
ar
X

iv
:q

ua
nt

-p
h/

00
04

07
2

v1

18
 A

pr
 2

00
0

Proceedings of Symposia in Applied Mathematics

An Introduction to Quantum Error Correction

Daniel Gottesman

Abstract. Quantum states are very delicate, so it is likely some sort of quan-
tum error correction will be necessary to build reliable quantum computers.

The theory of quantum error-correcting codes has some close ties to and some
striking differences from the theory of classical error-correcting codes. Many

quantum codes can be described in terms of the stabilizer of the codewords.
The stabilizer is a finite Abelian group, and allows a straightforward character-

ization of the error-correcting properties of the code. The stabilizer formalism
for quantum codes also illustrates the relationships to classical coding theory,

particularly classical codes over GF(4), the finite field with four elements.

1. Background: the need for error correction

Quantum computers have a great deal of potential, but to realize that potential,
they need some sort of protection from noise.

Classical computers don’t use error correction. One reason for this is that
classical computers use a large number of electrons, so when one goes wrong, it is
not too serious. A single qubit in a quantum computer will probably be just one,
or a small number, of particles, which already creates a need for some sort of error
correction.

Another reason is that classical computers are digital: after each step, they
correct themselves to the closer of 0 or 1. Quantum computers have a continuum
of states, so it would seem, at first glance, that they cannot do this. For instance,
a likely source of error is over-rotation: a state α|0〉+ β|1〉 might be supposed to

become α|0〉 + βeiφ|1〉, but instead becomes α|0〉 + βei(φ+δ) |1〉. The actual state
is very close to the correct state, but it is still wrong. If we don’t do something
about this, the small errors will build up over the course of the computation, and
eventually will become a big error.

Furthermore, quantum states are intrinsically delicate: looking at one collapses
it. α|0〉+ β|1〉 becomes |0〉 with probability |α|2 and |1〉 with probability |β|2. The
environment is constantly trying to look at the state, a process called decoherence.
One goal of quantum error correction will be to prevent the environment from
looking at the data.

There is a well-developed theory of classical error-correcting codes, but it
doesn’t apply here, at least not directly. For one thing, we need to keep the phase

1991 Mathematics Subject Classification. Primary 81P68; Secondary 94B60.

c©0000 (copyright holder)

1

2 DANIEL GOTTESMAN

correct as well as correcting bit flips. There is another problem, too. Consider the
simplest classical code, the repetition code:

0→ 000(1)

1→ 111(2)

It will correct a state such as 010 to the majority value (becoming 000 in this case).1

We might try a quantum repetition code:

|ψ〉 → |ψ〉 ⊗ |ψ〉 ⊗ |ψ〉(3)

However, no such code exists because of the No-Cloning theorem [6, 20]:

Theorem 1 (No-Cloning). There is no quantum operation that takes a state
|ψ〉 to |ψ〉 ⊗ |ψ〉 for all states |ψ〉.

Proof. This fact is a simple consequence of the linearity of quantum mechan-
ics. Suppose we had such an operation and |ψ〉 and |φ〉 are distinct. Then, by the
definition of the operation,

|ψ〉 → |ψ〉|ψ〉(4)

|φ〉 → |φ〉|φ〉(5)

|ψ〉+ |φ〉 → (|ψ〉+ |φ〉) (|ψ〉 + |φ〉) .(6)

(Here, and frequently below, I omit normalization, which is generally unimportant.)
But by linearity,

|ψ〉 + |φ〉 → |ψ〉|ψ〉 + |φ〉|φ〉.(7)

This differs from (6) by the crossterm

|ψ〉|φ〉+ |φ〉|ψ〉.(8)

2. The nine-qubit code

To solve these problems, we will try a variant of the repetition code [16].

|0〉 → |0〉 = (|000〉+ |111〉) (|000〉+ |111〉) (|000〉+ |111〉)(9)

|1〉 → |1〉 = (|000〉 − |111〉) (|000〉 − |111〉) (|000〉 − |111〉)(10)

Note that this does not violate the No-Cloning theorem, since an arbitrary
codeword will be a linear superposition of these two states

α|0〉+ β|1〉 6= [α(|000〉+ |111〉) + β(|000〉 − |111〉)]⊗3 .(11)

The superposition is linear in α and β. The complete set of codewords for this (or
any other) quantum code form a linear subspace of the Hilbert space, the coding
space.

The inner layer of this code corrects bit flip errors: We take the majority within
each set of three, so

|010〉 ± |101〉 → |000〉 ± |111〉.(12)

1Actually, a classical digital computer is using a repetition code – each bit is encoded in
many electrons (the repetition), and after each time step, it is returned to the value held by the

majority of the electrons (the error correction).

