum authentication protocol is to use the technique
of [10]: create a set of stabilizer codes with the right properties — in the terminology of [10], they form a “Purity
Testing Code.” Then this will give us a quantum authentication protocol.

However, there is a complication. We wish to end up with a protocol that, like BB84, works even through a
noisy channel. One obvious way to do this would be to encode the quantum authentication protocol with a quantum
error-correcting code, but this would destroy the prepare-and-measure structure we wish to have for the final protocol.
Instead, we will devise a quantum authentication protocol with the additional ability to correct errors. An examination
of [10] reveals that this does not require modification of thedefinition of quantum authentication; we simply add the
property that the transmission (almost always) is acceptedwhen the data is sent through some particular channelC.
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We will again construct such a protocol from a family of stabilizer codes. Recall that a stabilizer quantum error-
correcting code is an abelian subgroup of the Pauli group generated by tensor products of the Pauli matrices

X =

(

0 1
1 0

)

, Y =

(

0 −i
i 0

)

, Z =

(

1 0
0 −1

)

. (33)

A stabilizer codeQ detects a Pauli error unless that error is in the setQ⊥ −Q, whereQ⊥ is the set of Pauli operations
that commute with every element of the stabilizer. A stabilizer code corrects a set of Pauli errorsE if it detects the
product of any two elements ofE . We can also talk about a stabilizer code which corrects a setE and detects a larger
setF ⊇ E . This occurs if the code detects all operators which are the product of an element fromE and an element
from F . (When this is true, the code can distinguish elements ofF from elements ofE and can distinguish elements
of E from each other, but cannot necessarily tell elements ofF apart.) For more detailed background on stabilizer
codes, see [21].

Definition 8 Let {Qk} be a family of stabilizer codes. Suppose the codeQk corrects the setEk and detects the set
Fk (for some decoding algorithm, which will vary withk). Let C be a Pauli channel (i.e., it produces Pauli errors
with various probabilities). Then the set{Qk} is a purity testing code with errorε which corrects the channelC if the
following conditions hold true:

1. For a fraction at least1 − ε of the possible values ofk, Ek contains a typical set of Pauli errors produced byC
(one that occurs with probability at least1 − ε).

2. For anyPauli errorE (not the identity),E ∈ Fk for a fraction at least1 − ε of the possible values ofk.

The first condition is straightforward — it simply means thatmost codes in the family should correct errors from
the channel. The second condition is a little more slippery.It says that most of the codes will detectanyparticular
Pauli error, despite the general error correction that is going on. A slight modification of the theorems in [10] shows
that a family of codes satisfying definition 8 can be used to construct a quantum authentication protocol which also
corrects the channelC.

To create such a family of codes, I will use a concatenated structure. The inner layer will be a classical authentica-
tion protocol, giving a family of modest size. This part willserve to detect errors which are not corrected. Then will
come a fixed quantum error-correcting code (or perhaps a family of quantum error-correcting codes), which are de-
signed to correct a channel related toC, which I assume is memoryless. Finally, for the outside layer, we will perform
Hadamard transforms on some of the qubits; the set of qubits transformed is determined by part ofk. This will serve
to mix phase and bit flip errors, allowing the classical authentication protocol to detect the phase errors as well as the
bit flip errors.

In principle, any classical authentication protocol should suffice for the inner layer of encoding. However, the
proof techniques used require it to be describable in the stabilizer language, which limits us somewhat. On the other
hand, the condition for definition 8 is somewhat weaker than an actual classical authentication protocol. For instance,
we can use the following encoding: Suppose we have ann bit messagem, with n = rs.

1. Divide then input bits intor groups of sizes. View each group ofs bits as an element of the finite fieldGF (2s).
Let k be a secret string of sizes, also viewed as an element ofGF (2s).

2. Ther resulting registersm0, . . . ,mr−1 can be viewed as the firstr coefficients of a degreer polynomialf(z).
The final coefficientmr, the constant term, will be chosen so thatf(k) = 0. That is,

∑

imik
r−i = 0.

3. Alice sends(m0, . . . ,mr) to Bob, who accepts the message if he receives a list of registers defining a polynomial
f ′ with f ′(k) = 0.

The property we will need for definition 8 is that, if Eve adds any nonzero vector to the transmission, then for a fraction
1 − ε of the values ofk, the resulting string fails the test. To see this, note that the test will be passed only if Eve’s
vector corresponds to a degree-r polynomialg with g(k) = 0. However, a polynomial of degreer can have at mostr
zeros, so whatever polynomialg Eve picks, it can pass the test for at most a fractionr/2s = n/(s2s) of the possible
values ofk. For suitables, we can easily make this very small.

Note that this is not necessarily a complete classical authentication protocol:GF (2s) is not algebraically complete,
so whatever polynomial Alice sends might have fewer thanr zeros. In that case, Eve could safely replace it by a
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different polynomial with the same (or a larger) set of zeros. Nevertheless, this protocol will suffice to give a quantum
authentication protocol in conjunction with the other processing we apply, namely encryption.

We now have a way of encoding ann-bit classical message asn + s bits; we can extend this linearly to encode
superpositions as well, son qubits are encoded asn+ s qubits. We then take a quantum error-correcting code which
encodesn+ s qubits inN qubits, and finally, based on anN -bit classical stringb, perform Hadamard transforms on
many of the qubits. If theith bit of b is a0, we leave theith qubit of the encoded message alone; if theith bit of b is 1,
we perform the Hadamard on theith qubit. The result is a purity testing code which also corrects errors.

