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Abstract

We investigate definitions of and protocols for multi-party quantum computing in
the scenario where the secret data are quantum systems. We work in the quantum
information-theoretic model, where no assumptions are made on the computational
power of the adversary. For the slightly weaker task of verifiable quantum secret
sharing, we give a protocol which tolerates any t < n/4 cheating parties (out of n).
This is shown to be optimal. We use this new tool to establish that any multi-party
quantum computation can be securely performed as long as the number of dishonest
players is less than n/6.

This thesis is based on joint work with Claude Crépeau and Daniel Gottesman.
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Thanks to my co-authors, Claude Crépeau and Daniel Gottesman, for their invaluable
help with this research. Thanks to my eternally patient supervisor, Madhu Sudan.
Thanks also to the many students, family mmbers, faculty and friends who provided
encouragement, support and advice.

5



6



Contents

1 Introduction 11
1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.1 “Real” Model for Protocols . . . . . . . . . . . . . . . . . . . 18

1.2.2 “Ideal” Model For Protocols . . . . . . . . . . . . . . . . . . . 19
1.2.3 Protocol Equivalence . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.4 Static versus Adaptive Adversaries . . . . . . . . . . . . . . . 20
1.2.5 Multi-party Quantum Computation . . . . . . . . . . . . . . . 21

1.2.6 Verifiable Quantum Secret Sharing . . . . . . . . . . . . . . . 21
1.3 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 Quantum Error-Correction . . . . . . . . . . . . . . . . . . . . 24
1.3.2 Sharing Quantum Secrets and (No) Cloning . . . . . . . . . . 27

1.3.3 Tools from Fault-Tolerant Quantum Computing . . . . . . . . 28
1.4 Neighborhoods of Quantum Codes . . . . . . . . . . . . . . . . . . . . 31

1.4.1 Well-Definedness of Decoding for States in CB . . . . . . . . . 33

2 Distributed Protocols for Quantum Computers 35
2.1 Subspace Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.1 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.2 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.3 Dual Subspace Projection . . . . . . . . . . . . . . . . . . . . 39
2.2 Vqss Protocol: Two-Level Quantum Sharing . . . . . . . . . . . . . . 40

2.2.1 Sharing Shares: 2-good Trees . . . . . . . . . . . . . . . . . . 40
2.2.2 Classical Vss . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.3 Vqss Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.4 (Informal) Soundness . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.5 (Informal) Completeness . . . . . . . . . . . . . . . . . . . . . 49
2.2.6 Simulatability . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2.7 Round and Communication Complexity . . . . . . . . . . . . 52
2.2.8 Additional Properties of Two-Level Sharing . . . . . . . . . . 53

2.3 Impossibility of vqss when t ≥ n
4

. . . . . . . . . . . . . . . . . . . . 54
2.4 Multi-party Quantum Computation . . . . . . . . . . . . . . . . . . . 55

2.4.1 Level 3 Sharing Protocol . . . . . . . . . . . . . . . . . . . . . 55
2.4.2 Distributed Computation . . . . . . . . . . . . . . . . . . . . . 58

7



3 Open Questions 61

A More on Neighborhoods of Quantum Codes 63

8



List of Figures

1-1 Protocol 1 (Multi-party Quantum Computation—Ideal Model) . . . . 21
1-2 Protocol 2 (Verifiable Quantum Secret Sharing—Ideal Model) . . . . 22

2-1 Protocol 3 (Subspace Projection) . . . . . . . . . . . . . . . . . . . . 36
2-2 Algorithm 1 (Reconstruction for a 2-good tree) . . . . . . . . . . . . 41
2-3 Protocol 4 (Modified vss protocol from [CCD88]) . . . . . . . . . . . 43
2-4 Protocol 5 (vqss—Sharing Phase) . . . . . . . . . . . . . . . . . . . . 44
2-5 Protocol 6 (vqss—Reconstruction Phase) . . . . . . . . . . . . . . . 45
2-6 Algorithm 2 (Simulation for vqss) . . . . . . . . . . . . . . . . . . . 51
2-7 Protocol 7 (Top-Level Sharing) . . . . . . . . . . . . . . . . . . . . . 56
2-8 Protocol 8 (Ideal Secret Sharing) . . . . . . . . . . . . . . . . . . . . 58
2-9 Protocol 9 (Multi-party Quantum Computation) . . . . . . . . . . . . 59

9



10



Chapter 1

Introduction

Secure distributed protocols have been an important and fruitful area of research for
modern cryptography. In this setting, there is a group of participants who wish to
perform some joint task, despite the fact that some of the participants in the protocol
may cheat in order to obtain additional information or corrupt the outcome. When
we approach distributed cryptography from the perspective of quantum computing,
a number of natural questions arise:

• Do existing classical protocols remain secure when the adversary has access to a
quantum computer?

• Can we use quantum computing and communication to find new, more secure or
faster protocols for classical tasks?

• What new, quantum cryptographic tasks can we perform?

This research is inspired by the last of these questions. We propose to investigate
a quantum version of an extensively studied classical problem, secure multi-party
computation (or secure function evaluation), first introduced by [GMW87]. In this
scenario, there are n players in a network. Each player i has an input xi, and the
players want to run a protocol to collectively compute some joint function f(x1, ..., xn).
The challenge is that all players would like this function evaluation to be secure.
Informally, this means:

1. Soundness and Completeness: At the end of the protocol, all honest players should
learn the correct function value f(x1, ..., xn).

2. Privacy: Cheating players should learn nothing at all beyond what they can deduce
from the function output and their own inputs.

Multi-party Quantum Computation For this thesis, we consider an extension of
this task to quantum computers. A multi-party quantum computing (mpqc) protocol
allows n participants P1, P2, . . . , Pn to compute an n-input quantum circuit in such a
way that each party Pi is responsible for providing one (or more) of the input states.
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The output of the circuit is broken in n components H1 ⊗ . . . ⊗ Hn such that Pi
receives the output Hi. Some components Hi may be empty.

Note that the inputs to this protocol are arbitrary quantum states—the player
providing an input need only have it in his possession, he does not need to know
a classical description of it1. Moreover, unlike in the classical case, we cannot as-
sume without loss of generality that the result of the computation will be broadcast.
Instead, each player in the protocol receives some part of the output.

Informally, we require two security conditions as before. On one hand, no coalition
of t or fewer cheaters should be able to affect the outcome of the protocol beyond
what influence they have by choosing their inputs. On the other hand, no coalition
of t or fewer cheaters should be able to learn anything beyond what they can deduce
from their initial knowledge of their input and from the systems Hi to which they
have access. We formalize this notion in Section 1.2.

Verifiable Quantum Secret Sharing In order to construct mpqc protocols, we
consider a subtask which we call verifiable quantum secret sharing. In classical cryp-
tography, a verifiable secret sharing scheme [CGMA85] is a two-phase protocol with
one player designated as the “dealer”. After the first phase (commitment), the dealer
shares a secret amongst the players. In the second phase (recovery), the players re-
construct the value publicly. When the dealer passes the first phase of the protocol,
then

• Soundness: There is a uniquely defined value s which will be reconstructed in the
second phase, regardless of any interventions by an adversary who can control no
more than t players.

• Completeness: If the dealer is honest, then he always passes the commitment phase
and the value s recovered in the second phase is the secret he intended to share.

• Privacy: If the dealer is honest, no coalition of t players can learn any information
about s.

The natural quantum version of this allows a dealer to share a state ρ (possibly
unknown to him but nonetheless in his possession). Because quantum information is
not clone-able, we cannot require that the state be reconstructed publicly; instead,
the recovery phase also has a designated player, the reconstructor R. We require
that, despite any malicious actions by a coalition of up to t players:

• Soundness: As long as R is honest and the dealer passes the commitment phase
successfully, then there is a unique quantum state which can be recovered by R.

• Completeness: When D is honest, then he always passes the commitment phase.
Moreover, when R is also honest, then the value recovered by R is exactly D’s
input ρ.

1For quantum information, merely having a state in one’s possession in not the same as knowing
a description of it, since one cannot completely measure an unknown quantum state
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• Privacy: When D is honest, the adversaries learn no information about his input
until the recovery phase.

Note that the privacy condition in this informal definition is redundant, by the
properties of quantum information: any information adversaries could obtain about
the shared state would imply some kind of disturbance (in general) of the shared
state, which would contradict the completeness requirement. A formal definition of
security is given in Section 1.2.

Contributions The results of this thesis are based on unpublished joint work with
Claude Crépeau and Daniel Gottesman [CGS01]. In this thesis:

• We give a protocol for verifiable quantum secret sharing that tolerates any number
t < n/4 of cheaters.

• We show that this is optimal, by proving that vqss is impossible when t ≥ n/4.

• Based on techniques from fault-tolerant quantum computing, we use our vqss

protocol to construct a multi-party quantum computation protocol tolerating any
t < n/6 cheaters.

Our protocols run in time polynomial in both n, the number of players, and k, the
security parameter. The error of the protocols (to be defined later) is exponentially
small in k.

Beyond these specific results, there are a number of conceptual contributions of
this thesis to the theory of quantum cryptographic protocols.

• We provide a simple, general framework for defining and proving the security of
distributed quantum protocols in terms of equivalence to an ideal protocol involv-
ing a third party. This follows the definitions for classical multi-party protocols,
which have been the subject of considerable recent work [GL90, Bea91, MR91,
Can00, DM00, CDD+01, PW00, Can01, vdG97].

• The analysis of our protocols leads us to consider various notions of local “neigh-
borhoods” of quantum states, and more generally of quantum codes. We discuss
three notions of a neighborhood. The notion most often used for the analysis
of quantum error-correction and fault-tolerance is insufficient for our needs, but
we show that a very natural generalization—specific to so-called “css” codes, is
adequate for our purposes.

• Along the way, we provide modified versions of the classical sharing protocols
of [CCD88]. The key property these protocols have is that dealers do not need
to remember the randomness they use when constructing shares to distribute to
other players. This allows them to replace a random choice of coins with the
superposition over all such choices.

13



Organization The thesis is organized as follows. Chapter 1 contains the material
necessary for understanding the protocols of this thesis as well as their context. Sec-
tion 1.1 describes the previous work on the topics in this thesis, with emphasis on
the works whose results we use directly. In Section 1.2, we present a framework for
defining security of a distributed quantum protocol which involves interaction with a
trusted third party. We use this framework to formally define both verifiable quan-
tum secret sharing and multi-party quantum computation. Section 1.3 contains the
mathematical background for understanding our protocols, as well as results we use
from the existing literature. In Section 1.4, we introduce three definitions of the local
“neighborhoods” of a quantum code, in order to help the reader understand exactly
what properties our protocols guarantee and what properties are needed in our se-
curity analyses. Some additional relations between these three notions are shown in
Appendix A.

The protocols which are the main focus of this thesis are presented in Chapter 2.
One of the main proof techniques we use is a “quantum-to-classical reduction” (ter-
minology due to [LC99]). In Section 2.1, we illustrate this technique with a simple
protocol which achieves vqss for a small number of cheaters (t < n/8), and whose
analysis will prove insightful for the sequel. Section 2.2 uses a similar technique, but
applied to a modified version of the classical “verifiable blob” protocol of [CCD88],
to construct a vqss protocol secure against t < n/4 cheaters. In Section 2.3, we show
this is optimal by relating vqss protocols to error-correcting codes and applying the
quantum Singleton bound. Finally, we use our sharing scheme to contruct mpqc

protocol which tolerates any t < n/6 cheaters.

We conclude with some open questions related to our results (Chapter 3).

1.1 Previous Work

Classical mpc Most of the work on classical distributed protocols is based on secret
sharing, in which a message is encoded and shared amongst a group of players such
that no coalition of t players gets any information at all about the encoded secret, but
any group of t + 1 or more players can recover the secret exactly. The prototypical
and most commonly used solution to this is the polynomial sharing scheme due to
Shamir [Sha79]: choose a random polynomial p of degree at most t over Zp (for some
prime p > n) subject to p(0) = s, where s is the secret being shared. The share
given to player i is value p(i), for i = 1, ..., n. Note that for normal secret sharing we
assume that the shares are prepared honestly.

This assumption was removed in subsequent work: Multi-party computing, in
which no player may be assumed to be honest, was first treated explicitly by Gol-
dreich et al. [GMW87], although the subtask of verifiable secret sharing had been
investigated previously by Chor et al. [CGMA85]. Goldreich et al. [GMW87] proved
that under computational assumptions, secure multi-party evaluation of any function
was possible tolerating any minority of cheating players, i.e. for any t < n

2
.

Subsequently, Ben-Or et al. [BGW88] and Chaum et al. [CCD88] independently
proved that tolerating up to t < n

3
was possible without computational assumptions,

14



provided that one assumed that every pair of participants was connected by a secure
channel. Moreover, this bound is tight due to the impossibility of even agreeing
on a single bit when t ≥ n

3
(see Lynch [Lyn96], for example). The main difference

between the results of [CCD88] and those of [BGW88] is that the former allow a small
probability of error (exponentially small in the complexity of the protocol).

The bound of n
3

for information-theoretically secure mpc was broken by Rabin
and Ben-Or [RB89] and Beaver [Bea89], who showed that assuming the existence of
a secure broadcast channel, then one can in fact tolerate any minority (t < n

2
) of

cheaters without computational assumptions. Their protocols introduce a small error
probability, which is provably unavoidable [RB89]. The results of [RB89, Bea89] were
extended to the model of adaptive adversaries by Cramer et al. [CDD+99].

All of these protocols rely on verifiable secret sharing. Our solution draws most
heavily on the techniques of [CCD88]. The essential idea behind their vss protocol
is to share the secret using a two-level version of the basic scheme of Shamir (above),
and then use a cut-and-choose zero-knowledge proof to allow the dealer to convince
all players that the shares he distributed were consistent with a single polynomial
p(x).

Beyond these basic protocols, a line of work has focused on coming up with proper
definitions of multi-party computing [GL90, Bea91, MR91, Can00, DM00, CDD+01,
PW00, Can01]. Both [Can01] and [CDD+01] provide summaries of that literature.
Most of the research has focused on finding definitions which allow composability of
protocols, mainly focusing on multi-party computing (often referred to, more pre-
cisely, as secure function evaluation). In this work, we adopt a simple definition
(based on the initial definitions of Canetti). We do not prove any composition pro-
tocols, but simply ensure that the definition captures our intuition of security and is
provably achieved by our protocols. See Section 1.2 for further discussion.

Multi-party Quantum Protocols Relatively little work exists on multi-party
cryptographic protocols for quantum computers. Secret sharing with a quantum
secret was first studied by Cleve, Gottesman and Lo [CGL99]. They suggested a
generalization of the Shamir scheme, which is also used by Aharonov and Ben-Or
[AB99] as an error-correcting code. One of the contributions of [CGL99] was that to
point out the strong connection between secret sharing and error-correcting codes in
the quantum setting (see Section 1.3.2). Our vqss protocol is based on the [CGL99]
scheme, using a modification of the techniques of [CCD88] to ensure the consistency
of distributed shares.

There were some additional works on distributed quantum protocols. Gottesman
[Got00] showed that quantum states could be used to share classical secrets more
efficiently than is possible in a classical scheme. Chau [Cha00] proposed a scheme
for speeding up classical multi-party computing using quantum techniques; [Cha00]
also mentions the problem of verifiable quantum secret sharing as an open question.
The dissertation of van de Graaf [vdG97] discusses defining the security of classical
distributed protocols with respect to a quantum adversaries, but contains no con-
structions.
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Fault-tolerant Quantum Computing In our proposed solution, we also use tech-
niques developed for fault-tolerant quantum computing (ftqc). The challenge of
ftqc is to tolerate non-malicious faults occurring within a single computer. One
assumes that at every stage in the computation, every qubit has some probability p
of suffering a random error, i.e. of becoming completely scrambled (this corresponds
to the classical notion of random bit flips occurring during a computation). More-
over, errors are assumed to occur independently of each other and of the data in the
computation.