AN INTRODUCTION TO QUANTUM ERROR CORRECTION 3

Identity I =

(
1 0
0 1

)
I|a〉 = |a〉

Bit Flip X =

(
0 1
1 0

)
X|a〉 = |a⊕ 1〉

Phase Flip Z =

(
1 0
0 −1

)
Z|a〉 = (−1)a|a〉

Bit & Phase Y =

(
0 −i
i 0

)
= iXZ Y |a〉 = i(−1)a|a⊕ 1〉

Table 1. The Pauli matrices

The outer layer corrects phase flip errors: We take the majority of the three signs,
so

(|·〉+ |·〉)(|·〉 − |·〉)(|·〉+ |·〉)→ (|·〉+ |·〉)(|·〉+ |·〉)(|·〉+ |·〉).(13)

Since these two error correction steps are independent, the code also works if there
is both a bit flip error and a phase flip error.

Note that in both cases, we must be careful to measure just what we want to
know and no more, or we would collapse the superposition used in the code. I’ll
discuss this in more detail in section 4.

The bit flip, phase flip, and combined bit and phase flip errors are important, so
let’s take a short digression to discuss them. We’ll also throw in the identity matrix,
which is what we get if no error occurs. The definitions of these four operators are
given in table 1. The factor of i in the definition of Y has little practical significance
— overall phases in quantum mechanics are physically meaningless — but it makes
some manipulations easier later. It also makes some manipulations harder, so either
is a potentially reasonable convention.

The group generated by tensor products of these 4 operators is called the Pauli
group. X, Y , and Z anticommute: XZ = −ZX (also written {X,Z} = 0). Sim-
ilarly, {X,Y } = 0 and {Y, Z} = 0. Thus, the n-qubit Pauli group Pn consists of
the 4n tensor products of I, X, Y , and Z, and an overall phase of ±1 or ±i, for
a total of 4n+1 elements. The phase of the operators used is not generally very
important, but we can’t discard it completely. For one thing, the fact that this is
not an Abelian group is quite important, and we would lose that if we dropped the
phase!
Pn is useful because of its nice algebraic properties. Any pair of elements of

Pn either commute or anticommute. Also, the square of any element of Pn is ±1.
We shall only need to work with the elements with square +1, which are tensor
products of I, X, Y , and Z with an overall sign ±1; the phase i is only necessary
to make Pn a group. Define the weight of an operator in Pn to be the number of
tensor factors which are not I. Thus, X ⊗ Y ⊗ I has weight 2.

Another reason the Pauli matrices are important is that they span the space
of 2× 2 matrices, and the n-qubit Pauli group spans the space of 2n× 2n matrices.
For instance, if we have a general phase error

Rθ/2 =

(
1 0
0 eiθ

)
= eiθ/2

(
e−iθ/2 0

0 eiθ/2

)
(14)

4 DANIEL GOTTESMAN

(again, the overall phase does not matter), we can write it as

Rθ/2 = cos
θ

2
I − i sin θ

2
Z.(15)

It turns out that our earlier error correction procedure will also correct this
error, without any additional effort. For instance, the earlier procedure might use
some extra qubits (ancilla qubits) that are initialized to |0〉 and record what type
of error occurred. Then we look at the ancilla and invert the error it tells us:

Z
(
α|0〉 + β|1〉

)
⊗ |0〉anc → Z

(
α|0〉+ β|1〉

)
⊗ |Z〉anc(16)

→
(
α|0〉+ β|1〉

)
⊗ |Z〉anc(17)

I
(
α|0〉 + β|1〉

)
⊗ |0〉anc → I

(
α|0〉 + β|1〉

)
⊗ |no error〉anc(18)

→
(
α|0〉+ β|1〉

)
⊗ |no error〉anc(19)

When the actual error is Rθ/2, recording the error in the ancilla gives us a
superposition:

cos
θ

2
I
(
α|0〉+ β|1〉

)
⊗ |no error〉anc − i sin

θ

2
Z
(
α|0〉+ β|1〉

)
⊗ |Z〉anc(20)

Then we measure the ancilla, which with probability sin2 θ/2 gives us

Z
(
α|0〉 + β|1〉

)
⊗ |Z〉anc,(21)

and with probability cos2 θ/2 gives us

I
(
α|0〉+ β|1〉

)
⊗ |no error〉anc.(22)

In each case, inverting the error indicated in the ancilla restores the original state.
It is easy to see this argument works for any linear combination of errors [16,

18]:

Theorem 2. If a quantum code corrects errors A and B, it also corrects any
linear combination of A and B. In particular, if it corrects all weight t Pauli errors,
then the code corrects all t-qubit errors.

So far, we have only considered individual unitary errors that occur on the
code. But we can easily add in all possible quantum errors. The most general
quantum operation, including decoherence, interacts the quantum state with some
extra qubits via a unitary operation, then discards some qubits. This process can
turn pure quantum states into mixed quantum states, which are normally described
using density matrices. We can write the most general operation as a transformation
on density matrices

ρ→
∑

i

EiρE
†
i ,(23)

where the Eis are normalized so
∑
E†iEi = I. The density matrix ρ can be con-

sidered to represent an ensemble of pure quantum states |ψ〉, each of which, in
this case, should be in the coding space of the code. Then this operation simply
performs the following operation on each |ψ〉:

|ψ〉 → Ei|ψ〉 with probability |Ei|ψ〉|2.(24)

If we can correct each of the individual errors Ei, then we can correct this general
error as well. For instance, for quantum operations that only affect a single qubit
of the code, Ei will necessarily be in the linear span of I, X, Y , and Z, so we can

AN INTRODUCTION TO QUANTUM ERROR CORRECTION 5

correct it. Thus, in the statement of theorem 2, “all t-qubit errors” really does
apply to all t-qubit errors, not just unitary ones.