The quantum error-correcting code must have three properties. First, it must usually correct the channelC. If
we choose a randomb, we are effectively swapping theX (bit flip) andZ (phase flip) error rates for half the qubits
transmitted. In other words, we have transformed to a new channelC′ which is symmetrized between bit and phase
flip errors. (TheY error, which does both a bit and phase flip, could have a different error rate.) Our error-correcting
code should correct this channel.

Second, in order to perform the final Shor-Preskill step of our reduction to a “prepare-and-measure” protocol, we
will need a CSS code [15, 22]. Letδ be the bit error rate of the symmetrized channelC′ (i.e., the combinedX andY
error rates, or equivalently the combinedY andZ error rates). Then, in particular, we want a CSS code that corrects
δN bit flip errors andδN phase errors. Actually, we should pickδ to be slightly larger than the true error rate so the
code can also correct statistical fluctuations from the average error rate.

Third, we need our full concatenated construction to act as apurity testing protocol. That is, suppose Eve presents
us with an arbitrary Pauli operationE. We wish either for this error to be corrected by the quantum code or detected
by the authentication procedure. To analyze this, we will see howE is treated by each level of the decoding procedure.
In the outer layer, we perform Hadamard transforms according to the bit stringb. Whenever we perform a Hadamard,
we convert anX to aZ and vice-versa. This gives us a new Pauli operationE′. In most cases,E′ will have a similar
number ofXs andZs (the number ofY s may be different). The total valuesδX (the total fraction ofXs orY s) and
δZ (the total fraction ofY s orZs) will therefore be very similar on average. IfδX ≤ δ, the quantum error-correcting
code will correct the bit flip part of the errors; ifδZ ≤ δ, the quantum error-correcting code will correct the phase
part of the errors. If there are any bit flip errors left over, they will almost certainly be detected in the inner layer of
encoding by the classical authentication scheme. Since it is just a classical authentication scheme, however, residual
phase errors willnot be detected. Therefore, we want our quantum error-correcting code to have the property that for
anyE, for mostE′s produced by Hadamard transforms, either the code will correct both bit and phase flip errors, or
it will leave uncorrected bit flip errors. That is, it should (almost) never correct all bit flip errors but leave uncorrected
phase errors.

One way (though possibly not the only way) to accomplish thisis to let the phase error correction rate be slightly
higher than the bit flip error correction rate. That is, we choose a CSS code that corrects a fractionδ of bit flip errors
and a fractionδ + η of phase errors. In section 4, we chose two classical codesC1 andC2. The CSS code which uses
C1 to correct bit flips andC2 to correct phase flips will have the requisite properties.

We can take this purity testing code and produce a quantum authentication scheme as per [10]. To do this, we
take the quantum state, encrypt it, then further encode it using the above purity testing code with random syndromes.
Encrypting the quantum state means performing a random Pauli matrix (determined by part of the shared secret key)
on each qubit. However, when we move to an uncloneable encryption scheme, we are simply sending classical basis
states. Therefore, an initial phase randomization step hasno effect on the state. We thus get the following uncloneable
encryption protocol for ann-bit message, based on the classical key(k, e, c1, c2, b):

1. Divide then input bits intor groups of sizes. View each group ofs bits as an element of the finite fieldGF (2s).
k is a string of sizes, which we can also view as an element ofGF (2s).

2. Ther resulting registersm0, . . . ,mr−1 can be viewed as the firstr coefficients of a degreer polynomialf(z).
The final coefficientmr, the constant term, will be chosen so thatf(k) = 0. That is,

∑

imik
r−i = 0.

3. Alice XORs the string(m0, . . . ,mr) with the(n+ s)-bit stringe, producing a new classical stringy of length
n+ s bits.

4. Alice creates the basis state|y〉 and encodes it using the CSS code{C1, C2} with syndromec1 for C1 andc2
for C2.

5. Alice takes the resultingN -qubit state and performs a Hadamard transform on it for eachlocation where the
N -bit stringb is a1. The resulting state|ψ〉 Alice transmits to Bob.
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To decode, Bob simply takes the state he receives, reverses the Hadamard transforms, corrects and decodes the
state from the quantum error-correcting code, and measuresthe resulting state (which should be a basis state if all has
gone correctly). He then XORs the resulting classical string y with e and divides the result intor + 1 s-bit registers,
viewed as elements ofGF (2s) — in fact, as coefficients of a degreer polynomial overGF (2s). He then evaluates
this polynomial at the pointk ∈ GF (2s), and accepts the message only if he gets0 as the result. If he does accept, the
message is the firstn bits ofy.

By theorem 5, this is a perfectly good uncloneable encryption scheme. Unfortunately, the use of quantum error-
correcting codes means it is not a “prepare-and-measure” scheme. However, following Shor and Preskill [14], we can
note that the phase error correction does not influence the final outcome, so need not be performed. In fact, Alice
could simply measure the state before sending, and it would not influence Eve’s attack or Bob’s decoding at all. For a
more detailed discussion of the Shor and Preskill technique, see [4, 12, 14, 16]. The end result of this procedure is to
give us the “prepare-and-measure” protocol presented in section 4.
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