
Simple backdoors for RSA key generation

Claude Crépeau
McGill University ∗

Alain Slakmon
Collège de Bois-de-Boulogne †

October 18, 2002

Abstract

We present extremely simple ways of embedding a backdoor in the key generation scheme
of RSA. Three of our schemes generate two genuinely random primes p and q of a given size,
to obtain their public product n = pq. However they generate private/public exponents pairs
(d, e) in such a way that appears very random while allowing the author of the scheme to easily
factor n given only the public information (n, e). Our last scheme, similar to the PAP method
of Young and Yung, but more secure, works for any public exponent e such as 3, 17, 65537 by
revealing the factorization of n in its own representation. This suggests that nobody should rely
on RSA key generation schemes provided by a third party.

1 Introduction

As we all know, the RSA public-key Cryptosystem and Digital signature schemes are now in
the public domain, which means that anybody may include them as means of confidentiality
and authenticity in software products, smartcards, etc. The question that we raise here is how
much can a user tell that an implementation of RSA he uses is safe and actually protects him?
Recall the (in)famous “NSA-KEY” incident of Microsoft’s CryptoAPI system. How easy is it for
software developers and smartcard builders to embed a backdoor in their RSA key generation
scheme that will be unnoticed by the user but allows the author to defeat the confidentiality
and authenticity of the resulting RSA public-key Cryptosystem and Digital signature scheme ?

We present extremely simple ways of embedding a backdoor in the key generation scheme
of RSA. Three of our schemes generate two genuinely random primes p and q of a given size,
to obtain their public product n = pq. However they generate private/public exponents pairs
(d, e) in such a way that appears very random while allowing the author of the scheme to easily
factor n given only the public information (n, e). Our fourth scheme, similar to the PAP method
of Young and Yung, but more secure, works for any public exponent e such as 3, 17, 65537 by
embedding a backdoor to the factorization of n in its own representation. Our methods will
modify only slightly the running time of the standard key generation process and thus will be
unnoticeable from a timing point of view. Moreover, we conjecture that backdoored keys will
be distributed in such a way that even with large samples they will remain indistinguishable
from genuinely random keys.

For this purpose, one scheme relies on the well known attacks on RSA small private exponents
by Wiener and Boneh and Durfee (see also extensions by De Weger and Slakmon). The scheme
creates a random weak pair of private/public exponents (δ, ε) with small δ, and transforms it
into a random looking private/public exponents (d, e) which are related to (δ, ε) in a secret way

∗ School of Computer Science, McGill University, room 318, McConnell Eng. Building,
3480 rue University, Montréal (Québec), Canada H3A 2A7. e-mail: crepeau@cs.mcgill.ca.

† Département de mathématiques, Collège de Bois-de-Boulogne, 10555 avenue de Bois-de-Boulogne,
Montréal (Québec), Canada H4N 1L4. e-mail: Alain.Slakmon@bdeb.qc.ca.

1

that the author of the generation scheme may invert. From public knowledge of (e, n) only, the
author may recover ε, break the easy instance (ε, n) and discover δ. Factorization of n can easily
be obtained using standard techniques, once δ, ε are known.

Our next two schemes rely on the more recent attacks on RSA small public exponents given
parts of the private exponent by Boneh, Durfee and Frankel. The schemes create a random
weak pair of private/public exponents (δ, ε) with small ε, and transforms this ε and parts of the
corresponding δ into a random looking private/public exponents (d, e) which are related to (δ, ε)
in a secret way that the author of the generation scheme may invert. From public knowledge of
(e, n) only, the author may recover ε and parts of δ, break the easy instance (ε, n) given parts of
δ and discover the whole δ. Factorization of n can easily be obtained using standard techniques,
once δ, ε are known.

Our last scheme relies on the possibility of hiding at least half the bits of p in the repre-
sentation of n. Factoring n is possible using Coppersmith’s method once half the bits of p are
recovered.

Our first scheme generates (d, e) pairs such that |e| ≈ |n|. However, our second scheme
generates (d, e) pairs such that |e| ≈ |n|/2 while the third generates (d, e) pairs such that
|e| ≈ |n|/4. Our last scheme generates (d, e) pairs for any e of arbitrary size.