We can go even further. It is not unreasonable to expect that every qubit in
our nine-qubit code will be undergoing some small error. For instance, qubit i
experiences the error I + εEi, where Ei is some single-qubit error. Then the overall
error is ⊗

(I + εEi) = I + ε
(
E1 ⊗ I⊗8 + I ⊗ E2 ⊗ I⊗7 + . . .

)
+ O(ε2)(25)

That is, to order ε, the actual error is the sum of single-qubit errors, which we
know the nine-qubit code can correct. That means that after the error correction
procedure, the state will be correct to O(ε2) (when the two-qubit error terms begin
to become important). While the code cannot completely correct this error, it still
produces a significant improvement over not doing error correction when ε is small.
A code correcting more errors would do even better.

3. General properties of quantum error-correcting codes

Let us try to understand what properties are essential to the success of the nine-
qubit code, and derive conditions for a subspace to form a quantum error-correcting
code.

One useful feature was linearity, which will be true of any quantum code. We
only need to correct a basis of errors (I, X, Y , and Z in the one-qubit case), and
all other errors will follow, as per theorem 2.

In any code, we must never confuse |0〉 with |1〉, even in the presence of errors.
That is, E|0〉 is orthogonal to F |1〉:

〈0|E†F |1〉 = 0.(26)

It is sufficient to distinguish error E from error F when they act on |0〉 and |1〉.
Then a measurement will tell us exactly what the error is and we can correct it:

〈0|E†F |0〉 = 〈1|E†F |1〉 = 0(27)

for E 6= F .
But (27) is not necessary: in the nine-qubit code, we cannot distinguish between

Z1 and Z2, but that is OK, since we can correct either one with a single operation.
To understand the necessary condition, it is helpful to look at the operators F1 =
(Z1 +Z2)/2 and F2 = (Z1 −Z2)/2 instead of Z1 and Z2. F1 and F2 span the same
space as Z1 and Z2, so Shor’s code certainly corrects them; let us try to understand
how. When we use the F s as the basis errors, now equation (27) is satisfied. That
means we can make a measurement and learn what the error is. We also have to
invert it, and this is a potential problem, since F1 and F2 are not unitary. However,

F1 acts the same way as Z1 on the coding space, so Z†1 suffices to invert F1 on the
states of interest. F2 acts the same way as the 0 operator on the coding space. We
can’t invert this, but we don’t need to — since F2 annihilates codewords, it can
never contribute a component to the actual state of the system.

The requirement to invert the errors produces a third condition:

〈0|E†E|0〉 = 〈1|E†E|1〉.(28)

Either this value is nonzero, as for F1, in which case some unitary operator will act
the same way as E on the coding space, or it will be zero, as for F2, in which case
E annihilates codewords and never arises.

6 DANIEL GOTTESMAN

These arguments show that if there is some basis for the space of errors for
which equations (26), (27), and (28) hold, then the states |0〉 and |1〉 span a quantum
error-correcting code. Massaging these three equations together and generalizing
to multiple encoded qubits, we get the following theorem [2, 11]:

Theorem 3. Suppose E is a linear space of errors acting on the Hilbert space
H. Then a subspace C of H forms a quantum error-correcting code correcting the
errors E iff

〈ψ|E†E|ψ〉 = C(E)(29)

for all E ∈ E . The function C(E) does not depend on the state |ψ〉.
Proof. Suppose {Ea} is a basis for E and {|ψi〉} is a basis for C. By setting

E and |ψ〉 equal to the basis elements and to the sum and difference of two basis
elements (with or without a phase factor i), we can see that (29) is equivalent to

〈ψi|E†aEb|ψj〉 = Cabδij ,(30)

where Cab is a Hermitian matrix independent of i and j.
Suppose equation (30) holds. We can diagonalize Cab. This involves choosing

a new basis {Fa} for E , and the result is equations (26), (27), and (28). The
arguments before the theorem show that we can measure the error, determine it
uniquely (in the new basis), and invert it (on the coding space). Thus, we have a
quantum error-correcting code.

Now suppose we have a quantum error-correcting code, and let |ψ〉 and |φ〉 be
two distinct codewords. Then we must have

〈ψ|E†E|ψ〉 = 〈φ|E†E|φ〉(31)

for all E. That is, (29) must hold. If not, E changes the relative size of |ψ〉 and
|φ〉. Both |ψ〉 + |φ〉 and |ψ〉 + c|φ〉 are valid codewords, and

E(|ψ〉 + |φ〉) = N (|ψ〉+ c|φ〉),(32)

where N is a normalization factor and

c = 〈ψ|E†E|ψ〉/〈φ|E†E|φ〉.(33)

The error E will actually change the encoded state, which is a failure of the code,
unless c = 1.