One can view multi-party computation as fault-tolerant computing with a different
error model, one that is suited to distributed computing. On one hand, the mpqc

model is weaker in some respects since we assume that errors will always occur in the
same, limited number of positions, i.e. errors will only occur in the systems of the t
corrupted players.

On the other hand, the error model of mpqc is stronger in some respects: in
our setting errors may be maliciously coordinated. In particular, they will not be
independently placed, and they may in fact depend on the data of the computation—
the adversaries will use any partial information known about the other players’ data,
as well as information about their own data to attempt to corrupt the computation.
For example, several ftqc algorithms rely on the fact that at certain points in the
computation, at most one error is likely to occur. Such algorithms will fail in a model
of adversarially placed errors.

Techniques from ftqc are nonetheless useful for multi-party computing. Con-
siderable research has been done on ftqc. We rely mainly on the techniques of
Aharonov and Ben-Or [AB99], which were based on those of Shor [Sho96]. Using
“css” quantum error-correcting codes, Shor showed that fault-tolerance was possible
so long as the error rate in the computer decreased logarithmically with the size of the
computation being performed. Aharonov and Ben-Or showed that by using concate-
nated coding, one could in fact tolerate a constant error rate. They also introduced
generalized css codes in which the individual pieces of a codeword are assumed to be
higher-dimensional systems, such as collections of several qubits (this corresponds to
using larger alphabets in classical coding theory).

Provably Secure (and Insecure) Quantum Protocols While quantum crypto-
graphic protocols have existed for some time, many of them have been proven secure
only recently. The first proofs of security appeared in the context of entanglement
purification protocols [BBP+96, DEJ+96, LC99]. In a different line of work, Mayers
[May98] provided a notoriously difficult proof that the Bennett-Brassard key distri-
bution scheme was secure. Unifying these two lines of research, Shor and Preskill
[SP00] proved the correctness of the Bennett-Brassard [BB84] key distribution pro-
tocol, based on a previous proof of a purification-based protocol due to Lo and Chau
[LC99]. The main insight of [LC99] was that in certain situations, proving the secu-
rity of a quantum protocol could be reduced to classical probability arguments, since
one could assume without loss of generality that the adversary followed one of a finite
number of classical cheating strategies (a so-called “quantum-to-classical reduction”).
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A similar technique is used in [BCG+01] to prove the correctness of a scheme for au-
thenticating quantum transmission. This technique will also be useful for proving the
soundness of our protocol, as it will allow us deal with possible entanglement between
data and errors by “reducing” them to classical correlations.

Note that for protocols where the adversary is one of the participants in the
system and not an outside eavesdropper, much less is known. Some proofs were
also attempted for tasks such as bit commitment [BCJL93], but those proofs were
later discovered to be flawed, since bit commitment was proven impossible [May96,
LC97a, May97, LC96, LC97b, BCMS98]. There have also been several works on
quanutm coin-tossing. Although arbitrarily small error is known to be impossible,
several works have focused on reducing the error as much as possible [LC96, MS99,
ATVY00, Amb01]. Yet another line of work has focused on how to achieve certain two-
party tasks using computional assumptions, i.e. assuming that there exist (quantum)
one-way permutations [DMS00, CLS01].
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1.2 Definitions

This section describes a simple framework for proving the security of distributed
quantum cryptographic protocols. The defintions are based on the initial framework
of Canetti [Can00], as well as on discussions in the dissertation of van de Graaf
[vdG97]. We describe two models for protocols. The first one–the “real” model—
describes the environment we ultimately expect our protocols to run in. The second
model is idealized model in which players can interact with an incorruptable outside
party. We will prove our “real-model” protocols secure by showing that they are
equivalent to a simple protocol for the ideal model which captures our notion of what
security means for a given task.

We provide no general composition theorems in this work. Instead, we simply
prove the security of our composed protocols directly.

1.2.1 “Real” Model for Protocols

For the protocols in this paper, we assume that every pair of players is connected
by perfect (i.e. authenticated, secret) quantum and classical channels. Moreover, we
assume that there is a classical authenticated broadcast channel to which all players
have access. Because we will consider settings where t < n

4
< n

3
, we can also assume

that players can perform classical multi-party computations [BGW88, CCD88]2.
The adversary is an arbitrary quantum algorithm (or family of circuits) A. We

make no assumptions about the computational power of the adversary; he is limited
only by the number of players t that he can corrupt.

The initial configuration for the protocol is the joint state ρ of n + 2 quantum
systems: an input system Ii for each player in the protocol (i = 1, ..., n), as well
as the adversary’s auxiliary input system Iaux and an outside reference system Iref
(which will remain untouched throughout the protocol). Note that the input can be
an arbitrary quantum state, possibly entangling all these systems.

A run of a “real model” protocol begins with all players receiving their input
system Ii and the adversary receiving the state Iaux. The adversary then chooses
a subset C of size at most t of players to corrupt. From then on, the adversary
has access to the state of the players in C and controls what they send over the
channels. The adversary may cause the cheaters’ systems to interact arbitrarily. His
only restriction is that he has no access to the state of the honest players, and cannot
intercept their communication. The reference system Iref is untouched during this
process.

At the end of the protocol, all players produce an output (for honest players, this
is the output specified by the protocol). The system output by player i is denoted Oi.
Moreover, the adversary outputs an additional system Oaux. The output configuration
for the run of the protocol is the joint state of O1, ...,On, the adversary’s state Oaux

and the reference system Iref . This state depends on the adversary A and the initial

2In fact, even the assumption of a broadcast channel is unnecessary but (since t < n
3
) but is made

for simplicity.
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configuration ρ, and is denoted Real(A, ρ). Note that this configuration does not
include any ancillary states or workspace used by honest players, only the output
specified by the protocol (i.e. all other parts of the honest players’ systems are
“traced out”).

1.2.2 “Ideal” Model For Protocols

The main difference of the ideal model from the real model is that there is a trusted
third party (denoted T T P) who helps the players in the execution of some protocol.
The communications model is the same as before, except that every player is con-
nected to T T P via a perfect (i.e. authentic, secret) quantum channel. There is no
need to assume a broadcast channel since players can simply give a classical value to
T T P and ask that it be re-sent to all players.

As before, the initial configuration consists of n systems Ii containing the players’
inputs as well as the two systems Iaux and Iref . The T T P gets no input. The
protocol proceeds as in the real model, except that players may interact with the
T T P , who may not be corrupted by the adversary. Finally, the output configuration
is the same as before. The final state of the T T P is not included in the output
configuration. The output configuration for adversary A and initial configuration ρ
is denoted Ideal(A, ρ).

1.2.3 Protocol Equivalence

Suppose we have a protocol π which is supposed to implement some ideal functionality
f , that is f is an ideal model protocol and π is an attempt to implement it in the
real model.

Informally, we say π implements f if the input/output behavior of π cannot be
distinguished from that of f . Formally:

Definition 1 (Perfect security). A protocol π is considered perfectly secure if for
all adversaries A1, there exists an adversary A2, running in time polynomial in that
of A1, such that for all input configurations ρ (possibly mixed or entangled), we have:

Real(A1, ρ) = Ideal(A2, ρ)

The protocols we design do not in fact achieve this strong notion of security.
Instead, they take a security parameter k as input. All players receive the classical
string 1k as part of their input (in the ideal model, so does the T T P). Moreover, the
inputs may additionally depend on k (in particular, we allow the adversary’s auxiliary
input to depend on k). Since honest players should be polynomial-time quantum
circuits, the protocol will run in time polynomial in k, although the adversary need
not.

Definition 2 (Statistical security). A protocol π is considered statistically secure
if for all adversaries A1, there exists an adversary A2, running in time polynomial in
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that of A1, such that for all sequences of input configurations {ρk} (possibly mixed
or entangled), we have:

F
(
Real(1k,A1, ρk), Ideal(1

k,A2, ρk)
)
≥ 1 − 2−k,

where F denotes the fidelity of two quantum density matrices.

Simulators Our definition asks us to construct a new adversary A2 for every real
adversary A1. To do so, we will follow the standard cryptographic paradigm of
constructing a simulator S who uses A1 as a black box. Thus we can write A2 = SA1 .
We can view S as an “interface” between the real-world adversary and the ideal-model
protocol [vdG97]: S exchanges messages with A1, but must also control the corrupted
parties in the ideal-model protocol.

When A2 is constructed in this way, then the definition above can be restated:
Suppose that at the end of the protocol the adversary gains access to the outputs of
the honest players. There should not exist a real-world adversary A1 that can tell
the difference between (a) a run of the real protocol and (b) a run of the ideal-model
protocol with S as an interface. We will construct simulators for our protocols in
Section 2.2.6 and Section 2.4.2.

1.2.4 Static versus Adaptive Adversaries

In this thesis, we consider only static adversaries, who choose the parties they will
corrupt before the beginning of the protocol and remain with that choice. On the
other hand, an adaptive adversary chooses which players to corrupt as the protocol is
progressing. The set of corrupted parties is still monotone—we do not allow a player
to become honest again once he has been corrupted3—but the adversary can base his
decision on the message he is seeing in the protocol. For example, if the players were
to elect a small group of participants to make some decision amongst themselves, an
adaptive adversary could wait until the selection had been made and then corrupt the
members of that small group. Proving protocols secure against adaptive adversaries
has been problematic even in the classical setting [CFGN96, CDD+99].

Choosing to handle only static adversaries simplifies the definitions and proofs
considerably, and offers no real loss of intuition. Nonetheless, we believe that the
protocols we describe here are secure against adaptive adversaries, assuming that the
environment in which the protocol is running somehow records which parties were
corrupted and in what order (it is unclear what adaptivity even means without such
an assumption). In Section 2.1.2, we discuss briefly how some of the proofs could be
extended to handle adaptivity (see Remark 4, p. 38).

3An adversary who corrupts players dynamically is called a mobile adversary, and protocols for
handling such adversaries are called pro-active.
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1.2.5 Multi-party Quantum Computation

We define multi-party quantum computation by giving an ideal-model protocol for
that task. Simply put, all players hand their inputs to the trusted party, who runs the
desired circuit and hands back the outputs. Note that the only kind of cheating which
is possible is that cheaters may choose their own input. In particular, cheaters cannot
force the abortion of the protocol. One possible extension of this work is to consider
protocols where cheaters may not compromise the correctness of the computation but
might force the protocol to stop before completion (see Open Questions, Chapter 3).

Protocol 1 (Multi-party Quantum Computation—Ideal Model).

Pre: All players agree on a quantum circuit U with n inputs and n outputs(for simplicity,
assume that the ith input and output correspond to player i).

Input: Each player gets an input system Si (of known dimension, say p).

1. (Input Sharing) For each i, player i sends Si to T T P . If T T P does not receive
anything, then he broadcasts “Player i is cheating” to all players. Otherwise, T T P
broadcasts “Player i is OK.”

2. (Computation) T T P evaluates the circuit U on the inputs Si. For all i who cheated,
T T P creates Si in a known state (say |0〉).

3. (Output)

(a) T T P sends ith output to player i.

(b) Player i outputs the system he receives from T T P .

Figure 1-1: Protocol 1 (Multi-party Quantum Computation—Ideal Model)

1.2.6 Verifiable Quantum Secret Sharing

Providing a definition verifiable quantum secret sharing is trickier than it is for multi-
party computing. The idea of the ideal protocol is simple. In the sharing phase, the
dealer gives his secret system to the trusted party. In the reconstruction phase, the
T T P sends the secret system to the reconstructor R.

However, a problem arises because vqss is a two phase task, and the formalism we
established in the preceding sections only describes one-phase protocols, which have
a simpler input/output behaviour. For example, if all we required of vqss is that
the reconstructor’s output be the same as the dealer’s input, we could simply have
D send his secret system to R without violating the definition—a clear indication
that such a definition would be insufficient. For the purposes of this thesis, we adopt
a simple modification of the definition of the preceding sections which allows us to
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describe vqss: instead of giving all inputs to the parties at the beginning of the run
of the protocol, some inputs are not given to the parties until the beginning of the
reconstruction phase.

Specifically, two of the inputs are delayed. First, players learn the identity of the
reconstructor R only at the beginning of the reconstruction phase (note that this
doesn’t stop the adversary from knowing R since the definition requires security for
all adversaries and input sequences). Second, the adversary also receives a second

auxiliary input I(2)
aux at the beginning of the reconstruction. This allows us to capture

any side information gained by the adversary during interactions which occur between
the end of the sharing phase and the beginning of the reconstruction phase.

The ideal-model protocol we obtain is given in Figure 1-2. The definition of
security we will use for this two-phase model is essentially the same as for the one-
phase model. An input configuration ρ consists of player identities D and R, a
secret system S and the two auxiliary inputs Iaux and I(2)

aux. We require that for
all adversaries A1, there exists an adversary A2 such that for all sequences of input
configurations {ρk}k∈N

, the fidelity of the output of the real protocol to the output of
the ideal protocol is exponentially close to 1.

Protocol 2 (Verifiable Quantum Secret Sharing—Ideal Model).

• Sharing Phase:

1. Inputs: All players get D’s identity. Dealer D gets a qupit S (i.e. a p-dimensional
system, where p is a publicly agreed-upon integer).
(Adversary also gets his auxiliary input Iaux.)

2. D sends the p-dimensional system S to T T P . If D fails to send S, then T T P
broadcasts “D is cheating” to all players. Otherwise, T T P broadcasts “OK”.

• Reconstruction Phase:

1. Inputs: All players get R’s identity.

(Adversary also gets his second auxiliary input I(2)
aux.)

2. If D did not cheat in the sharing phase, T T P sends S to the receiver R.

Figure 1-2: Protocol 2 (Verifiable Quantum Secret Sharing—Ideal Model)
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1.3 Mathematical Preliminaries

We assume that the reader is familiar with the basic notation and formalism of quan-
tum computing. For an introduction, the reader should refer to a textbook such as
Nielsen and Chuang [NC00].

For most of this paper, we will work with “qupits”, that is p-dimensional quantum
systems, for some prime p. It is natural to view the elements of the field F = Zp as
a basis for the state space of a qupit.

In our settings, it will be useful to choose p so that n < p. We need not choose p
very big for this, since there is always a prime between n and 2n. However, all of our
protocols will remain polynomial time even when p is exponential in n. That is, the
complexity of the protocols will be polynomial in log |F | = log p.

Just as for the case of qubits, there are a few natural operators on qupits which
we will use extensively in this paper.

The shift and phase operators for qupits (sometimes denoted σx, σz) are defined
analogously to the case of qubits:

X|a〉 7→ |a+ 1 mod p〉 and Z|a〉 7→ ωa|a〉,

where ω = e2πi/p. These two operators generate the Pauli group. Since they have a
simple commutation relation (XZ = ωZX), any element of the group is proportional
to some product XxZz for x, z ∈ {0, ..., p− 1}. As for qubits, the p2 operators XxZz

form a basis for the space of p× p complex matrices, and so any unitary operator on
qupits can be written as a linear combination of Pauli matrices. In particular, this
is useful since means that correcting Pauli errors in a quantum code is sufficient for
correcting arbitrary errors. In the context of errors, X is called a shift error and Z
is a phase error.

For registers of qupits, the Pauli matrices are tensor products of Pauli matrices
acting on individual qupits. If x = (x1, ..., xn) and y = (y1, ..., yn) are vectors in
Znp , then XxZz denotes Xx1Zz1 ⊗ · · · ⊗XxnZzn. These form a basis for the space of
operators on the register. The set of positions on which a Pauli matrix does not act
as the identity is called its support, and is equal to the union of the supports of x and
z. The number of such positions is called the weight of the operator.