This suggests that nobody should rely on RSA key generation schemes provided by a third
party. This is most striking in the smartcard model, unless some guarantees are provided that
all such attacks to key generation cannot have been embedded. Restriction to RSA moduli
with predetermined portions as proposed by Lenstra would not be of any help to prevent our
methods. Even in software implementations, unless the actual source code is provided, it is non
trivial to find out exactly what the key generation mechanism is. One can easily imagine that
software companies who want to keep their code secret for market advantage will not make it
easy to decompile their programs to make sense of their implementation know-how.

2 Reminders and Relation to other work

The RSA cryptosystem and digital signature schemes [10] are based on the generation of two
random primes p, q of roughly equal size and generation of random exponents d, e such that
de ≡ 1 (mod φ(n)), where n = pq.

Algorithm 2.1 (RSA key generation)

1: Generate random primes p, q of the appropriate size, set n := pq, a k bit integer.

2: repeat

3: Generate a random odd e such that |e| ≤ k.

4: until gcd(e, φ(n)) = 1.

5: Compute d := e−1 mod φ(n).

6: return(p, q, d, e).

The pair (n, e) may be made publicly available so that the function me mod n be used
for encryption, whereas cd mod n be used for decryption of messages m, c, 1 ≤ m, c ≤ n − 1.
Similarly, the private function md mod n may be used to produce a signature c, whereas ce mod n
may be compared to m as a signature verification procedure of messages m, c, 1 ≤ m, c ≤ n− 1.

Wiener [13] demonstrated that small private exponents may be efficiently recovered if d <
n.25/3 and this result was recently improved by Boneh and Durfee [1] who showed a similar
result for d < n.292. Moreover, it is a well known fact [8] that given a multiple of φ(n) such as
de− 1 satisfying de ≡ 1 (mod φ(n)), it is easy to factor n.

2

Boneh, Durfee and Frankel [2] recently demonstrated two interesting results allowing to
recover the whole of d given a small e, n and parts of d. Let n = pq such that p/q < 4 be an
RSA moduli. We use the following two theorems from their work to construct our schemes:

Theorem 1 ([2],theorem 1.2, part 1) Let t be an integer in the range [|n|/4, ..., |n|/2] and

e be a prime in the range [2t, ..., 2t+1]. Suppose we are given (n, e), and the t most significant

bits of d. Then we can compute the whole of d and factor n in time poly(|n|).

Theorem 2 ([2],theorem 4.6) Let t be an integer in the range [1, ..., |n|/2] and e be an integer

in the range [2t, ..., 2t+1]. Suppose we are given (n, e), the t most significant bits of d, and the

|n|/4 least significant bits of d. Then we can factor n in time poly(|n|).

Some quite interesting results by Joye, Paillier and Vaudenay [6] may be used to speed up
prime generation at Step 1 of the key generation protocols of section 3 since the primes are not
chosen according to particular rules such as those in Section 5.

Another useful sequence of result is the proof by Rivest and Shamir [9] that the |n|/3 most
significant bits of p are sufficient to factor n efficiently, and an improvement due to Coppersmith
[3] reducing the number of required bits to |n|/4.

De Weger [5] and Slakmon [11] have considered the algorithm of Weiner in a context where
the primes p, q are partially known. In particular, we use the following result of Slakmon :

Theorem 3 ([11],proposition 3.2.1) Let t be an integer in the range [1, ..., |n−φ(n)|] and d
be an integer in the range [1, ..., 2|n−φ(n)|−t/2]. Suppose we are given (n, e), and the |n−φ(n)|− t
most significant bits of n− φ(n). Then we can factor n in time poly(|n|).

Our schemes are in the line of work by Young and Yung [14, 15, 16] on kleptography. Our
schemes are different from theirs and involve a minimal amount of extra calculations to maintain
the key generation time roughly the same as an honest RSA key generation scheme. Note
however that our schemes of Section 5 are very similar to the PAP method of [14]. Although
the PAP scheme would be foiled by the methods of Lenstra [7] to force certain bits of n to be
chosen by the user, our schemes will resist to these countermeasures.

2.1 The scenario

We assume that a legitimate user (called the distinguisher) is given access to the RSA key
generation process as a black-box, where he is not allowed to see the code of the generator.
However he can sample output tuples (e, d, p, q) from the generator to his will.