There is a slight subtlety to the phrasing of equation (29). We require E to be
a linear space of errors, which means that it must be closed under sums of errors
which may act on different qubits. In contrast, for a code that corrects t errors,
in (30), it is safe to consider only Ea and Eb acting on just t qubits. We can restrict
even further, and only use Pauli operators as Ea and Eb, since they will span the
space of t-qubit errors. This leads us to a third variation of the condition:

〈ψ|E|ψ〉 = C ′(E),(34)

where E is now any operator acting on 2t qubits (that is, it replaces E†aEb in (30)).
This can be easily interpreted as saying that no measurement on 2t qubits can learn
information about the codeword. Alternatively, it says we can detect up to 2t errors
on the code without necessarily being able to say what those errors are. That is,
we can distinguish those errors from the identity.

AN INTRODUCTION TO QUANTUM ERROR CORRECTION 7

If the matrix Cab in (30) has maximum rank, the code is called nondegenerate.
If not, as for the nine-qubit code, the code is degenerate. In a degenerate code,
different errors look the same when acting on the coding subspace.

For a nondegenerate code, we can set a simple bound on the parameters of
the code simply by counting states. Each error E acting on each basis codeword
|ψi〉 produces a linearly independent state. All of these states must fit in the full
Hilbert space of n qubits, which has dimension 2n. If the code encodes k qubits,
and corrects errors on up to t qubits, then

t∑

j=0

3j
(
n

j

)
 2k ≤ 2n.(35)

The quantity in parentheses is the number of errors of weight t or less: that is, the
number of tensor products of I, X, Y , and Z that are the identity in all but t or
fewer places. This inequality is called the quantum Hamming bound. While the
quantum Hamming bound only applies to nondegenerate codes, we do not know of
any codes that beat it.

For t = 1, k = 1, the quantum Hamming bound tells us n ≥ 5. In fact, there
is a code with n = 5, which you will see later. A code that corrects t errors is said
to have distance 2t + 1, because it takes 2t + 1 single-qubit changes to get from
one codeword to another. We can also define distance as the minimum weight of
an operator E that violates equation (34) (a definition which also allows codes of
even distance). A quantum code using n qubits to encode k qubits with distance d
is written as an [[n, k, d]] code (the double brackets distinguish it from a classical
code). Thus, the nine-qubit code is a [[9, 1, 3]] code, and the five-qubit code is a
[[5, 1, 3]] code.

We can also set a lower bound telling us when codes exist. I will not prove this
here, but an [[n, k, d]] code exists when

d−1∑

j=0

3j
(
n

j

)
 2k ≤ 2n(36)

(known as the quantum Gilbert-Varshamov bound [3]). This differs from the quan-
tum Hamming bound in that the sum goes up to d−1 (which is equal to 2t) rather
than stopping at t.

Theorem 4. A quantum [[n, k, d]] code exists when (36) holds. Any nondegen-
erate [[n, k, d]] code must satisfy (35). For large n, R = k/n and p = d/2n fixed,
the best nondegenerate quantum codes satisfy

1− 2p log2 3−H(2p) ≤ R ≤ 1− p log2 3−H(p),(37)

where H(x) = −x log2 x− (1− x) log2(1 − x).

One further bound, known as the Knill-Laflamme bound [11] or the quan-
tum Singleton bound, applies even to degenerate quantum codes. For an [[n, k, d]]
quantum code,

n− k ≥ 2d− 2.(38)

This shows that the [[5, 1, 3]] code really is optimal — a [[4, 1, 3]] code would violate
this bound.

8 DANIEL GOTTESMAN

I will not prove the general case of this bound, but the case of k = 1 can be
easily understood as a consequence of the No-Cloning theorem. Suppose r qubits
of the code are missing. We can substitute |0〉 states for the missing qubits, but
there are r errors on the resulting codeword. The errors are of unknown type, but
all the possibilities are on the same set of r qubits. Thus, all products E†aEb in
condition (30) have weight r or less, so this sort of error (an “erasure” error [9])
can be corrected by a code of distance r+ 1. Now suppose we had an [[n, 1, d]] code
with n ≤ 2d − 2. Then we could split the qubits in the code into two groups of
size at most d − 1. Each group would have been subject to at most d − 1 erasure
errors, and could therefore be corrected without access to the other group. This
would produce two copies of the encoded state, which we know is impossible.

4. Stabilizer codes

Now let us return to the nine-qubit code, and examine precisely what we need
to do to correct errors.

First, we must determine if the first three qubits are all the same, and if not,
which is different. We can do this by measuring the parity of the first two qubits
and the parity of the second and third qubits. That is, we measure

Z ⊗ Z ⊗ I and I ⊗ Z ⊗ Z.(39)

The first tells us if an X error has occurred on qubits one or two, and the second
tells us if an X error has occurred on qubits two or three. Note that the error
detected in both cases anticommutes with the error measured. Combining the two
pieces of information tells us precisely where the error is.