Fourier Rotations Another transformation which arises often is the Fourier trans-
form on qupits, which generalizes the Hadamard rotation on qubits.

F|a〉 7→
∑

b∈Zp

ωab|b〉

This is called a Fourier rotation since its effect on the p-dimensional vector of coeffi-
cients of the state of a qupit is exactly that of the Fourier transform over the group
Zp. Consequently, phase changes become shifts in this new basis, and conversely:

FX = ZF and FZ = X−1F
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A useful property of the Fourier transform is that linear transformations remain
linear after the change of basis. Specifically, let V be an invertible n× n matrix over
Zp. Let V denote the corresponding unitary operator on a register of n qupits, i.e

Ṽ |x〉 = |Vx〉. Then in the Fourier basis, this looks like a different linear map, given

by the matrix (V −1)>. That is F ṼF−1 = ˜(V −1)>).
The main feature we will use is simply that the transformation remains a linear

permutation of the basis vectors. There is one very useful special case. For controlled
addition (denoted c-X), which maps |a, b〉 7→ |a, a + b〉, conjugating by a Fourier
rotation yields another controlled-addition, applied in the opposite direction and with
a scaling factor of −1 (i.e. |a, b〉 7→ |a− b, b〉).

1.3.1 Quantum Error-Correction

A quantum error-correcting code is a way of encoding redundancy into quantum
information to allow correction of errors which occur during transmission or storage.
An [[n, k, d]] quantum code encodes k qubits into n qubits (for n ≥ k) and corrects any
(arbitrary) error which affects less than d

2
positions in the code. The most resilient

quantum codes actually work over higher-dimensional subspaces, i.e. each “position”
in the code consists of a qupit. Recall that we work with qupits of dimension p, where
p is some prime greater than n.

Css Codes An important family of quantum codes are the css codes (due to
Calderbank-Shor [CS96] and Steane [Ste96]). A css code over n qupits is defined
by two classical linear codes V and W over Zp, both of length n. They are chosen
such that V ⊥ ⊆W , where V ⊥ is the dual of V with respect to the standard dot prod-
uct v ·w =

∑n
i=1 viwi. Note that we automatically also have W⊥ ⊆ V . The quantum

code C is then the set of states |ψ〉 which would yield a codeword of V if they were
measured in the computational basis ({|0〉, |1〉, ..., |p− 1〉}), and yield a codeword of
W if they were measured in the Fourier basis ({F|0〉, ...,F|p− 1〉}).

Now for any given system of n qupits and any linear subspace W ≤ F n, we define

W (q) = span{|w〉 : w ∈W}.

If we denote by F⊗n the parallel application of F to all qubits of an n-qubit register,
then we have:

C = V (q) ∩ FW (q)

The dimension of C as a code, i.e. number of qupits it can encode, is simply
dim(V/W⊥) = dimV − dimW⊥. For convenience, we will denote V0 = W⊥ and
W0 = V ⊥, and so the formula for the number of qupits encoded becomes dimV −
dimV0 = dimW − dimW0.

Minimum Distance To correct an arbitrary error on a subset A of positions (A ⊆
{1, ..., n}), it turns out that it is sufficient (and necessary) to be able to correct Pauli
errors, i.e. compositions of shift and phase errors applied to the qupits in A. Thus,
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to correct errors on any t positions it suffices to correct all Pauli errors of weight at
most t. A sufficient condition is that the spaces {EC} be mutually orthogonal, where
E ranges over all Pauli operators of weight at most t. In such a case, one can correct
any of these errors E on a codeword |ψ〉 by performing a measurement that identifies
which of these subspaces contains the corrupted codeword E|ψ〉, and then applying
the correction E−1. This can be rephrased: for all Pauli operators of weight at most
2t, EC and C should be orthogonal spaces. The minimum distance of a quantum code
C is thus the weight of the smallest Pauli operator for which this is not true.

Definition 3. The minimum distance of a quantum code C is the weight of the small-
est Pauli operator such that C and EC are not orthogonal.

By the previous discussion, a code with distance d can correct arbitrary errors
on any b(d− 1)/2c positions. For css codes, there is a simple way to calculate the
minimum distance:

Fact 1.1. Let V,W be classical codes with minimum distances d1 and d2 such that
V ⊥ ⊆ W . Then the quantum css code C = V (q) ∩ FW (q) has minimum distance at
least min(d1, d2).

4

Syndromes and Error Correction Given a classical linear code V of dimension
k, the syndrome for V is a linear function from n bits to n − k bits that indicates
which coset of V contains its argument. If V has distance at least 2t + 1 and a
codeword v ∈ V is altered in t or fewer positions, then the syndrome of the corrupted
word v + e allows one to compute the correction vector −e. We will let V -syndrome
denote the syndrome with respect to V . Note that computing the V -syndrome is
easy. Fix a basis {v1, ...,vn−k} of the dual code V ⊥. The V -syndrome of w is the
vector (v1 · w, ...,vn−k · w).

This is the basis for the error correction procedure for css codes. Suppose that
E = XxZz, and both x and z have support on at most t positions. Let |ψ〉 ∈ C. Since
|ψ〉 lies in V (q), measuring the V -syndrome of E|ψ〉 (in the computational basis) allows
one to compute the vector x, and apply the correction X−x. Similarly, measuring
the W -syndrome in the Fourier basis allows one to compute z and apply Z−z, thus
recovering |ψ〉. The two measurements commute, so in fact it does not really matter
which one is applied first.

The pair of measurement results used, namely the V -syndrome in the computa-
tional basis and the W -syndrome in the Fourier basis, are referred to together as the
quantum syndrome. If the syndromes are s1 and s2 pits long respectively, then there
are ps1+s2 possible quantum syndromes. This divides the whole space CZn

p into ps1+s2

orthogonal subspaces indexed by the set of equivalence classes of Pauli operators.
That is, two Pauli operators E,E ′ are deemed equivalent if EC = E ′C; and the space
CZ

n
p can be written as the direct sum of the orthogonal spaces {EjC}j∈J , where J is

4In fact, the minimum distance of C is the minimum of the weights of the lightest vectors in

V − V0 and W −W0. These are bounded below by the minimum distances d1, d2, and the bound is

tight for the codes used in this paper.
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a set of indices which contains exactly one element from each equivalence class. For
a css code, two Pauli operators XxZz and Xx

′

Zz
′

will be equivalent if and only if x
and x′ are in the same coset of V , and z and z′ are in the same coset of W .

Note that the dimension of the code can also be written as n− s1 − s2.

Quantum Reed-Solomon Codes In this work we will use a family of css codes
known as “quantum polynomial codes” or “quantum Reed-Solomon codes”. These
were introduced by Aharonov and Ben-Or [AB99], and generalize classical Reed-
Solomon codes.

In this paper, we will specify a quantum RS code by a single parameter δ <
(n − 1)/2, which represents the degree of the polynomials used in the code. The
corresponding code C will encode a single qupit and correct t =

⌊
δ
2

⌋
errors. For

simplicity, choose δ = 2t. We will always choose the number n of players to be either
2δ + 1 or 3δ + 1.

If n is the number of players, choose any p such that p > n (5). We will work
over the field F = Zp. The classical Reed-Solomon code V δ is obtained by taking the
vectors

q̂ = (q(1), q(2), . . . , q(n))

for all univariate polynomials q of degree at most δ. The related code V δ
0 is the subset

of V δ corresponding to polynomials which interpolate to 0 at the point 0. That is:

V δ = {q̂ : q ∈ F [x] : deg(q) ≤ δ}
V δ

0 = {q̂ : deg(q) ≤ δ and q(0) = 0} ⊆ V δ

The code V δ has minimum distance d = n−δ. Moreover, errors (up to b(n− δ − 1)/2c
of them) can be corrected efficiently, given the syndrome of the corrupted word.

Note that by the non-singularity of the Vandermonde matrix (i.e. polynomial
interpolation), there exists a vector d = (d1, . . . , dn) ∈ F n such that d>f̂ = f(0) for
any f ∈ F [x] and deg(f) < n.

Fact 1.2. Let δ′ = n− δ − 1. The duals of the codes V δ, V δ
0 are

W δ′ = (V δ
0 )⊥ = {(d1q(1), ..., dnq(n)) : deg(q) ≤ δ′}

W δ′

0 = (V δ)⊥ = {(d1q(1), ..., dnq(n)) : deg(q) ≤ δ′ and q(0) = 0}

Thus the dual of a Reed-Solomon code of degree δ is another RS code with degree δ′,
but where each component has been “scaled” according to some constant di. One can
also show that di 6= 0 for all i.

The code C for parameter δ (occasionally written Cδ) is the css code obtained
from codes V = V δ and W = W δ′ . As mentioned before, it encodes a single qupit
since dimV = δ+ 1 and dimW⊥ = δ. Moreover, the minimum distance of V is n− δ
and the minimum distance of W is δ + 1. Thus, for δ < (n − 1)/2 we get that the
minimum distance of C is at least δ + 1, and it corrects at least t = δ/2 errors.

5In fact, the construction can be changed to allow p = n.
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The encoding we obtain can be described explicitly. Let V δ
a = {q̂ : deg(q) ≤

δ and q(0) = a}. Then for any qupit in a pure state |ψ〉 =
∑

a∈F αa|a〉, the encoded
version is (ignoring normalization constants):

E|ψ〉 =
∑

a

αaE|a〉 =
∑

a

αa
∑

v∈V δ
a

|v〉 =
∑

a

αa
∑

q:deg(q)≤δ, q(0)=a
|q(1), ..., q(n)〉

Note that the circuit for encoding is very simple: consider the linear map which
takes the coefficients of a polynomial of degree at most δ and maps it to the vector
q(1), ..., q(n). Then placing |ψ〉 in the position of the constant coefficient and ini-
tializing all other coefficients to the equal superposition

∑
a |a〉 will yield the output

E|ψ〉.

Correction, Detection and Erasures As mentioned above, the classical RS codes
have efficient decoding algorithms for identifying and decoding the maximum number
of errors which is information-theoretically possible, i.e. t where d = 2t + 1 is the
minimum distance. Consequently, so do the quantum polynomial codes, since for css

codes one simply corrects errors in each of the two bases.

They can also detect up to 2t errors, at the expense of correction. Simply measure
a received codeword to see if its syndrome is 0. If a non-zero Pauli operator of weight
less than d has been applied to the word, the syndrome will be non-zero, and the
error will be detected. For an arbitrary error of weight less than d, the projection of
the corrupted word onto the code will be exactly the original codeword.

Remark 1. In some of our protocols, we will want to detect a large number of errors,
but still be able to correct a small number. Suppose that we have identified b positions
which are known to be corrupted (for example, say they have been erased). Then the
quantum polynomial code will be able to identify t further errors, and will able to
correct them if there are at most t− b.

(That is, the punctured code (i.e. restricted to the n − b non-erased positions)
has distance 2t+ 1− b. Given a corrupted word, one can tell if it is within t− b of a
codeword, and correct such errors. If it is not within distance t−b of a codeword, then
more errors occurred. However, as long as less than t errors occurred, the corrupted
word will not be within t− b of anything but the correct codeword, since t+ (t− b)
is less than the new minimum distance).

1.3.2 Sharing Quantum Secrets and (No) Cloning

One of the fundamental theorems of quantum information theory is that an arbitrary
quantum state cannot be cloned. In fact, one can say more: if there is a process with
one input and two outputs, then if one of the outputs is a copy of the input, the
other output must be independent of the input. We’re not sure to whom this result is
attributable but it has certainly become folklore.
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Fact 1.3 (No cloning, folklore). Let U : Hm⊗HW −→ HA⊗HB (6) be a unitary
transformation such that for all |ψ〉 ∈ Hm:

U(|ψ〉 ⊗ |W 〉) = |ψ〉 ⊗ |ϕ|ψ〉〉

where |W 〉 is some fixed auxiliary state (work bits). Then |ϕ|ψ〉〉 does not depend on
|ψ〉.

An important consequence of this was first pointed out by Cleve, Gottesman and
Lo [CGL99]: any quantum code is a scheme for sharing quantum secrets: A distance d
code can correct d−1 erasures, and so access to any n−d+1 (uncorrupted) positions
suffice to recover the encoded state; on the other hand, that means that any set of
d − 1 positions must reveal no information at all about the encoded state. That is,
the density matrix of any d− 1 positions is completely independent of the data.

Note that this phenomenon has no simple classical analogue: any position of a
classical error-correcting code will leak information about the data unless the encoding
process is randomized. This additional step is not necessary in the quantum setting
since the randomness is somehow “built in.”

1.3.3 Tools from Fault-Tolerant Quantum Computing

In our proposed solution, we also use techniques developed for fault-tolerant quan-
tum computing (ftqc). The challenge of ftqc is to tolerate non-malicious faults
occurring within a single computer. One assumes that at every stage in the computa-
tion, every qubit has some probability p of suffering a random error, i.e. of becoming
completely scrambled (this corresponds to the classical notion of random bit flips oc-
curring during a computation). Moreover, errors are assumed to occur independently
of each other and of the data in the computation. See Section 1.1 for a discussion
of the difference between ftqc and mpqc. In this section, we review a number of
useful results from ftqc. These come from [Sho96, AB99, GC99].

Universal Sets of Gates The usual technique behind fault-tolerant computing
(both classical and quantum) is to design procedures for applying one of a small
number of gates to logical (i.e. encoded) values, without having to actually decode
the values and then re-encode them. That is, given the encoding state |ψ〉, we want
a simple procedure which returns the encoding of state U |ψ〉.

Thus, it is useful to find a small set of gates which is universal, i.e which suffices
to implement any desired function7. One can then simply design fault-tolerant pro-
cedures for implementing these gates, and compose them to obtain a fault-tolerant
procedure for any particular function.

6Note that in fact the mW system and the AB system are one and the same. The two labelings

simply reflect a different partitioning of the system.
7In fact, it is impossible to find a finite set which can implement any unitary operation perfectly.

However, one can approximate any unitary operation on a constant number of qubits to accuracy ε
using O(poly log 1

ε
) gates from a “universal” set, i.e. one which generates a group which is dense in

the space of all unitary operators.
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For qupits of prime dimension p, Aharonov and Ben-Or [AB99] showed that the
following set of gates is universal:

1. Generalized NOT (a.k.a. X): ∀ c ∈ F , |a〉 7−→ |a + c〉,
2. Generalized CNOT (Controlled Addition): |a, b〉 7−→ |a, a+ b〉,
3. Swap |a〉|b〉 7−→ |b〉|a〉,
4. Multiplication gate: 0 6= c ∈ F : |a〉 7−→ |ac〉,
5. Phase Shift (a.k.a. Z): ∀c ∈ F |a〉 7−→ wca|a〉,
6. Generalized Hadamard (Fourier Transform): |a〉 7−→ 1√

p

∑
b∈F w

rab|b〉, ∀0 < r < p.

7. Generalized Toffoli: |a〉|b〉|c〉 7−→ |a〉|b〉|c+ ab〉,

Beyond these, in order to simulate arbitrary quantum circuits one should also be
able to introduce qupits in some known state (say |0〉), as well as to discard qupits.
Note that these are sufficient for simulating measurements, since one can simply apply
a controlled-not with a state |0〉 as the target and then discard that target.

Transversal Operations Fortunately, several of these gates can be applied transver-
sally, that is using only “qupit-wise” operations. These are important since they
correspond to operations performed locally by the players in a multi-party protocol,
if each player shares has one component of an encoded state.

For example: in any css code, the linear gate |a, b〉 7−→ |a, a+ cb〉 can be applied
to two encoded qupits by applying the same gate “qupit-wise” to the two codewords.
For any css code, the gates 1 through 5 from the set above can be implemented
transversally [Sho96, AB99].