We do the same thing for the other two sets of three. That gives us four more
operators to measure. Note that measuring Z ⊗Z gives us just the information we
want and no more. This is crucial so that we do not collapse the superpositions
used in the code. We can do this by bringing in an ancilla qubit. We start it in the
state |0〉 + |1〉 and perform controlled-Z operations to the first and second qubits
of the code:

(|0〉+ |1〉)
∑

abc

cabc|abc〉 →
∑

abc

cabc
(
|0〉|abc〉+ (−1)a⊕b|1〉|abc〉

)
(40)

=
∑

abc

cabc

(
|0〉+ (−1)parity(a,b)|1〉

)
|abc〉.(41)

At this point, measuring the ancilla in the basis |0〉± |1〉 will tell us the eigenvalue
of Z ⊗ Z ⊗ I, but nothing else about the data.

Second, we must check if the three signs are the same or different. We do this
by measuring

X ⊗X ⊗X ⊗X ⊗X ⊗X ⊗ I ⊗ I ⊗ I(42)

and

I ⊗ I ⊗ I ⊗X ⊗X ⊗X ⊗X ⊗X ⊗X.(43)

This gives us a total of 8 operators to measure. These two measurements detect
Z errors on the first six and last six qubits, correspondingly. Again note that the
error detected anticommutes with the operator measured.

AN INTRODUCTION TO QUANTUM ERROR CORRECTION 9

Z Z I I I I I I I
I Z Z I I I I I I
I I I Z Z I I I I
I I I I Z Z I I I
I I I I I I Z Z I
I I I I I I I Z Z
X X X X X X I I I
I I I X X X X X X

Table 2. The stabilizer for the nine-qubit code. Each column
represents a different qubit.

This is no coincidence: in each case, we are measuring an operator M which
should have eigenvalue +1 for any codeword:

M |ψ〉 = |ψ〉.(44)

If an error E which anticommutes with M has occurred, then the true state is E|ψ〉,
and

M (E|ψ〉) = −EM |ψ〉 = −E|ψ〉.(45)

That is, the new state has eigenvalue −1 instead of +1. We use this fact to correct
errors: each single-qubit error E anticommutes with a particular set of operators
{M}; which set, exactly, tells us what E is.

In the case of the nine-qubit code, we cannot tell exactly what E is, but it does
not matter. For instance, we cannot distinguish Z1 and Z2 because

Z1Z2|ψ〉 = |ψ〉 ⇐⇒ Z1|ψ〉 = Z2|ψ〉.(46)

This is an example of the fact that the nine-qubit code is degenerate.
Table 2 summarizes the operators we measured. These 8 operators generate an

Abelian group called the stabilizer of the nine-qubit code. The stabilizer contains
all operators M in the Pauli group for which M |ψ〉 = |ψ〉 for all |ψ〉 in the code.

Conversely, given an Abelian subgroup S of the Pauli group Pn (which, if you
recall, consists of tensor products of I, X, Y , and Z with an overall phase of±1,±i),
we can define a quantum code T (S) as the set of states |ψ〉 for which M |ψ〉 = |ψ〉
for all M ∈ S. S must be Abelian and cannot contain −1, or the code is trivial: If
M,N ∈ S,

MN |ψ〉 = M |ψ〉 = |ψ〉(47)

NM |ψ〉 = N |ψ〉 = |ψ〉(48)

so

[M,N]|ψ〉 = MN |ψ〉 −NM |ψ〉 = 0.(49)

Since elements of the Pauli group either commute or anticommute, [M,N] = 0.
Clearly, if M = −1 ∈ S, there is no nontrivial |ψ〉 for which M |ψ〉 = |ψ〉.

If these conditions are satisfied, there will be a nontrivial subspace consisting of
states fixed by all elements of the stabilizer. We can tell how many errors the code
corrects by looking at operators that commute with the stabilizer. We can correct
errors E and F if either E†F ∈ S (so E and F act the same on codewords), or if
∃M ∈ S s.t. {M,E†F} = 0, in which case measuring the operator M distinguishes

10 DANIEL GOTTESMAN

between E and F . If the first condition is ever true, the stabilizer code is degenerate;
otherwise it is nondegenerate.

We can codify this by looking at the normalizer N (S) of S in the Pauli group
(which is in this case equal to the centralizer, composed of Pauli operators which
commute with S). The distance d of the code is the minimum weight of any operator
in N (S) \ S [3, 7].

Theorem 5. Let S be an Abelian subgroup of order 2a of the n-qubit Pauli
group, and suppose −1 6∈ S. Let d be the minimum weight of an operator in
N (S) \ S. Then the space of states T (S) stabilized by all elements of S is an
[[n, n− a, d]] quantum code.

To correct errors of weight (d−1)/2 or below, we simply measure the generators
of S. This will give us a list of eigenvalues, the error syndrome, which tells us
whether the error E commutes or anticommutes with each of the generators. The
error syndromes of E and F are equal iff the error syndrome of E†F is trivial. For
a nondegenerate code, the error syndrome uniquely determines the error E (up to
a trivial overall phase) — the generator that anticommutes with E†F distinguishes
E from F . For a degenerate code, the error syndrome is not unique, but error
syndromes are only repeated when E†F ∈ S, implying E and F act the same way
on the codewords.

If the stabilizer has a generators, then the code encodes n − a qubits. Each
generator divides the allowed Hilbert space into +1 and −1 eigenspaces of equal
sizes. To prove the statement, note that we can find an element G of the Pauli group
that has any given error syndrome (though G may have weight greater than (d −
1)/2, or even greater than d). Each G maps T (S) into an orthogonal but isomorphic
subspace, and there are 2a possible error syndromes, so T (S) has dimension at most
2n/2a. In addition, the Pauli group spans U (2n), so its orbit acting on any single
state contains a basis for H. Every Pauli operator has some error syndrome, so
T (S) has dimension exactly 2n−a.

5. Some other important codes

Stabilizers make it easy to describe new codes. For instance, we can start from
classical coding theory, which describes a linear code by a generator matrix or its
dual, the parity check matrix. Each row of the generator matrix is a codeword,
and the other codewords are all linear combinations of the rows of the generator
matrix. The rows of the parity check matrix specify parity checks all the classical
codewords must satisfy. (In quantum codes, the stabilizer is closely analogous to
the classical parity check matrix.) One well-known code is the seven-bit Hamming
code correcting one error, with parity check matrix

1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1

 .(50)

If we replace each 1 in this matrix by the operator Z, and 0 by I, we are really
changing nothing, just specifying three operators that implement the parity check
measurements. The statement that the classical Hamming code corrects one error
is the statement that each bit flip error of weight one or two anticommutes with
one of these three operators.

AN INTRODUCTION TO QUANTUM ERROR CORRECTION 11

Z Z Z Z I I I
Z Z I I Z Z I
Z I Z I Z I Z
X X X X I I I
X X I I X X I
X I X I X I X

Table 3. Stabilizer for the seven-qubit code.

Now suppose we replace each 1 byX instead of Z. We again get three operators,
and they will anticommute with any weight one or two Z error. Thus, if we make a
stabilizer out of the three Z operators and the three X operators, as in table 3, we
get a code that can correct any single qubit error [18]. X errors are picked up by
the first three generators, Z errors by the last three, and Y errors are distinguished
by showing up in both halves. Of course, there is one thing to check: the stabilizer
must be Abelian; but that is easily verified. The stabilizer has 6 generators on 7
qubits, so it encodes 1 qubit — it is a [[7, 1, 3]] code.

In this example, we used the same classical code for both the X and Z genera-
tors, but there was no reason we had to do so. We could have used any two classical
codes C1 and C2 [5, 19]. The only requirement is that the X and Z generators com-
mute. This corresponds to the statement that C⊥2 ⊆ C1 (C⊥2 is the dual code to C2,
consisting of those words which are orthogonal to the codewords of C2). If C1 is an
[n, k1, d1] code, and C2 is an [n, k2, d2] code (recall single brackets means a classical
code), then the corresponding quantum code is an [[n, k1+k2−n,min(d1, d2)]] code.2

This construction is known as the CSS construction after its inventors Calderbank,
Shor, and Steane.

The codewords of a CSS code have a particularly nice form. They all must
satisfy the same parity checks as the classical code C1, so all codewords will be
superpositions of words of C1. The parity check matrix of C2 is the generator
matrix of C⊥2 , so the X generators of the stabilizer add a word of C⊥2 to the state.
Thus, the codewords of a CSS code are of the form

∑

w∈C⊥2

|u+ w〉,(51)

where u ∈ C1 (C⊥2 ⊆ C1, so u+ w ∈ C1). If we perform a Hadamard transform

|0〉 ←→ |0〉+ |1〉(52)

|1〉 ←→ |0〉 − |1〉(53)

on each qubit of the code, we switch the Z basis with the X basis, and C1 with C2,
so the codewords are now ∑

w∈C⊥1

|u+ w〉 (u ∈ C2).(54)

Thus, to correct errors for a CSS code, we can measure the parities of C1 in the Z
basis, and the parities of C2 in the X basis.

Another even smaller quantum code is the [[5, 1, 3]] code I promised earlier [2,
13]. Its stabilizer is given in table 4. I leave it to you to verify that it commutes

2In fact, the true distance of the code could be larger than expected because of the possibility

of degeneracy, which would not have been a factor for the classical codes.

12 DANIEL GOTTESMAN

X Z Z X I
I X Z Z X
X I X Z Z
Z X I X Z

Table 4. The stabilizer for the five-qubit code.

and actually does have distance 3. You can also work out the codewords. Since
multiplication by M ∈ S merely rearranges elements of the group S, the sum

(∑

M∈S
M

)
|φ〉(55)

is in the code for any state |φ〉. You only need find two states |φ〉 for which (55) is
nonzero. Note that as well as telling us about the error-correcting properties of the
code, the stabilizer provides a more compact notation for the coding subspace than
listing the basis codewords.