Remark 2. Another operation which can almost be performed transversally is mea-
surement in the computational basis. The encoding of a classical state |s〉 in a css

code is the equal superposition of all the words in some particular coset of V0 = W⊥

within V . Thus, measuring all the qupits of the encoding of |s〉 will always yield
a codeword from that coset. Similarly, measuring all the qupits of the encoding of∑

s αs|s〉 will yield a word from the coset corresponding to s with probability |αs|2.
This operation is not quite transversal since after the qupit-wise measurement, the
classical information must be gathered together in order to extract the measurement
result. Nonetheless, the quantum part of the processing is transversal, and this will
be good enough for our purposes.

Transversal Fourier Transforms and the Dual Code In general, applying the
Fourier transform transversally to a codeword from a css code C does not yield a
word from that code. Instead, one obtains a word from the “dual code” C̃. If C is
defined by the classical codes V and W , then C̃ is the css code obtained using the
codes W and V . A natural choice of encoding for the dual code yields the following
relation:

F⊗nEC|ψ〉 = ECδ′ (F|ψ〉)

29



where EC and ECδ′ are the encoding operators for C and Cδ′ respectively.
For polynomial codes of degree δ, recall that there is related degree δ′ = n− δ−1.

As one can observe from the dual codes W δ′ ,W δ′

0 , the dual code C̃δ is a “mangled”
version of the code Cδ′ . In fact, by scaling each Fourier transform with the (non-zero)
factor di, one obtains:

FdECδ |ψ〉 = ECδ′ (F|ψ〉)
Note that when n is exactly 2δ+ 1, the codes Cδ and Cδ′ are the same, and so the

Fourier transform on encoded data can in fact be applied transversally: FdECδ |ψ〉 =
ECδ (F|ψ〉).

Transversal Reductions to Degree Reduction for δ < n/3 As mentioned
above, the only operations that cannot, in general, be performed transversally on
Reed-Solomon codes are the Fourier transform and Toffoli gate. However, when δ is
less than n/3, [AB99] reduces both of them to the problem of degree reduction, which
involves mapping the encoding of |ψ〉 under the dual code Cδ′ to the encoding of |ψ〉
under the original code Cδ.

For the Fourier transform, the reduction is obvious: we showed above that by per-
forming (scaled) Fourier transforms transversally to ECδ

|ψ〉, one obtains ECδ′
(F|ψ〉).

Thus, performing degree reduction would produce ECδ
(F|ψ〉), which is the desired

result.
For the Toffoli gate, note that δ < n/3 implies that δ′ = n − δ − 1 is at least

2δ. The underlying idea is simple: suppose we have three polynomials p, q, r of
degree such that p(0) = a, q(0) = b and r(0) = c. Take the polynomial r′ given by
r′(i) = r(i) + p(i)q(i) for all i = 1, ..., n. First, note that if p, q have degree at most δ
and r has degree at most δ′ ≥ 2δ, then deg(r′) < δ′. Moreover, if p, q, r are random
polynomials subject to the above constraints, then p, q, r′ will also form a random
triple of polynomials, which interpolate to the values a, b, c+ ab.

To map this to a procedure for implementing the Toffoli gate, suppose that we
have the encodings of |a〉 and |b〉 using the code Cδ. Suppose that we also have the
encoding of |c〉 using the related code Cδ′ . By applying the Toffoli gate qupit-wise,
we obtain the encoding of c+ ab under the related code:

ECδ |a〉ECδ |b〉ECδ′ |c〉 7−→ ECδ |a〉ECδ |b〉ECδ′ |c+ ab〉

Thus, to implement the Toffoli gate fault-tolerantly it is sufficient to have an
implementation of the two maps ECδ |ψ〉 7−→ ECδ′ |ψ〉 and ECδ′ |ψ〉 7−→ ECδ |ψ〉. Note
that this is equivalent to having a procedure for just one map ECδ′ |φ〉 7−→ ECδ |φ〉,
since one can simply apply the Fourier transform first and its inverse afterwards to
reverse the direction.

Implementing Degree Reduction The circuit we use for degree reduction is due
to Gottesman and Bennett [Got] (based on [GC99]), and is much more efficient than
the original one proposed in [AB99]. Begin with the state to be transformed (call this
system H1) and an ancilla in state ECδ |0〉 (called H2).
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1. Apply controlled addition from H1 to H2.

2. Apply the scaled Fourier transform transversally to H1.

3. Measure H1 in the computational basis, obtaining b.

4. Apply a conditional phase shift with scaling factor −b to H2.

The effect of this on the basis state EC|a〉 (for a ∈ Zp) is:

EC|a〉EC̃|0〉 7→ EC|a〉EC̃|a〉 7→
∑

b

ωabEC|b〉EC̃|a〉

7→ ωabEC̃|a〉(with b known) 7→ EC̃|a〉

This procedure in fact works for arbitrary linear combinations (intuitively, this is
because the measurement result b yields no information about a).

Note that this entire procedure can be performed transversally except for the
measurement step. However, as noted above (Remark 2), measurement requires only
classical communication between the components (namely, each component is mea-
sured and the classical decoding algorithm for the code V δ′ is applied to the result).

1.4 Neighborhoods of Quantum Codes

One of the ideas behind classical multi-party computing protocols is to ensure that
data is encoded in a state that remains “close” to a codeword, differing only on those
positions held by cheaters, so that error correction and detection can be used to
correct any tampering, or at least detect it and identify its origin.

For classical codes, the notion of closeness is clear: the set of positions on which
a real word v differs from a codeword provides a lot of information; in particular, the
size of this set is the Hamming distance of v from the code. As long as the minimum
distance of the code is at least 2t, ensuring that v differs from a codeword only on
the positions held by cheaters means that any errors introduced by cheaters will be
correctable.

Given a set B of cheaters (B ⊆ {1, ..., n}), we define:

WB = {v : ∃w ∈W s.t. supp(v − w) ∈ B}
= {v : ∃w ∈W s.t. v differs from w only on positions in B}

Equivalently, one can define WB as the set of words obtained by distributing a
(correct) codeword to all players, and then having all players send their shares to
some (honest) receiver/reconstructor.

Remark 3. VB is a linear code, and its dual is exactly the set of words in V ⊥ which
have support included in the complement of C (say A = {1, ..., n}\B). In particular,
this means that if one wants to measure the VB-syndrome, one only needs access to
positions in A.
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For quantum codes, the situation is more complex. For a css code C, there is
more than one natural definition of the neighborhood corresponding to a set B of
positions. Let H = H1 ⊗ · · · ⊗Hn be partitioned according to two sets A,B, so that
H = HA⊗HB. We consider three definitions of an “B-neighborhood” of C. Let ρ be
an arbitrary state of H.

For a mixed state given by density matrix ρ′, we say ρ′ is “in” C if all states in the
mixture lie in C (no matter how the mixture is written). Algebraically, this is given
by the condition Tr(PCρ

′) = 1 where PC is the projector onto the subspace C.8

1. ρ differs from a state in C only by some super-operator local to B:

NB(C) = {ρ : ∃ρ′ in C, ∃O super-operator, acting only on HB s.t. ρ = O(ρ′)}

2. ρ is cannot be distinguished from a state in C by looking only at positions in A.
Algebraically, this is captured by requiring that the density matrix obtained by
“tracing out” the positions in B be the same as for some state in the code (the
notation ST stands for “same trace”):

STB(C) = {ρ : ∃ρ′ in C s.t. TrB(ρ) = TrB(ρ′)}

3. Specifically for css codes, one could simply require that the state ρ pass checks on
A in both bases, i.e. that measuring either the VB-syndrome in the computational
basis, or the WB-syndrome in the Fourier basis, would yield the result 0. The set
of states which pass this test is:

CB = V
(q)
B ∩ F⊗nW

(q)
B .

These notions form a hierarchy, namely NB(C) ⊆ STB(C) ⊆ CB. (The first inclu-
sion holds since super-operators local to B do not change the density matrix of the
components in A. The second inclusion holds since the outcome distribution of any
tests local to A is determined entirely by TrB(ρ).) However, the three notions are
distinct and in fact only one of them—notion (3)—always describes a linear subspace
of H. We discuss these three notions further in Appendix A.

In the analysis of quantum error-correction and fault-tolerance protocols, it is
sufficient to consider notion (1). This stems from two reasons. On one hand, one
starts from a correctly encoded state. On the other hand, the errors introduced by
the environment will be independent of the encoded data (and in fact they must be
for error-correction to be possible at all in that context).

In our setting, however, we cannot make such assumptions, since the cheaters
might possess states which are entangled with the data in the computation, and so
the errors they introduce will not be independent of that data. Instead, the main

8To see why this is the case, write ρ′ =
∑

i pi|ψi〉〈ψi| with 〈ψi|ψj〉 = δij and
∑

i pi = 1. Then all
the |ψi〉’s are in C if and only if 〈ψi|PC |ψi〉 = 1. Taking the trace over the matrix PCρ yields 1 if and
only if this condition holds.
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contribution of this paper is the construction of protocols which guarantee conditions
similar to (3) above. In Section 2.1, we illustrate the ideas with a simple protocol,
dubbed subspace projection, which is sufficient for vqss and mpqc when t < n/8.
In Section 2.2, we give a vqss protocol tolerating t < n/4, and we show that this
tolerance is optimal in Section 2.3. Finally, in Section 2.4, we show how to ensure
condition (3) above and how the techniques from fault-tolerant computing can then
be used to achieve multi-party computation of an arbitrary quantum circuit when
t < n/6.

1.4.1 Well-Definedness of Decoding for States in CB
In this section we prove a property of CB which will be useful in the proof of security
(and hopefully also provide some intuition for our construction).

Suppose that the minimum distance of C is d > 2t+ 1, and B is restricted in size:
|B| < t. Then applying the usual decoding circuit for C without knowing exactly
where B is yields the same result as applying an ideal interpolation circuit which first
discards positions in B and then reconstructs the logical data as if it was handling
a regular codeword. Formally, there are two natural “reconstruction operators” for
extracting the secret out of a state which has been shared among several players.

1. D is the decoding operator for the error-correcting code C. For any operator Ej
of weight less than t and for any state |φ̄〉 in C, we have DEj |φ〉 = |φ〉 ⊗ |j〉 (i.e.
the error is not only corrected but also identified). It will then discard the system
containing the syndrome information |j〉.

2. RI is the “ideal recovery operator”, defined by identifying the set B of cheaters and
applying the simple interpolation circuit to a set of n− 2t good players’ positions.

Proposition 1.4. For any state ρ in CB where |B| ≤ t, the state RI(ρ) is well-defined
and is equal to D(ρ).

We give the proof of this below. For now, note that Proposition 1.4 means that no
changes made only to the components in B—no matter how they might be made to
interact with outside systems entangled with the data—will change the reconstructed
state.

In order to prove Proposition 1.4, we characterize CB algebraically:

Lemma 1.5. Suppose that ρ has fidelity 1 to CB = V
(q)
B ∩ F⊗nW

(q)
B . Then we can

write

ρ =
∑

i pi|ψi〉〈ψi|
|ψi〉 =

∑
j cijEj |φij〉

where Ej are Pauli operators on B and |φij〉 ∈ C.

Recall that given a state ρ, testing if ρ is in V
(q)
B is easily described: For each

element of (a basis of) the dual space V ⊥
B , we measure the corresponding linear
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combination of the qupits of ρ in the computational basis, and check that it is 0.
Recall that the vectors of the dual space V

(q)
B have support only on A (since arbitrary

changes to positions in B should not affect whether or not a word is in VB), and so one
need not have access to the components in A in order to perform the measurement.
Similarly, to check if ρ is in F⊗nW

(q)
B , we rotate into the Fourier basis and measure

the linear combinations corresponding to a basis of W⊥
B .

Note that since V ⊥
B ⊆ V ⊥ and W⊥

B ⊆ W⊥, and since measuring the V -syndrome
in the computational basis commutes with measuring the W -syndrome in the Fourier
basis, we know that the following four measurements commute:

1. VB-syndrome in the computational basis

2. V -syndrome in the computational basis

3. WB-syndrome in the Fourier basis

4. W -syndrome in the Fourier basis

Proof (of Lemma 1.5): As was just mentioned, to check if ρ is in CB , we measure
the VB-syndrome in the computational basis and the WB-syndrome in the Fourier
basis. But by the remarks above, the distribution on this outcome measurement
will not change if we first measure the V and W syndromes, i.e. if we first make
a measurement which projects ρ into one of the subspaces EjC (i.e. ρ maps to
ρ′ = PjρPj with probability Tr (Pjρ), where Pj is the projector for the space EjC).

The new state ρ′ lies completely in one of the spaces Ej . However, EjC is either
contained in CB (if there is an operator equivalent to Ej which acts only on B) or
orthogonal to CB (if no such operator exists).

Thus, for ρ to have fidelity 1 with CB, it must be that Tr (Pjρ) = 0 for all Ej
which act on more than B. Hence ρ is a mixture of states |ψi〉 each of which is a
linear combination of elements of the spaces {EjC}, where Ej acts only on B. 2

Proof (of Proposition 1.4): Consider a particular basis state EjE|a〉. The decoding
operator D will produce the state |a〉|j〉, since errors of weight at most t can be
identified uniquely. The ideal operator RI will extract the encoded state |a〉. Without
loss of generality, the ideal recovery operator will replace |a〉 with |0〉, the final output
|a〉 ⊗EjE|0〉.

In both cases, the output can be written as |a〉 tensored with some ancilla whose
state depends only on the syndrome j (and which identifies j uniquely). Once that
state is traced out, the outputs of both operators will be identical. Another way to
see this is that the ideal operator can simulate the real operator: one can go from the
output of the ideal operator to that of the real operator by applying a transformation
which only affects the ancilla. For a state ρ expressed as in Lemma 1.5, the final
outcome will be ρ′ =

∑
ij pi|cij|2|φij〉〈φij|. 2
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Chapter 2

Distributed Protocols for Quantum
Computers

2.1 Subspace Projection

Before presenting the main vqss protocol, we describe a protocol for a simpler task
that we call subspace projection, which illustrates the key ideas in the vqss protocol.
Namely, we first modify a classical protocol of [CCD88] so that the dealer does not
have to remember the random bits he used in sharing his secret. Second, we apply
this protocol both in the computational and Fourier bases. We use a “quantum-to-
classical” argument to show that this garantees that the joint state shared by the
players satisfies condition (3) from the discussion on neighborhoods, i.e. that the
joint state passes certain local checks in both bases.

Recall that for any given system of n qupits and any linear subspaceW of F n = Znp ,
we define

W (q) = span{|w〉 : w ∈W}.
For this protocol, W can be any code with minimum distance 2t+ 1 and an efficient
decoding algorithm. However, for concreteness, let W be the RS code V δ, where
n = 4t+ 1 and δ = 2t.

Let H0, . . . ,Hk be separate quantum systems consisting of n qupits each, and let
H = H0 ⊗ · · · ⊗Hk. Say the dealer prepares H in some state and gives the ith qupit
of each subsystem Hj to player i. He wants to prove to the group that in fact the
fidelity of H0 to the space W (q) is close to 1 1, without revealing any information
beyond that to the other players. What we achieve in this first step is not quite that
strong: at the end of the protocol, there will be a publicly known set B of “apparent
cheaters” such that the shares of the honest players not in B will all agree with W
in the computational basis, i.e. will have high fidelity to the space W

(q)
B∪C .