A representation of stabilizers that is often useful is as a pair of binary matrices,
frequently written adjacent with a line between them [3]. The first matrix has a 1
everywhere the stabilizer has an X or a Y , and a 0 elsewhere; the second matrix
has a 1 where the stabilizer has a Y or a Z. Multiplying together Pauli operators
corresponds to adding the two rows for both matrices. Two operators M and
N commute iff their binary vector representations (a1|b1), (a2, b2) are orthogonal
under a symplectic inner product: a1b2 + b1a2 = 0. For instance, the stabilizer for
the five-qubit code becomes the matrix

1 0 0 1 0
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0

∣∣∣∣∣∣∣∣

0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

 .(56)

6. Codes over GF(4)

I will finish by describing another connection to classical coding theory. Fre-
quently, classical coding theorists consider not just binary codes, but codes over
larger finite fields. One of the simplest is GF(4), the finite field with four elements.
It is a field of characteristic 2, containing the elements {0, 1, ω, ω2}.

ω3 = 1, ω + ω2 = 1(57)

It is also useful to consider two operations on GF(4). One is conjugation, which
switches the two roots of the characteristic polynomial x2 + x+ 1:

1 = 1 ω = ω2(58)

0 = 0 ω2 = ω(59)

The other is trace. trx is the trace of the linear operator “multiplication by x”
when GF(4) is considered as a vector space over Z2:

tr 0 = tr 1 = 0(60)

tr ω = tr ω2 = 1(61)

AN INTRODUCTION TO QUANTUM ERROR CORRECTION 13

Stabilizers GF(4)

I 0
Z 1
X ω
Y ω2

tensor products vectors

multiplication addition

[M,N] = 0 tr(M ·N) = 0
N (S) dual

Table 5. Connections between stabilizer codes and codes over GF(4).

Stabilizer codes make extensive use of the Pauli group Pn. We can make a
connection between stabilizer codes and codes over GF(4) by identifying the four
operators I, X, Y , and Z with the four elements of GF(4), as in table 5 [4].

The commutativity constraint in the Pauli group becomes a symplectic inner
product between vectors in GF(4). The fact that the stabilizer is Abelian can be
phrased in the language of GF(4) as the fact that the code must be contained in its
dual with respect to this inner product. To determine the number of errors corrected
by the code, we must examine vectors which are in the dual (corresponding to N (S))
but not in the code (corresponding to S).

The advantage of making this correspondence is that a great deal of classi-
cal coding theory instantly becomes available. Many classical codes over GF(4)
are known, and many of them are self-dual with respect to the symplectic inner
product, so they define quantum codes. For instance, the five-qubit code is one
such — in fact, it is just a Hamming code over GF(4)! Of course, mostly classical
coding theorists consider linear codes (which are closed under addition and scalar
multiplication), whereas in the quantum case we wish to consider the slightly more
general class of additive GF(4) codes (that is, codes which are closed under addition
of elements, but not necessarily scalar multiplication).

7. Fault-Tolerant Quantum Computation

Hopefully, this paper has given you an understanding of quantum error-correct-
ing codes, but there is still a major hurdle before the goal of making quantum
computers resistant to errors. You must also understand how to perform opera-
tions on a state encoded in a quantum code without losing the code’s protection
against errors, and how to safely perform error correction when the gates used are
themselves noisy. For a full discussion of this problem and its resolutions, see [14]
or [15].

Shor presented the first protocols for fault-tolerant quantum computation [17].
While those protocols can be extended to work for arbitrary stabilizer codes, in-
cluding those with multiple encoded qubits per block [8], the gates which can be
performed easily on the code arise from symmetries of the stabilizer. The stabilizer
of the seven-qubit code has a particularly large symmetry group and therefore is
particularly good for fault-tolerant computation.

14 DANIEL GOTTESMAN

When the error rate per gate is low enough, encoding a state in a quantum
code and performing fault-tolerant operations will reduce the effective error rate.
By concatenating the seven-qubit code or another code (i.e., encoding each qubit
of the code with another copy of the seven-qubit code, and possibly repeating the
procedure multiple times), we can compound this improvement, giving a threshold
result [1, 10, 12]: if the error rate is below some threshold value, concatenating
a code allows us to perform arbitrarily long fault-tolerant quantum computations,
with overhead that is polylogarithmic in the length of the computation.

8. Summary (Quantum Error Correction Sonnet)

We cannot clone, perforce; instead, we split
Coherence to protect it from that wrong
That would destroy our valued quantum bit
And make our computation take too long.
Correct a flip and phase - that will suffice.
If in our code another error’s bred,
We simply measure it, then God plays dice,
Collapsing it to X or Y or Zed.
We start with noisy seven, nine, or five
And end with perfect one. To better spot
Those flaws we must avoid, we first must strive
To find which ones commute and which do not.
With group and eigenstate, we’ve learned to fix
Your quantum errors with our quantum tricks.

References

[1] D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with constant error, Proc.

29th Ann. ACM Symp. on Theory of Computation (ACM, New York, 1998), pp. 176–188,

quant-ph/9611025; D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with
constant error rate, quant-ph/9906129.

[2] C. Bennett, D. DiVincenzo, J. Smolin, and W. Wootters, Mixed state entanglement and
quantum error correction, Phys. Rev. A 54 (1996), 3824–3851; quant-ph/9604024.

[3] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, Quantum error correction
and orthogonal geometry, Phys. Rev. Lett. 78 (1997), 405–408; quant-ph/9605005.

[4] , Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory 44
(1998), 1369–1387; quant-ph/9605005.

[5] A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist, Phys. Rev. A
54 (1996), 1098–1105; quant-ph/9512032.

[6] D. Dieks, Communication by EPR devices, Phys. Lett. A 92 (1982), 271–272.
[7] D. Gottesman, Class of quantum error-correcting codes saturating the quantum Hamming

bound, Phys. Rev. A 54 (1996), 1862–1868; quant-ph/9604038.
[8] , Theory of fault-tolerant quantum computation, Phys. Rev. A 57 (1998), 127–137;

quant-ph/9702029.
[9] M. Grassl, T. Beth, and T. Pellizzari, Codes for the quantum erasure channel, Phys. Rev. A

56 (1997), 33–38; quant-ph/9610042.
[10] A. Y. Kitaev, Quantum error correction with imperfect gates, Quantum Communication,

Computing, and Measurement (Proc. 3rd Int. Conf. of Quantum Communication and Mea-
surement) (Plenum Press, New York, 1997), p. 181–188.

[11] E. Knill and R. Laflamme, A theory of quantum error-correcting codes, Phys. Rev. A 55
(1997), 900–911; quant-ph/9604034.

[12] E. Knill, R. Laflamme, and W. H. Zurek, Threshold accuracy for quantum computation,
quant-ph/9610011; E. Knill, R. Laflamme, and W. H. Zurek, Resilient quantum computation,

Science 279 (1998), 342–345; E. Knill, R. Laflamme, and W. H. Zurek, Resilient quantum

http://arXiv.org/abs/quant-ph/9611025
http://arXiv.org/abs/quant-ph/9906129
http://arXiv.org/abs/quant-ph/9604024
http://arXiv.org/abs/quant-ph/9605005
http://arXiv.org/abs/quant-ph/9605005
http://arXiv.org/abs/quant-ph/9512032
http://arXiv.org/abs/quant-ph/9604038
http://arXiv.org/abs/quant-ph/9702029
http://arXiv.org/abs/quant-ph/9610042
http://arXiv.org/abs/quant-ph/9604034
http://arXiv.org/abs/quant-ph/9610011

AN INTRODUCTION TO QUANTUM ERROR CORRECTION 15

computation: error models and thresholds, Proc. Royal Soc. London A 454 (1998), 365–384,
quant-ph/9702058.

[13] R. Laflamme, C. Miquel, J. P. Paz, and W. Zurek, Perfect quantum error correction code,
Phys. Rev. Lett. 77 (1996), 198–201; quant-ph/9602019.

[14] J. Preskill, Reliable quantum computers, Proc. Roy. Soc. A 454, 385–410 (1998); quant-
ph/9705031.

[15] , “Fault-tolerant quantum computation,” ch. 8 in Introduction to Quantum Compu-
tation and Information, eds. H.-K. Lo, S. Popescu, and T. Spiller (World Scientific, New

Jersey, 1998), pp. 213–269; quant-ph/9712048.
[16] P. W. Shor, Scheme for reducing decoherence in quantum memory, Phys. Rev. A 52 (1995),

2493–2496.
[17] , Fault-tolerant quantum computation, Proc. 35th Ann. Symp. on Fundamentals of

Computer Science (IEEE Press, Los Alamitos, 1996), pp. 56–65; quant-ph/9605011.
[18] A. M. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett. 77 (1996), 793–797.

[19] , Multiple particle interference and quantum error correction, Proc. Roy. Soc. London
A 452 (1996), 2551–2577; quant-ph/9601029.

[20] W. K. Wooters and W. H. Zurek, A single quantum cannot be cloned, Nature 299 (1982),
802–803.

Microsoft Corporation, One Microsoft Way, Redmond, WA 98052

E-mail address : gottesma@microsoft.com

URL: http://www.research.microsoft.com/~gottesma

http://arXiv.org/abs/quant-ph/9702058
http://arXiv.org/abs/quant-ph/9602019
http://arXiv.org/abs/quant-ph/9705031
http://arXiv.org/abs/quant-ph/9705031
http://arXiv.org/abs/quant-ph/9712048
http://arXiv.org/abs/quant-ph/9605011
http://arXiv.org/abs/quant-ph/9601029