We obtain a “cut-and-choose” protocol, also similar to the “random hashing”

1It would be desirable to be able to prove that the fidelity is in fact exactly 1. This remains
an interesting open question. This corresponds to the classical difference between zero-error and
small-error protocols.
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technique used in purification protocols (Protocol 3, Figure 2-1). Note that vss and
broadcast of classical data are not a problem since t < n

4
< n

3
([BGW88, CCD88,

Lyn96]).

Protocol 3 (Subspace projection).

1. Sharing The dealer D prepares H0 as any state (pure or mixed) in W (q) and distributes
it to the players. He then prepares H1, . . . ,Hk in the equal superposition of

∑
w∈W |w〉,

and distributes those to the players also.

2. Verification Using classical vss, every player commits to k field elements picked uni-
formly at random. These commitments are then opened and their sum is taken to obtain
k field elements b1, . . . , bk (these are completely unpredictable to the dealer, even if he
is cheating).

3. For ` = 1, . . . , k, players apply the linear operation (x, y) 7→ (x, y+b`x) to the subsystems
H0 and H`. All players then measure their shares of H1, . . . ,Hk in the computational
basis and broadcast the result.

4. Each of the broadcasted words w1, . . . ,wk is decoded using classical error-correction of
the code W : for each w`, we obtain either that it was at distance more than t from a
word in W or we obtain an error vector with support B` ∈ {1, ..., n} of size less than t

on which w` differs from a word in W .

The dealer is rejected if any of the broadcasted words was at distance more than t or if
B =

⋃k
`=1B` has size greater than t. Otherwise, the dealer is accepted.

Figure 2-1: Protocol 3 (Subspace Projection)

2.1.1 Completeness

Lemma 2.1. When the dealer D is honest, he will pass the protocol. Moreover, we
will have B ⊆ C, i.e. only real cheaters will be accused of cheating.

Proof : If the dealer is honest, he will use some H0 in W (q) and will have all H`’s
in state

∑
w∈W |w〉. Consider some round `. Now no matter what the value of b` is,

applying (c-Xb`) to all of the shares is equivalent to the identity on H0 ⊗ H`, since
for all v ∈W , we have:

(c-Xb`)|v〉
∑

w∈W
|w〉 = |v〉

∑

w

|w + b`v〉 = |v〉
∑

w

|w〉

Of course, in the protocol we can only guarantee that honest players will apply
(cb`X) to their shares of H0 and H`. Nonetheless, the result is the same as applying the
identity to the honest players’ shares. Consequently, the values broadcast at Step 3
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by the honest players will all be consistent with some w ∈ W . Since we’ve assumed
that the distance of the code W is at least 2t + 1, any false values broadcast by
cheaters will be identified as such. Thus, the set B will only contain cheaters, and
the dealer will pass the protocol. Moreover, the honest players’ shares of H0 will also
be preserved, so H0 will remain in W

(q)
C . 2

2.1.2 Soundness

Lemma 2.2. Let B̃ = B ∪ C. At the end of the protocol above, the fidelity of the
system to the statement “either H0 is in (WB̃)(q) or the dealer has been rejected” is
exponentially close to 1 in k.

To prove this, we will employ a “quantum to classical” reduction, as in [LC99].

Lemma 2.3. Consider the subspace projection protocol above. Then the behavior of
the protocol is the same in each of the two following experiments:

Experiment 1 at the end of the whole protocol, all honest players measure their
shares of H0 in the computational basis, or

Experiment 2 at the end of the sharing phase, all honest players measure their
shares of H0 and H1 in the computational basis, and then run the verification
phase.

Moreover, the distribution on the results of the measurement of H0 is the same in
both cases.

Proof : The actions of the honest players on their shares in the original protocol can
be seen as the composition of k super-operators, each of which is comprised of two
operations: a controlled-addition gate from H0 to H` followed by measurement of H`.
Denote the controlled-addition gate by (c-Xb)`, where b is the scaling factor for the
controlled-addition. Second, denote measurement of H` in the computational basis
by M`.

Consider what happens in the `th verification step in Experiment 1. Because the
controlled-addition gate is a permutation of the basis states of the computational
basis, measuring the systems in that basis before the gate is applied will not change
the outcome of measurements made after the gate is applied. Thus we can write
M`M0(c-X

b`)` = M`M0(c-X
b`)`M`M0, and the distribution of the measurements

made after the gate is applied will not change.

But now notice that measuring the system M0 afterwards is completely redun-
dant. Because the controlled-addition gate does not change the first component of any
basis vectors, measuring M0 after the application of the gate will yield the same result
as measuring it before. Hence, we can write M`M0(c-X

b`)` = M`(c-X
b`)`M`M0.

However, this is exactly the sequence of operations performed by honest players in
Experiment 2: first they measure both systems, then apply the addition gate and
measure the target.

37



Thus, the measurement outcomes will be the same in both experiments will be
the same. Moreover, the cheaters can see no difference between the two experiments,
and so their behavior will not change. 2

In other words, we can imagine two situations. In the first one, just after the
sharing phase of the protocol, an outsider comes in and secretly measures honest
players’ shares of H0, . . . ,Hk in the computational basis. In the second, the outsider
performs this secret measurement after the protocol is completed. The statement
is that exactly when he makes his measurement will not change the behavior of the
protocol.

But recall that our original statement of the correctness of the protocol is that,
at the end of the protocol, either the dealer has been caught or the shares of players
are in W

(q)

B̃
. Since fidelity to W

(q)

B̃
is the same as the probability that measuring in

the computational basis gives a word in WB̃ (i.e. agrees with W when truncated to
positions neither in B nor C), Lemma 2.3 allows us to restrict ourselves to thinking
about situations in which the shares of the systems H0, . . . ,Hk sent to honest players
were in fact classical states.

Now consider the classical protocol corresponding to the subspace projection pro-
tocol: the dealer distributes k + 1 codewords w0, . . . ,wk. At each step, a random
multiple of w0 is added to one of the other codewords and the result is broadcast. At
the end, players compute B as above and decide whether or not to reject the dealer.
(This is the blob protocol of [CCD88], modified so as not to require the involvement
of the dealer beyond the sharing stage).

Lemma 2.4 (Soundness of Modified Blobs from [CCD88]). At the end of clas-
sical protocol, let A be the set of honest players not in B. The event “either the players
in A have consistent shares or the dealer was caught” occurs with probability at least
1 − 2n−k, even when the adversary is adaptive.

Proof : Note that this statement is the same as Pr(the players in A do not have
consistent shares and the dealer was not caught)< 2n−k.

Recall that the adversary is adaptive, and can choose which set of players to
corrupt on the fly. Nonetheless, the adversary’s strategy can be reduced to choosing
the set A of players who will be neither corrupted (∈ C) nor accused (∈ B), but
such that w0 is not consistent on A, while the broadcast vectors w` + b`w0 are all
consistent.

Fix any particular set A. If the shares of w0 are not consistent on A, then there is
at most a single value b` ∈ F such that the shares of w` + b`w0 broadcast by players
in A will be consistent, since the set of consistent vectors is a subspace. Thus, the
probability of the dealer passing the tests with that set A is at most 1

|F |k . Overall,
there are at most 2n choices for the subset A, and so the adversary’s total probability
of being able to find a subset A of honest players for which cheating is possible is
bounded above by 2n

|F |k ≤ 2n−k. 2

This completes the proof of Lemma 2.2.

38



Remark 4. As mentioned in the Definitions, we do not handle adaptive adversaries
explicitly in this thesis. However, we believe that our protocols are secure against
an adaptive adversary, and the previous proof gives some flavor of how the classi-
cal arguments can be used. In this case, a union bound argument was sufficient.
For proving the security of the quantum protocols, a more sophisticated version of
the quantum-to-classical reduction above (Lemma 2.3) would be necessary (and, we
believe, sufficient).

2.1.3 Dual Subspace Projection

Consider a “dual” version of the subspace projection protocol above. It is the same
as the original protocol, with three changes:

1. Before proceeding to the verification phase all players apply the Fourier transform
to all their shares.

2. At the end all players apply the inverse Fourier transform to their shares of H0.

3. (When D is honest) D prepares the ancillas H1, ...,Hk as a superposition over all
words from the dual code W⊥ (i.e.

∑
w∈W⊥ |w〉).

Now the state
∑

w∈W⊥ |w〉 is the image of
∑

w∈W |w〉 under transversal Fourier
transforms. Thus, we can use the same analysis as in the previous section. At the
end of this “dual” protocol, the fidelity of the system to the statement “either the
dealer is caught or H0 is in the space F⊗nW

(q)

B̃
” is high.

But recall that conjugating by Fourier rotations maps linear gates to linear gates
(see Section 1.3). In particular, controlled addition gates simply have their direction
reversed, i.e. source and target are swapped. Thus, the modifications to the original
subspace projection protocol can be restated as follows:

1. the controlled addition gates are performed from H` to H0;

2. the measurements are made in the rotated (Fourier) basis;

3. (When D is honest) D prepares the ancillas H1, ...,Hk as a superposition over all
words from the dual code W⊥ (i.e.

∑
w∈W⊥ |w〉).

“One-Level” Sharing and vqss for t < n/8 Now suppose that there is some
other code V such that before the protocol begins, all the systems H0, . . . ,Hk are
in V

(q)

B̃
. Then that property will not be affected by the protocol since the addition

gates will not affect it. Thus, at the end of the protocol the shares of H0 would be in
CB̃ = V

(q)

B̃
∩ F⊗nW

(q)

B̃
.

This leads to a first pass at a quantum sharing protocol: Have the dealer distribute
k + 1 groups of k + 1 systems. In each group, use k of the systems to prove that
the remaining system lies in V

(q)

B̃
using the subspace projection protocol. Next, take

the k + 1 resulting systems, and use k of them to prove that one of them is also in
F⊗nW

(q)

B̃
using the “dual” protocol.
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Intuitively, this combination of the subspace projection protocol and the dual
protocol achieves vqss when t < n/8: since both the sets of apparent cheaters and of
real cheaters have size at most t, the protocol allows the dealer to guarantee that the
shared state is in CB̃ where |B̃| < n/4. Since the decoding operator is well-defined on
such states (Proposition 1.4), the dealer is essentially committed to a unique value
regardless of any changes the players make subsequently.

In the next section, we extend the ideas of this section, combining them with
the classical vss protocol of [CCD88] to obtain a vqss protocol which is secure for
t < n/4. We also show how to prove equivalence of that protocol to the ideal-model
protocol of Section 1.2.6.

2.2 Vqss Protocol: Two-Level Quantum Sharing

In this section we define a two-tiered protocol for vqss. It is based on the vqss

protocols of [CCD88] as well as on the literature on quantum fault-tolerance and
error-correction, most notably on [AB99].

We first define the classical notion of “correctness” of a sharing used in [CCD88],
and give a modified version of the [CCD88] vss protocol that does not require the
dealer’s participation. We then describe our vqss protocol (Section 2.2) and prove its
security (Section 2.2.4–Section 2.2.6). Finally, we state the round and communication
complexity of our protocol (Section 2.2.7) and some additional useful properties of
the sharings it generates (Section 2.2.8).

2.2.1 Sharing Shares: 2-good Trees

In the vss protocol of [CCD88], the dealer D takes his secret, splits it into n shares
and gives the ith component to player i. Player i then shares this secret by splitting
it into n shares and giving player j the jth share to player j. Thus, there are n2 total
shares, which can be thought of as the leaves of a tree with depth 2 and fan-out n:
each leaf is a share; the ith branch corresponds to the shares created by player i, and
the root corresponds to the initial shares created by the dealer. Thus player j holds
the jth leaf in each branch of this tree.

We will run a cut-and-choose protocol similar to the subspace projection protocol
above, in order to guarantee some kind of consistency of the distributed shares.

During the protocol we accumulate n+ 1 sets of apparent cheaters: one set B for
the dealer (this corresponds to a set of branches emanating from the root), and one
set Bi for each player i (this corresponds to a subset of the leaves in branch i). These
sets all have size at most t.

N.B.: Since the dealer is one of the players in the protocol, we can in fact identify
B with Bi, where the dealer is player i. However, by ignoring this fact we lose
no correctness and gain some simplicity in the exposition and security proof of the
protocol.

At the end of the protocol, we want to guarantee certain invariants:

40



Definition 4 (2-good trees). We say a tree of n2 field elements is 2-good with
respect to the code V and the sets B,B1, ..., Bn if:

1. For each i 6∈ C (corresponding to an honest player), we have Bi ⊆ C, i.e. all
apparent cheaters are really cheaters.

2. For each branch i 6∈ B, the shares held by the honest players not in Bi should all
be consistent with some polynomial of degree ≤ d, i.e. with some codeword in V .
That is, the vector of all shares should be in VBi∪C, where C is the set of cheating
players.

N.B.: Because there are at most t players in Bi and at most t cheaters, there are
at least d + 1 ≤ n − 2t honest players remaining, and so the polynomial above is
uniquely defined. This guarantees that for each branch i 6∈ B, there is a unique
value ai ∈ F which is obtained by interpolating the shares of the honest players not
in Bi.

3. For i 6∈ B, the values ai defined by the previous property are all consistent with a
codeword of V (i.e. the vector (a1, ..., an) is in VB).

We will abbreviate this as 2-goodV , when the sets B,B1, ..., Bn are clear from the
context.

Why is this a useful property to guarantee? It turns out that this ensures the
soundness of a sharing protocol. Suppose that all players broadcast their shares of a
given 2-good tree. Call the vector of shares in the ith branch vi, so that player j holds
the values vi(j) for all i. Consider the reconstruction procedure Recover (Figure 2-2).

Algorithm 1. Recover(T, V, B,B1, ..., Bn)
Input: a tree T which is 2-good with respect to the code V and the sets B,B1, ..., Bn.
Output: a ∈ F

1. For each branch i 6∈ B: Let b = |Bi|. If i is honest, then we expect the truncated
word vi|B̄i

to be within distance t − b of a codeword in the truncated code V |B̄i
.

Now this truncated code has distance 2t+ 1 − b: it can detect up to t errors and
correct them when there are at most t− b of them.

If the truncated word vi|B̄i
is at distance at most t− b from a real codeword, then

correct the error and let ai be the interpolated value for that codeword. Otherwise
output a null value ai =⊥.

2. Take any set of d + 1 indices i such that i 6∈ B and ai 6=⊥. Find the unique
polynomial p such that p(i) = ai. Output a = p(0) as the reconstructed secret.

Figure 2-2: Algorithm 1 (Reconstruction for a 2-good tree)
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Lemma 2.5. Suppose that a sharing is 2-good. If all players broadcast their shares,
then the same value a will always be reconstructed for the root of the tree (i.e. regard-
less of the values broadcast by the cheaters).

We omit this proof here, since it is essentially re-proven in our analysis of the
quantum protocol (see Lemma 2.11). We note that the protocols (and proofs) of
[CCD88] used this lemma implicitly, but did not use the recovery algorithm as stated
here. Instead, they required players to remember what shares they had distributed
to other players.

2.2.2 Classical Vss

Based on the discussion of the previous section, we give a modified version of the
vss protocol of [CCD88]. The main difference is that the original protocol required
a dealer to remember the values of the shares sent in the first phase, and cooperate
later on during the verification phase. However, this does not generalize well to
the quantum world, and so we compensate by exploiting the efficient decodability of
Reed-Solomon codes. The protocol is given in Figure 2-3. Note that as before, the
error-correcting code we use is V δ, where n = 4t+ 1 and δ = 2t.

Remark 5. In the description of the protocol (and subsequent protocols), we assume
for simplicity that there is a source of public randomness. This is not a problem in
our setting as good random bits can be generated using classical vss protocols, and
it simplifies the analysis of the protocols. However, it is not necessary (and is not
made in [CCD88, RB89]). See Section 2.2.7 for further discussion.

The correctness and soundness of this protocol are stated here. They follow from
the properties of 2-good trees and from cut-and-choose analysis.

Fact 2.6. If D is honest, he will pass the protocol with probability 1, and the shares
v0,i(j) will form a 2-good tree which interpolates to the original input a.

Fact 2.7. With probability 1− 2Ω(k), either the shares v0,i(j) form a 2-good tree or
the dealer is caught during the protocol.

2.2.3 Vqss Protocol

Given the previous protocol, and the observation that Subspace Projection can work
simultaneously in both bases (Section 2.1.3), it is natural to attempt to run the
classical vss to check for errors in both bases. The resulting protocol is described
in Figure 2-4 (Sharing Phase) and Figure 2-5 (Reconstruction Phase). Intuitively, it
guarantees that a tree of quantum shares would yield a 2-good tree of classical values
if measured in either the computational basis or the Fourier basis. Note that we use
the codes V = V δ = V δ′ and W = W δ = W δ′ (again with n = 4t + 1, δ = δ′ = 2t),
although there is in fact no need to do this: the protocol will work for any css code
with distance at least 2t+ 1, so long as the code is efficiently decodable.
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Protocol 4 (Modified Classical vss from [CCD88]). The dealer D has input a ∈ F .

• Sharing:

1. D picks a random codeword v0 ∈ V such that v0 interpolates to a. D also picks k
random codewords v1, ...,vk ∈ V (i.e. k sharings of random values).

2. D gives player i the ith component of each of these vectors: v`(i) for ` = 0, ..., k.

3. Player i shares each of these values with random vectors v0,i, ...,vk,i which interpolate
to v0(i), ...,vk(i), respectively. He sends the values v`,i(j) to player j (for ` = 0, ..., k).

• Verification: Get k previously unknown public random values b1, ..., bk. For ` = 1, ..., k:

1. For all i, player j broadcasts v`,i(j) + b`v0,i(j).
(i.e. player j broadcasts his share of v`,i + b`v0,i).

2. For each i ∈ {1, ..., n}, players update the set Bi based on the broadcast values, as in
the subspace projection protocol. If there are too many errors, then they add i to the
global set B.

3. Furthermore, players do the same at the branch level: for all i 6∈ B, there is an
interpolated value ai which corresponds to the decoded codeword from the previous
step. Players also decode the codeword (a1, ..., an) and update B accordingly (i.e. by
adding any positions where errors occur to B).

• The dealer is disqualified if B is ever larger than t.

• If the dealer passes, the values v0,i(j) are taken to be the shares of the dealer’s secret.

• Reconstruction:

1. Player j broadcasts his shares v0,i(j) for all i.

2. Let T be the tree defined by these values. All players output the value given by
Recover(T, V,B,B1, ..., Bn).

Figure 2-3: Protocol 4 (Modified vss protocol from [CCD88])
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Protocol 5 (vqss—Sharing Phase). Dealer D gets as input a quantum system S to
share.

• Sharing:

1. The dealer D prepares (k + 1)2 systems of n qupits each, called S`,m (for ` = 0, ..., k
and m = 0, ..., k):

(a) Encodes S using C in S0,0.

(b) Prepares k systems S0,1, ..., S0,k in the state
∑

a∈F EC |a〉 =
∑

v∈V |v〉.
(c) Prepares k(k+ 1) systems S`,m, for ` = 1, ..., k and m = 0, ..., k, each in the state

|0̄〉 =
∑

v∈V0
|v〉.

(d) For each of the (k+ 1)2 systems S`,m, D sends the ith component (denoted S
(i)
`,m)

to player i.

2. Each player i, for each `,m = 0, ...k:

(a) Encodes the received system S
(i)
`,m using C into an n qupit system S`,m,i.

(b) Sends the j-th component S
(j)
`,m,i to player j.

• Verification:

1. Get public random values b1, ..., bk ∈R F . For each ` = 0, ..., k, m = 1, ..., k, each
player j:

(a) Applies the controlled-addition gate (c-Xbj ) to his shares of the systems S`,0,i
and S`,m,i.

(b) Measures his share of S`,m,i and broadcasts the result
(i.e. each player broadcasts k(k + 1)n values).

(c) Updates sets B and B1, ..., Bn as in the classical vss protocol.

2. All players apply the Fourier transform F to their shares.

3. Get public random values b′1, ..., b
′
k ∈R F . For ` = 1, ..., k, each player j:

(a) Applies the controlled-addition gate (c-Xb′j ) to his shares of the systems S0,0,i

and S`,0,i.

(b) Measures his share of S`,0,i and broadcasts the result
(i.e. each player broadcasts kn values).

(c) Updates sets B and B1, ..., Bn as in classical vss protocol. Note that for all `,
we use code W = V ⊥

0 .
[Note: the sets B and B1, ..., Bn are cumulative throughout the protocol.]

4. All players apply the inverse transform F−1 to their shares of S0,0.

• The remaining shares (i.e. the components of the n systems S0,0,i) form the sharing of
the state ρ.

Figure 2-4: Protocol 5 (vqss—Sharing Phase)
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Protocol 6 (vqss—Reconstruction Phase). Player j sends his share of each of the
systems S0,0,i to the receiver R, who runs the following decoding algorithm:

1. For each branch i: determine if there is a set B̃i such that Bi ⊆ B̃i,
∣∣∣B̃i
∣∣∣ ≤ t and the

shares of S0,0,i lie in CB̃i
.

If not, add i to B.
Otherwise, correct errors on B̃i and decode to obtain a system S′

i.

2. Apply interpolation to any set of n− 2t points not in B. Output the result S′.

Figure 2-5: Protocol 6 (vqss—Reconstruction Phase)

Why is this a secure vqss protocol? We want to show that the protocol is equiv-
alent to the “ideal model”, where at sharing time the dealer sends his secret system
S to a trusted outside party, and at reveal time the trusted party sends S to the
designated receiver. To do that, we will use two main technical claims:

• Soundness: At the end of the protocol, if the dealer passes all tests then there is
a unique state which will be recovered by the receiver, regardless of any changes
made by the cheating players.

• Completeness (simplistic version): If the dealer is honest, then he will pass all tests
and the state recovered by the receiver will be exactly the dealer’s input system
S.

At first, it may not be clear that the claim above for completeness is really suf-
ficient, since it does not explicitly rule out the adversary learning any information
about the secret system S. In fact, at some intuitive level it is sufficient, since any in-
formation the adversary was able to learn would cause a disruption of S (in general).
Nonetheless, a formal proof of security requires a more sophisticated argument. We
give the more formal proof, based on simulation, in Section 2.2.6.

2.2.4 (Informal) Soundness

Lemma 2.8. The system has high fidelity to the following statement: “Either the
dealer is caught or measuring all shares in the computational (resp. Fourier) basis
would yield a 2-good tree with respect to the code V (resp. W ).”

Proof : The proof of this lemma follows the ideas outlined in the proof of soundness
for the subspace projection protocol. First, a quantum-to-classical reduction allows us
to use the soundness of the modified classical protocol from Section 2.2.2: this gives us
that at the end of Step 1, either D would get caught or all the systems S`,0 would yield
2-goodV trees if measured in the computational basis. After applying the Fourier
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transformations in Step 2, all the systems will be 2-goodV in the Fourier basis.
Subsequent application of linear gates will not change that, since they correspond
to linear gates in the Fourier basis. Finally, applying a second quantum-to-classical
reduction shows that at the end of Step 3, the system S0,0 will be 2-goodW in the
computational basis. Since it is also 2-goodV in the Fourier basis, the final rotation
in Step 4 will leave it 2-goodV in the computational basis and 2-goodW in the
Fourier basis. 2

Let E denote the operator used to encode a state using C. Let J be a set of indices
j such that the error operators {Ej}j∈J run over all the syndromes of the code C (i.e.
J contains one representative from each equivalence class of error operators, and the
spaces {EjC}j∈J are orthogonal and span Cp

n

). Note that |J | = pn−1 since the code
is 1-dimensional.

Fact 2.9. The following set is an orthonormal basis of pn
2

-dimensional Hilbert space

Cp
n2

(where p is the size of F ):

{
E

(1)
j1

· · ·E(n)
jn E⊗nEj0E|a〉 : j0, ..., jn ∈ J, a ∈ F

}

where the superscript (i) on Eji indicates that it acts on the ith block of n qupits.

Proof : First, notice that these vectors are indeed pairwise orthogonal: for a pair of
vectors, if any of the indices ji ∈ J differ for i ≥ 1, we can distinguish the two states
by measuring the syndrome of the ith block of qubits. If none of the ji differ but the
indices j0 differ, then we can distinguish the two states by correcting all the errors
E

(i)
ji

, decoding the resulting blocks and measuring the syndrome of the final codeword.
Finally, if the two states differ only by the choice of a ∈ F , we can distinguish them by
correcting all errors, decoding and measuring the resulting qupit in the computational
basis.

On the other hand, there are pn−1 choices for each of the n+1 indices j0, ..., jn ∈ J
and p choices for a ∈ F . Thus the total number of states is (pn−1)

n+1
p = pn

2

, and so

the states must span all of Cp
n2

. 2

Proposition 2.10 (Characterizing 2-good trees). The space of trees of qupits
which are 2-goodV in the computational basis and 2-goodW in the Fourier basis is
spanned by the states
E

(1)
j1

· · ·E(n)
jn E⊗nEj0E|a〉 where

• Ej0 (or something in its equivalence class) acts only on B and

• For each i 6∈ B, Eji (or something in its equivalence class) acts only on Bi ∪ C.
(Recall that for i corresponding to honest players not in B, we have Bi ⊆ C and
so in those cases the condition is that Eji act only on C.)

Proof : Given any state of n2 qupits, we can write it as a mixture of linear combina-
tions of basis vectors from the basis in the previous discussion (Fact 2.9). Now for any
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one of these basis states given by j0, ..., jn and a, it will pass a test of 2-good-ness in
both bases if and only if the conditions of the proposition are satisfied: j0 should be
the syndrome of some error which acts only on B and each ji should be equivalent to
an error on Bi ∩ C. Thus, any state which passes the test with probability 1 can in
fact be written only in terms of those basis vectors which pass the test. 2

Note that in the case of the basis vectors of the previous proposition, there is
no entanglement between the data and the errors, since the data is a pure state (in
fact, we can also think of the errors as being described by a pure state |j0, ..., jn〉).
However, one can get arbitrary superpositions of these basis vectors and so in general
there will be not only correlation, but indeed entanglement between the data and the
errors.

Ideal Reconstruction In order to prove soundness carefully, we define an ideal
interpolation circuit RI for 2-good trees: pick the first n− 2t honest players not in
B, say i1, ..., in−2t. For each ij , pick n − 2t honest players not in Bij and apply the
normal interpolation circuit (i.e. erasure-recovery circuit) for the code to their shares
to get some qupit Rij . This will yield n− 2t qupits total. Applying the interpolation
circuit again, we extract some system S which we take to be the output of the ideal
interpolation. For simplicity, we assume that the interpolation circuit extracts the
encoded state and replaces it with an encoding of |0〉, i.e. it maps E|a〉 7−→ |a〉⊗E|0〉.

Lemma 2.11. Given a tree of qupits which is 2-good in both bases, the output of
the ideal interpolation and the real recovery operators are the same. In particular,
this means that no changes made by cheaters to their shares of a 2-good tree can
affect the outcome of the recovery operation.

Note that this is not necessarily true for a “one level” sharing (Section 2.1.3),
unless t < n/8: by entangling errors with the shared data, the cheaters could arrange
things so that more than t errors are detected only for certain possible values of the
data, creating an entanglement between the data and the success or failure of the
recovery.

Proof (of Lemma 2.11): Both the decoding and recovery operators produce an output
qubit as well as an ancilla. We show that there is a unitary map which can be applied
to the ancilla of the interpolation operator so that the joint state of the output and
the ancilla are the same as when the decoding operator is applied.

It is sufficient to prove this for some basis of the space of 2-good trees; the rest
follows by linearity. The natural basis is given by Proposition 2.10. Consider a basis
vector E

(1)
j1

· · ·E(n)
jn

E⊗nEj0E|a〉 which satisfies the conditions of Proposition 2.10.

Effect of ideal recovery Let I be the set of n−2t indices not in either B or C, and
suppose for simplicity that I = {1, ..., n− 2t} (the same argument works regardless
of the particular values in I). Applying the ideal recovery operator to the branches
in I, we obtain n − 2t encodings of |0〉 with errors j1, ..., jn−2t, and an encoding
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of |a〉 whose first n − 2t positions are untouched and whose last 2t positions are
themselves encoded and possibly arbitrarily corrupted. This can be written:

(Ej1E|0〉) ⊗ · · · ⊗
(
Ejn−2t

E|0〉
)

⊗ E
(n−2t+1)
jn−2t+1

· · ·E(n)
jn

(
I⊗(n−2t)E⊗2t

)
Ej0E|a〉

where I is the identity. Applying ideal recovery again to the first n− 2t positions
of the encoding of |a〉, we extract |a〉 and leave a corrupted encoding of |0〉:

|a〉 ⊗
(

(Ej1E|0〉) ⊗ · · · ⊗
(
Ejn−2t

E|0〉
)

⊗ E
(n−2t+1)
jn−2t+1

· · ·E(n)
jn

(
I⊗(n−2t)E⊗2t

)
Ej0E|0〉

)

Effect of real reconstruction Now consider the effect of the decoding operator,
which must be applied without knowledge of the positions which are corrupted.
The first operation to be performed is to attempt to decode each branch i 6∈ B.
This means copying the syndrome ji for each branch into an ancilla state |ji〉.
Whenever Eji acts on a set B̃i such that |B̃i ∪ Bi| ≤ t, then Eji can be identified
and corrected. When Eji acts on too many positions, then it cannot be identified
uniquely and the decoding procedure will simply leave that branch untouched.

Let I be the set of indices not in B which had few enough errors to correct. At
the end of this first phase the input basis state will become:

(
(∏

i6∈I
E

(i)
ji

)
E⊗nEj0E|a〉

)
⊗
⊗

i∈I
|ji〉

We know that all the honest players not in B are in I (by assumption of 2-good-
ness) and so I contains at least n − 2t positions. Decoding each of these circuits
and applying the interpolation operator to the resulting qupits, we can extract the
state |a〉 and replace it with |0〉 in the top-level sharing. This yields

|a〉 ⊗
(
(∏

i6∈I
E

(i)
ji

)
E⊗nEj0E|0〉

)
⊗
⊗

i∈I
|ji〉

In both cases, the output can be written as |a〉 tensored with some ancilla whose
state depends only on the syndromes j0, j1, ..., jn. Once that state is traced out, the
outputs of both operators will be identical. Another way to see this is that the ideal
operator can simulate the real operator: one can go from the output of the ideal
operator to that of the real operator by applying a transformation only to the ancilla.
2

Lemma 2.8 and Lemma 2.11 together imply that there is essentially a unique state
which will be recovered in the reconstruction phase when the receiver R is honest.
Thus, the Protocol 5 is sound, in the informal sense of Section 2.2.3.
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2.2.5 (Informal) Completeness

As discussed earlier, the protocol is considered complete if when the dealer is honest,
the state that is recovered by an honest reconstructor is exactly the dealer’s input
state.

Lemma 2.12. When the dealer D is honest, the effect of the verification phase on
the shares which never pass through cheaters’ hands is the identity.

Proof : This follows essentially by inspection: for any codeword v of a linear code
W , applying a controlled addition to |v〉 ⊗

∑
w∈W |w〉 results in the identity. Since

this operation is transversal, the shares which never go through cheaters’ hands will
behave as if the identity gate was applied. 2

Consider the case where the dealer’s input is a pure state |ψ〉. On one hand, we
can see by inspection that an honest dealer will always pass the protocol. Moreover,
since the shares that go through honest players’ hands only remain unchanged, it
must be that if some state is reconstructed, then that state is indeed |ψ〉, since the
ideal reconstruction operator uses only those shares. Finally, we know that since the
dealer passed the protocol the overall tree must be 2-good in both bases, and so some
value will be reconstructed. Thus, on input a pure state |ψ〉, an honest reconstructor
will reconstruct |ψ〉. We have proved:

Lemma 2.13. If D and R are honest, and the dealer’s input is a pure state |ψ〉, then
R will reconstruct a state ρ with fidelity 1 − 2−Ω(k) to the state |ψ〉.

Not surprisingly, this lemma also guarantees the privacy of the dealer’s input. By
a strong form of the no cloning theorem (Section 1.3.2) , any information the cheaters
could obtain would cause some disturbance, at least for a subset of the inputs. Thus,
the protocol is in fact also private.

2.2.6 Simulatability

The previous two sections prove that the protocol satisfies an intuitive definition of
security, namely that it is complete, sound and private. In this section, we sketch
a proof that the protocol satisfies a more formal notion: it is equivalent to a simple
ideal model protocol. The equivalence is statistical (Definition 2), that is the outputs
of the real and ideal protocols may not be identical, but have very high fidelity to
one another.

An Ideal Model Protocol Now, it is fairly simple to give an ideal protocol for
vqss: in the sharing phase, the dealer D sends his system S to T T P . If D does
not cooperate or sends an invalid message, T T P broadcasts “D is a cheater” to all
players. In the reconstruction phase, T T P sends the system S to the designated
receiver R. This protocol is in fact given in Protocol 2 (p. 22).

Intuitively, this is the most we could ask from a secret sharing protocol: that it
faithfully simulates a lock box into which the dealer drops the system he wishes to
share.
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In order to show equivalence of our protocol to the ideal protocol, we will give
a transformation that takes an adversary A1 for our protocol and turns it into an
adversary A2 for the ideal protocol. To give the transformation, we exhibit a simulator
S which acts as an intermediary between A1 and the ideal protocol, making A1 believe
that it is in fact interacting with the real protocol.

Simulation Outline

We give a sketch of the simulation procedure in Algorithm 2 (Figure 2-6).
Why does this simulation work?

• When D is cheating:

– When R is cheating, the simulation is trivially faithful, since there is no differ-
ence between the simulation and the real protocol: S runs the normal sharing
protocol, then runs the interpolation circuit, sending the result to TTP. In the
reconstruction phase, S gets the same state back from TTP, and runs the inter-
polation circuit backwards. Thus, the two executions of the interpolation circuit
cancel out.

– When R is honest, the faithfulness of the simulation comes from Lemma 2.11:
in the real protocol, R outputs the result of the regular decoding operator. In
the simulation, R gets the output of the ideal interpolation. Since the shared
state has high fidelity to a 2-good tree (by Lemma 2.8), the outputs will be
essentially identical in both settings (i.e. they will have high fidelity).

• When D is honest:

– To see that the simulation works when D is honest, we must show that two
versions of the protocol are equivalent: in the first version, S gets S after having
simulated the sharing phase with A1, and so he “swaps” it in by first running
the ideal interpolation circuit, exchanging the system S for the shared state |0〉,
and then running the interpolation circuit backwards.

In the second version, he gets the system S from T T P before running the
simulated sharing phase, and so he simply runs it with S as the input for the
simulated dealer D′.

To see that the two versions are equivalent, view the “swap” as an atomic
operation, i.e. view the application of the interpolation, switching out the |0〉
state and replacing it with S, and reapplying the interpolation backwards, as a
single step. Now consider moving the swap backwards through the steps of the
protocol. Because each of the verification steps acts as the identity on the shares
of the honest players, we can move the swap backwards through all verifications
(Note: the verification acts as the identity only when the dealer is honest, but
that is indeed the case here). Finally, one can see by inspection that sharing
a |0〉 and then swapping is the same as sharing the system S. Thus the two
versions of the protocol are equivalent, and so the simulation is faithful when D
is honest.
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Algorithm 2. Simulation for vqss (Protocol 5)

Sharing/Verification phase

• If D is a cheater, S must extract some system to send to T T P :

1. Run Sharing and Verification phases of Protocol 5, simulating honest players. If
D is caught cheating, send “I am cheating” from D to T T P .

2. Choose n − 2t honest players not in B and apply ideal interpolation circuit to
extract a system S.

3. Send S to T T P .

• If D is honest, S does not need to send anything to T T P , but must still simulate the
sharing protocol.

1. Simulate an execution of the Sharing and Verification phases of Protocol 5, using
|0〉 as the input for the simulated dealer D′.

2. Choose n− 2t honest players (they will automatically not be in B since they are
honest) and apply the ideal interpolation circuit to extract the state |0〉.

3. The honest D will send a system S to T T P .

Note: Regardless of whether D is honest or not, at the end of the sharing phase of the
simulation, the joint state of the players’ shares is a tree that is (essentially) 2-good in
both bases, and to which the ideal interpolation operator has been applied. Let I be the
set of n− 2t honest players (not in B or C) who were used for interpolation.

Reconstruction phase

• If R is a cheater, S receives the system S from T T P. He runs the interpolation circuit
backwards on the positions in I, with S in the position of the secret. He sends the
resulting shares to R.

• If R is honest, the cheaters send their corrupted shares to S. These are discarded by
S.

In both cases, S outputs the final state of A1 as the adversary’s final state.

Figure 2-6: Algorithm 2 (Simulation for vqss)
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We have essentially proved:

Theorem 2.14. Protocol 5 is a statistically secure implementation of verifiable quan-
tum secret sharing (Protocol 2).

2.2.7 Round and Communication Complexity

In this section we show how to reduce the complexity of the protocol. For now, we
will continue to assume that all public coins are generated using classical vss: all
players commit to a random value, then open all their values and take the sum to be
the public coin. We discuss removing this assumption below.

Reducing the Number of Ancillas The first observation is that with these cut-
and-choose protocols, it easy to check many trees at once for 2-good-ness, so long
as they were all generated by the same dealer. Suppose that we want to verify `
trees of quantum shares for 2-good-ness in a certain basis. The dealer distributes
the trees, and then creates k sharings of the ancilla state

∑
|a〉 (as in the original

protocol). In the original protocol, for each ancilla we chose a random coefficient
b ∈ F and performed the gate (x, y) 7→ (x, y + bx). In the new protocol, we add a
random linear combination of all ` states to be checked into the ancilla: each challenge
consists of ` coefficients b1, ..., b` chosen publicly at random. We apply the linear gate
(x1, ..., x`, y) 7→ (x1, ..., x`, y +

∑
bjxj) to the ` trees and the ancilla. The resulting

state is then measured in the computational basis and all players broadcast their
shares.

To ensure good soundness, we can run this protocol k times in parallel, i.e. using
k different ancillas and k · ` random coefficients (i.e. k challenges of ` coefficients).
Essentially the same analysis as in the previous sections shows that at the end of this
protocol (with high fidelity) the dealer will have been caught or the shared states will
all be 2-good in the computational basis.

We can use this observation to improve the efficiency of our vqss protocol. The
dealer shares his secret S and also shares 2k ancillas. He uses the first k ancillas to
check both the target state and the remaining k ancillas for consistency in the Fourier
basis. He then uses the remaining ancillas to check the target state in the compu-
tational basis. The number of ancillas now scales linearly (instead of quadratically)
but the protocol still requires a quadratic number of public values.

Generation of Public Values In the preceding discussion we assumed that public
values were truly random. Such truly random coins can be implemented in our model
using classical vss, but in fact they need not be. As pointed out in [CCD88, RB89],
it is sufficient to have players take turns generating challenges.

Suppose that each player broadcasts k
n

random challenges, and all players apply
the challenge and measure and broadcast the result, as before. Then we are guar-
anteed that at least k′ = k n−t

n
challenges will be chosen truly at random. Thus,

by increasing k by a factor of n
n−t we get the same soundness as before, and avoid

expensive vss protocols.
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The final protocol takes three rounds, two of which use the broadcast channel.
Each player sends and receives kn log |F | qubits. Moreover, the broadcast channel
gets used k times to send challenges of (roughly) k log |F | bits. It is also used to
broadcast k responses of n log |F | bits. To have soundness ε, we must have the

number of truly random challenges be k′ ≥ n+O(logn)+log(1/ε)
log |F | .

Since n
n−t is constant, we get quantum communication complexity O

(
(n+log 1

ε
)2

n log |F |

)

per player and overall broadcast complexity O
(
(n+ log 1

ε
)(n+

n+log 1

ε

n log |F |)
)
. This is

optimized when each player broadcasts only a single challenge, i.e. log |F | =
n+log 1

ε

n
.

In that case, we get quantum communication complexity O(n+ log 1
ε
) per player and

overall broadcast complexity O
(
n(n+ log 1

ε
)
)
.

2.2.8 Additional Properties of Two-Level Sharing

Level 2 sharings produced by the same dealer (using the protocol above) have some
additional properties, which will be useful for multi-party computation. First of
all, notice that there is no problem in tracking the sets B,B1, ..., Bn across various
invocations of the protocol for the same dealer. Because set Bi corresponds to the
set of players which player i has accused of cheating, we may take these sets as
cumulative, and simply declare that a player is cheating whenever the union of all
the set Bi (for the same i) is greater than t. Similarly for the set B. Thus, in the
discussion below we assume that the sets B,B1, ..., Bn are the same for all invocations
with a particular dealer.

1. Say the systems Si,j, S
′
i,j form valid two-level sharings of states ρ, ρ′ respectively

(where Sij corresponds to player j’s share of branch i).

Then applying the linear operation (x, y) → (x, y + bx) to the systems Si,j ⊗ S ′
i,j

results in valid two-level sharings of the states obtained by applying the gate to
the state ρ⊗ ρ′.

In other words, if we denote the reconstruction procedure by R and the controlled-
addition by c-Xb, we get that

(c-Xb)R⊗2 = R⊗2(c-Xb)⊗n
2

(at least when restricted to the subspace of valid sharings).

2. Say the systems Si,j form valid two-level sharings of state ρ with respect to the
codes V,W . Then applying F to each of the shares results in a valid sharing of
the state FρF † with respect to the codes W,V .

That is, if RV,W is the reconstruction procedure which uses code V in the compu-
tational basis and W in the Fourier basis, then when we restrict to the subspace
of valid sharings we get:

FRV,W = RW,VF⊗n2
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3. If all players measure their shares in a valid sharing of ρ and then apply classical
reconstruction, then they will obtain the same result as if they had sent their shares
to an honest reconstructor and asked him to broadcast the result of measuring ρ.

4. The dealer can use the protocol to additionally prove to all players that the system
he is sharing is the exactly the state |0〉: the ancillas he uses in this case will all be
sharings of |0〉 (instead of

∑
|a〉). The verification step is the same as before, except

now players verify that the reconstructed codeword at the top level interpolates to
0.

Similarly, the dealer can prove that he is sharing a state
∑

a |a〉 by ensuring that all
ancillas used for verification in the Fourier basis are in state |0〉, and again asking
players to verify that the reconstructed codeword at the top level interpolates to
0 for the checks in the Fourier basis.

This last point is worth stressing: by tailoring the protocol, the dealer can ver-
ifiably share states |0〉 and

∑
a |a〉. This will be useful for sharing ancillas in the

multi-party computation protocol.

2.3 Impossibility of vqss when t ≥ n
4

Lemma 2.15. No vqss scheme exists for 4 players which tolerates one cheater.

Before proving this, we need a result from quantum coding theory, on the relation
between error-correction and erasure-correction:

Fact 2.16 (t-error correction and 2t-erasure correction). Suppose that a quan-
tum code with n components, and dimension at least 2 can correct errors on any t
positions. Then in fact C can correct erasures on any 2t positions.

Note that this holds regardless of the dimensions of the individual components of
the code. It also holds when the code in question is a “mixed state” code, i.e. some
pure states are nonetheless encoded as mixed states by the encoding procedure.

It’s an interesting and useful property of quantum information that it cannot be
cloned, i.e. there is no procedure which takes an arbitrary, unknown pure state |ψ〉
and replaces it with two exact copies |ψ〉 ⊗ |ψ〉 (see Section 1.3.2). A corollary of
this is that no quantum code with n components can withstand the erasure of dn/2e
components. If it could, then one could always separate the codeword into two halves
and reconstruct a copy of the encoded data with each half, yielding a clone of the
encoded data. By the equivalence of t-error-correction and 2t-erasure-correction, this
means that there is no quantum code that can correct errors on any dn/4e positions.
This is a special case of the quantum Singleton bound, also called the Knill-Laflamme
bound.

Proof (of Lemma 2.15): Suppose such a scheme exists. Consider a run of the protocol
in which all players behave perfectly honestly until the end of the sharing phase. At
that point, their joint state can be thought of as a (possibly mixed-state) encoding
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of the secret that was shared. In particular, an honest “receiver” Ruth, if she were
given access to the state of all players, must be able to recover the shared state.
Moreover, she must be able to do so even if one player suddenly decides to start
cheating and introduces arbitrary errors into his state. Thus, the joint state of all
players constitutes a four-component qecc correcting one error. However, no such
code exists, not even a mixed-state one, by the quantum Singleton bound. 2

Corollary 2.17. No vqss scheme exists tolerating an adversary structure that con-
tains four sets which cover all players.

Proof : Suppose there exist four disjoint sets A,B,C,D such that A∪B∪C∪D = P ,
and a vqss scheme tolerating any adversary that can corrupt any one of those sets.
Then we can construct a four player protocol tolerating one cheater by having each
player simulate the players in one of the four sets. 2

The optimality of our vqss scheme is also an immediate corollary:

Theorem 2.18. No vqss scheme for n players exists which tolerates all coalitions
of dn/4e cheaters.

Note that we have only proved the impossibility of perfect vqss protocols. How-
ever, both the no cloning theorem and the equivalence of t-error-correction and 2t-
erasure-correction hold when exact equality is replaced by approximate correctness,
and so in fact even statistical vqss schemes are impossible when t ≥ n/4.

2.4 Multi-party Quantum Computation

In this section we show how to use the vqss protocol of the previous section to
construct a multi-party quantum computing scheme.

First, we give a modified vqss protocol. At the end of the protocol, all players
hold a single qupit. With high fidelity, either the dealer will be caught cheating or the
shares of all honest players will be consistent in both the computational and Fourier
bases, i.e. there is no set B of “apparent cheaters”.

2.4.1 Level 3 Sharing Protocol

Until now, we have used protocols for tolerating t < n/4 cheaters. However, we are
now interested in tolerating t < n/6 cheaters. Thus, we take n = 6t+1 for simplicity,
and as before we set δ = 2t (thus δ′ = 4t). We will work with the css code C given by
V = V δ and W = W δ′ . Recall that this is the css code for which we have the simple,
nearly-transversal fault-tolerant procedures of Section 1.3.3. Our goal is to share a
state so that at the end all shares of honest players lie in CC = V

(q)
C ∩ F⊗nW

(q)
C .

The new scheme is given in Protocol 7 (Figure 2-7). The idea is that the previous
vqss scheme allows distributed computation of linear gates and Fourier transforms
on states shared by the same dealer. It also allows verifying that a given shared state
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Protocol 7 (Top-Level Sharing). Dealer D takes as input a qupit S to share.

• Sharing

1. (Distribution) The dealer D:

(a) Runs the level 2 vqss protocol on input S.

(b) For i = 1, ..., δ:
Runs level 2 sharing protocol to share state

∑
a |a〉 (see Remark 4 in Section 2.2.8)

(c) For i = 1, ..., n − δ − 1:
Runs level 2 sharing protocol to share state |0〉 (see Remark 4 in Section 2.2.8)

Denote the n shared systems by S1, ..., Sn (i.e. S1 corresponds to S, S2, ..., Sδ+1

correspond to
∑

a |a〉 and Sδ+2, ..., Sn correspond to |0〉). Note that each Si is a
two-level tree, and thus corresponds to n components in the hands of each player.

2. (Computation) Collectively, the players apply the Vandermonde matrix to their
shares of S1, ..., Sn.
(If D is honest then system Si now encodes the i-th component of an encoding of the
input system S).

3. For each i, all players send their shares of Si to player i.

• Quantum Reconstruction Input to each player i is the share Si and the identity of
the receiver R.

1. Each player i sends his share Si to R.

2. R outputs D(S1, ..., Sn) and discards any ancillas.

Figure 2-7: Protocol 7 (Top-Level Sharing)
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is either |0〉 or
∑

|a〉. The players will use this to perform a distributed computation
of the encoding gate for the code C. Thus, the dealer will share the secret system S,
as well as δ states

∑ |a〉 and n − δ − 1 states |0〉. Players then apply the (linear)
encoding gate, and each player gets sent all shares of his component of the output.

Lemma 2.19. At the end of Step 2, the system has high fidelity to “either the dealer
is caught or measuring all n trees in the computational (resp. Fourier) basis yields a
forest of n 2-goodV (resp. 2-goodW ) trees whose implicitly defined classical values
v1, ..., vn lie in V (resp. W ).

Proof : This follows from the linearity of the sharings generated by the vqss scheme.
2

Corollary 2.20 (Soundness of Top-Level Protocol). At the end of the sharing
phase (i.e. after Step 3), the system has high fidelity to “either the dealer is caught
or the n shares of players S1, ..., Sn lie in CC”.

Proof : This is because the “rolling back” of the shares (i.e reconstruction of their
respective components by all players) preserves measurement statistics in both bases.
2

Lemma 2.21 (Completeness of Top-Level Protocol). When D is honest, on in-
put a pure state |ψ〉, the shared state will lie in span {E|ψ〉}C, i.e. will differ from an
encoding of ψ only by a local operation on the cheaters’ shares.

Notice that the dealer can also prove to all players that he has shared a |0〉 state
by simply proving that the system he is placing in the input position is in state |0〉.

Simulatability and Ideal Secret Sharing The top-level protocol (Protocol 7) is
a simulatable vqss protocol, just as was the original protocol. As before, the idea
is that there is no perceivable difference between (a) running the protocol on input
|0〉 and having the simulator “swap in” the real shared system S and (b) running the
protocol honestly.

However, the top-level protocol is also a simulatable implementation of a different
(and stronger) one-phase ideal task, which we call “ideal secret sharing” (Figure 2-8).
In it, the dealer D sends his system S to the T T P , and the T T P encodes it using
the quantum error-correcting code C and sends the i-th component to player i.

The details of the simulation are substantially similar to those of Section 2.2.6.
We get:

Theorem 2.22. The top-level protocol (Protocol 7) is a statistically secure real-world
implementation of ideal secret sharing (Protocol 8), for any t < n/4 (and thus in
particular for t < n/6).
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Protocol 8 (Ideal Secret Sharing). Input: Dealer D gets a qupit S.

1. D sends the |F |-dimensional system S to T T P . If D fails to do this, T T P broadcasts
“D is cheating” to all players.

2. T T P encodes D in C. That is:

(a) T T P creates δ states
∑

a |a〉 and n− δ − 1 states |0〉.
(b) T T P runs the linear encoding circuit (given by the n × n Vandermonde matrix) on

S and the n− 1 ancillas.

3. T T P sends the ith component of the encoding to Player i.

4. For all i: Player i outputs either the qupit received from T T P or the message “D is
cheating”.

Figure 2-8: Protocol 8 (Ideal Secret Sharing)

2.4.2 Distributed Computation

Given the protocol of the previous section, and given the ftqc techniques described
in Section 1.3.3, there is a natural protocol for multi-party computation of a circuit:
have all players distribute their inputs via the top-level sharing (Protocol 7); apply
the gates of U one-by-one, using the (essentially) transversal implementation of the
gates described in Section 1.3.3; then have all players send their share of each output
to the appropriate receiver. For completeness, we give this protocol in Figure 2-9
(p. 59).

One difficulty in the analysis of this protocol is the measurement results which
are broadcast in the computation phase during Degree Reduction. If the errors oc-
curring in the measured ancilla were somehow correlated or entangled with errors in
the real data, one could imagine that measuring and broadcasting them might intro-
duce further entanglement. However, this will not be a problem: on one hand, any
errors will occur only in the cheaters shares, and so provide nothing beyond what the
cheaters could learn themselves; on the other hand, the honest players will discard
all the information from the broadcast except the decoded measurement result (each
honest player performs the decoding locally based on the broadcast values, so all
honest players obtain the same result). Again, the cheaters can do this themselves.
A full proof of security is somewhat tedious; instead, we sketch the main ideas in the
remainder of this section.

Lemma 2.23. Suppose that all inputs and ancillas are shared at the beginning via
states in CC. Then the result of applying the protocol for a given circuit U , and then
sending all states to an honest decoder R is the same as sending all states to R and
having R apply U to the reconstructed states.
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Protocol 9 (Multi-party Quantum Computation).

Pre: All players agree on a quantum circuit U with n inputs and n outputs (for simplicity,
assume that the ith input and output correspond to player i). The circuit they agree on
should only use gates from the universal set in Section 1.3.3.

Input: Each player gets an input system Si (of known dimension p).

1. Input Phase:

(a) For each i, player i runs Top-Level Sharing with input Si.

(b) If i is caught cheating, then some player who has not been caught cheating yet
runs Top-Level Sharing (Protocol 7), except this time with the one-dimensional code
span{EC |0〉} (i.e. he proves that the state he is sharing is |0〉. If the sharing protocol
fails, then another player who has not been caught cheating runs the protocol. There
will be at most t iterations since an honest player will always succeed.

(c) For each ancilla state |0〉 needed for the circuit, some player who has not been caught
cheating yet runs Top-Level Sharing (Protocol 7), with the one-dimensional code
span{ECδ |0〉} or span

{
ECδ′ |0〉

}
, as needed. If the protocol fails, another player per-

forms the sharing, and so forth.

2. Computation Phase: For each gate g in the circuit, players apply the appropriate
fault-tolerant circuit, as described in Section 1.3.3. Only the measurement used in Degree
Reduction is not transversal. To measure the ancilla:

(a) Each player measures his component and broadcasts the result in the computational
basis.

(b) Let w be the received word. Players decode w (based on the scaled Reed-Solomon
code W δ′), and obtain the measurement result b.

3. Output Phase: For the ith output wire:

(a) All players send their share of the output wire to player i.

(b) Player i applies the decoding operator for C and outputs the result. If decoding fails
(this will occur only with exponentially small probability), player i outputs |0〉.

Figure 2-9: Protocol 9 (Multi-party Quantum Computation)
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Proof : Any state in CC can be written as a mixture of linear combinations of basis
states EjE|ψ〉 (see Lemma 1.5). The works on fault-tolerant computing show that
the above procedures work correctly on such basis states. More importantly, they
produce no new entanglement: the only opportunity to do so would come from the
interaction in the measurement step of Degree Reduction. However, the resulting
leftover ancilla is independent of the data in the computation, and hence provides no
new information or entanglement. 2

Theorem 2.24. For any circuit U , Protocol 9 is a statistically secure real-world im-
plementation of multi-party quantum computation (Protocol 1) as long as t < n/6.

Proof : The proof of this is by simulation, as before. The key observation is that
when the simulator S is controlling the honest players, the adversary cannot tell the
difference between the regular protocol and the following ideal-model simulation:

1. S runs the input phase as in the protocol, using |0〉 as the inputs for honest players.
In this phase, if any dealer is caught cheating, S sends “I am cheating” to the T T P
on behalf of that player.

2. S “swaps” the cheaters’ inputs with bogus data |0〉, and sends the data to the
T T P. That is, he applies the interpolation circuit to honest players’ shares to get
the various input systems Si (for i ∈ C), and then runs the interpolation circuit
backwards, with the state |0〉 replacing the original data.

3. S now runs the computation protocol with the adversary on the bogus data. (Be-
cause no information is revealed on the data, the adversary cannot tell this from
the real protocol.)

4. S receives the true computation results destined to cheating players from T T P.

5. S “swaps” these back into the appropriate sharings, and sends all shares of the ith

wire to player i (again, he does this only for i ∈ C).

The proof that this simulation succeeds follows straightforwardly from the security of
the top-level sharing protocol and the previous discussion on fault-tolerant procedures.
2
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Chapter 3

Open Questions

We conclude briefly with some open questions based on this research:

• Perhaps the most obvious question, given the results of this thesis, is to determine
the true threshold for multi-party quantum computing, i.e. is it possible to tolerate
up to b(n− 1)/4c cheaters? We conjecture that it can indeed be done, but the
techniques we use here are clearly not sufficient.

One approach to this problem is to find a fault-tolerant Toffoli procedure for the
code Cδ for n = 2δ + 1, which tolerates t errors at any point in the computation.
The best known procedure for that code is a straightforward generalization of
Shor’s procedure for binary css codes [Sho96, AB99]. However, there is one point
in that procedure at which at most one error can be tolerated. Such a procedure
will fail when t = δ/2 errors can be placed adversarially.

• A more subtle question is whether or not it is possible to remove the error proba-
bility from the protocols for verifiable quantum secret sharing. Given an error-free
implementation of Ideal Secret Sharing, error-free multi-party computation is easy.
However, attaining error-free vqss seems difficult. Although we tried and failed
to adapt the error-free classical techniques of Ben-Or, Goldwasser and Wigder-
son [BGW88], we conjecture that it is nonetheless possible to achieve error-free
quantum computation.

• A potentially much more difficult question is what tasks are achievable when we
allow cheating players to force the abortion of the protocol. That is, extend the
ideal model so that the cheaters can, at any time, simply ask the trusted third
party to stop the protocol entirely. In that setting vqss becomes largely irrelevant
since an essential aspect of vqss is that the honest players be able to reconstruct
the secret without the cheaters help. Thus, the bound of n/4 no longer seems hard;
in fact, we conjecture some improvement is possible, possibly even up to tolerating
any minority of cheating players.
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Appendix A

More on Neighborhoods of
Quantum Codes

Note that the notions NB(C) and STB(C) make sense for any subspace C of H. On
the one hand, we always have NB(C) ⊆ STB(C) since local operations do not affect
the density matrix of other components. If we restrict our attention to pure states,
then NB(C) and STB(C) are in fact identical. Specifically, define:

Npure
B (C) =

{
|ψ〉 ∈ H : ∃|φ〉 ∈ C, ∃U unitary, acting only on HB

such that |ψ〉 = (IA ⊗ U)|φ〉
}

ST pureB (C) =
{
|ψ〉 ∈ H : ∃|φ〉 ∈ C,TrB(|ψ〉〈ψ|) = TrB(|φ〉〈φ|)

}

Proposition A.1. For any subspace C: Npure
B (C) = ST pureB (C)

Proof : We must only prove Npure
B (C) ⊇ ST pureB (C), since the other inclusion is trivial.

Take any state |ψ〉 ∈ ST pureB (C). Let |φ〉 be the corresponding state in C and let ρ =
TrB(|ψ〉〈ψ|) = TrB(|φ〉〈φ|). We can write ρ =

∑
i pi|ai〉〈ai| with pi > 0,

∑
i pi = 1,

and the vectors |ai〉 orthonormal.
By the Schmidt decomposition, we know that we can write

|ψ〉 =
∑

i

√
pi|ai〉 ⊗ |bi〉

with the vectors |bi〉 orthonormal. Similarly, there is some other set of orthonormal
vectors |b′i〉 such that we can write

|φ〉 =
∑

i

√
pi|ai〉 ⊗ |b′i〉

Now consider any unitary matrix U on HB which maps |b′i〉 to |bi〉. Such a matrix
always exists since the sets of vectors are orthonormal. Then we have |ψ〉 = (IA ⊗
UB)|φ〉 as desired. 2
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This equality does not hold once we relax our definition and consider mixed states.
Namely:

Proposition A.2. There exist subspaces C for which NB(C)  STB(C).

Proof : Many quantum codes have this property, for an appropriate partition of the
code word into parts A and B. Take C to be a quantum RS code with n = 2δ + 1.
Encode 1/2 of an EPR pair. Now get ρ by appending the other half of the EPR pair
to the end of the codeword (say there is space left over in position n, for example).
On one hand, ρ is clearly in STB as long as B includes position n. However, it is not
in NB(C) since the only state “in” C which has the same trace as ρ on A is a mixed
state. 2

For the case of css codes, we can additionally define CB = V
(q)
B ∩F⊗nW

(q)
B . Again,

there is a trivial inclusion: STB(C) ⊆ CB. This inclusion also holds when we restrict
our attention to pure states. However, the inclusion is strict, even for pure states:

Proposition A.3. There exist subspaces C for which STB(C)  CB.

Proof : Again, consider the quantum RS code with n = 2δ+1. Take A = {1, ..., δ + 1}
and B = {n− δ + 1, ..., n}. Both VB and WB cover the entire space Znp , so in fact CB
is the entire Hilbert space. However, any state ρ in STB(C) must yield ρ′ ⊗ I{2,...,δ+1}
when the interpolation operator is applied to the positions of ρ in A. Thus, not all
states, pure or mixed, are in STB(C). 2

It should be noted that neither NB(C) nor STB(C) are subspaces. Moreover, for
css codes, CB is the subspace generated by the vectors in NB(C).

Correspondence to an Idealized Experiment One interesting property of STB(C)
is that it is exactly the set of states which will arise in an idealized experiment in
which cheaters introduce errors which are entangled with the data. Specifically, allow
the cheaters to choose an arbitrary joint state |ψ〉 for two systems L and Aux (L is
the logical data, Aux is auxiliary workspace). Now encode L using C, and allow the
cheaters to apply any operator which affects only Aux and the components of the
encoding contained in B. Finally, trace out Aux so that only the components of the
(corrupted) codeword are left.

Proposition A.4. The set of possible states of the corrupted codeword system in the
previous experiment is exactly STB(C).

Proof : We can assume w.l.o.g. that the adversary provides a pure state as input,
since we can always purify the state with an ancilla and have him simply ignore the
ancilla. Now, we are in the situation of considering Npure

B∪Aux(C′), where C′ is the code
consisting of C when restricted to the codeword positions (and no restrictions on the
Aux). By Proposition A.1 this is equal to ST pureB∪Aux(C′). But we have STB(C) =
ST pureB∪Aux(C′), i.e. once we trace out everything but A, there is no difference between
C and C′. 2
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[BCMS98] Gilles Brassard, Claude Crépeau, Dominic Mayers, and Louis Salvail.
Defeating classical bit commitments with a quantum computer. quant-
ph/9806031, June 1998.

[Bea89] Donald Beaver. Multiparty protocols tolerating half faulty processors. In
G. Brassard, editor, Advances in Cryptology—CRYPTO ’89, volume 435
of Lecture Notes in Computer Science, pages 560–572. IACR, Springer-
Verlag, 1990, 20–24 August 1989.

[Bea91] Donald Beaver. Foundations of secure interactive computing. In Feigen-
baum [Fei91], pages 377–391.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation
(extended abstract). In ACM [ACM88], pages 1–10.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic pro-
tocols. J. Cryptology, 13(1):143–202, 2000.

[Can01] Ran Canetti. A unified framework for analyzing security of protocols.
Manuscript, preliminary version available at eprint.iacr.org/2000/067.
Some versions of the manuscript are titled “Universal Composability.”,
2001.
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