The source code of a valid RSA key generator is provided to the distinguisher as well as the
code of our cheating generators, except for a secret key, unspecified in the code. The task of the
distinguisher is to figure out which is which only from sample outputs of these generators and
from running time analysis.

Our goal is to make this distinguishing task as difficult as possible with the simplest and
most efficient modification to the standard key generation mechanism. To make this task more
significant, we allow the distinguisher extra powers not usually provided to users of such key
generation schemes. Our distinguisher may

1. keep one prime out of p, q and request the other one afresh

2. keep the primes p, q and request several valid pairs of exponents d, e.

We believe that despite these extra powers, our cheating mechanisms remain indistinguishable
in output distribution and in (approximate) running time.

Notations We use the column “:” for concatenation. Let mc̀ be the ` least significant bits
of integer m, and similarly me` be the ` most significant bits of integer m.

3

3 Hidden Exponent Key generation algorithms

3.1 Hidden small private exponent δ

The basis of our “cheating” RSA-HSDβ key generation scheme is to imbed a backdoor β in the
scheme and use it to hide instances of small values of the private exponent δ. This is done as
described in the following protocol, using an unspecified permutation πβ of odd integers smaller
than n to themselves. We discuss several classes of simple choices for πβ in Section 4.

Algorithm 3.1 (RSA-HSDβ key generation)

1: Generate random primes p, q of the appropriate size, set n := pq, a k bit integer.

2: repeat

3: Generate a random odd δ such that gcd(δ, φ(n)) = 1 and |δ| ≤ k/4.

4: Compute ε := δ−1 mod φ(n); e := πβ(ε).

5: until gcd(e, φ(n)) = 1.

6: Compute d := e−1 mod φ(n).

7: return(p, q, d, e).

The instances produced by the above key generation scheme satisfy all properties required
except for the fact that d, e are not entirely random, but are only random within a smaller set
of possibilities specified by the images through πβ of inverses modulo φ(n) of small exponents
δ. Notice that Step 3 may be made non-repetitive at the price of biasing the distribution of the
δ’s toward the smaller ones by setting δ := δ/ gcd(δ, φ(n)).

In terms of running time, this algorithm compares very well with the standard RSA key
generation Algorithm 2.1: the running time of Steps 1 and 6 are identical to the original whereas
the loop from Steps 2 to 5 will run a number of times roughly equal to the original loop; the
number of gcd calculations inside the loop is about three time as much as the original (that
is if we use the non-repetitive trick suggested above). As long as the computation of πβ(ε) is
negligible with respect to calculations such as gcds, the difference in running time may be made
quite negligible.

Once n, e are made public n may be factored as follows, given the secret backdoor β.

Algorithm 3.2 (RSA-HSDβ attack (n, e))

1: Given (n, e), compute ε := π−1
β (e).

2: Compute δ from (n, ε) using Wiener’s low exponent attack.

3: Given (ε, δ) factor n as p,q.

4: return(p, q).

At extra cost in the attack, larger values of δ may be used, up to n0.292 using the Boneh-
Durfee cryptanalytic attack instead of Weiner’s.

The main drawback of this method is that the generated e’s will have roughly full size
|e| ≈ |n|. This means that any restriction on the size of e (|e| < c|n| for c < 1) would foil the
attack.

4

3.2 Hidden small prime public exponent ε

The basis of our “cheating” RSA-HSPEβ key generation scheme is to imbed a backdoor β in the
scheme and use it to hide instances of small values of the public prime exponent ε together with
some partial information about the corresponding private exponent δ. This is done as described
in the following protocol, using an unspecified permutation πβ of odd integers smaller than n.
We discuss several classes of simple choices for πβ in Section 4.

Algorithm 3.3 (RSA-HSPEβ key generation)

1: Generate random primes p, q of the appropriate size, set n := pq, a k bit integer.

2: repeat

3: Generate a random prime ε such that gcd(ε, φ(n)) = 1 and |ε| = k/4.

4: Compute δ := ε−1 mod φ(n); δH := δek

4 ; e := πβ(δH :ε).

5: until gcd(e, φ(n)) = 1.

6: Compute d := e−1 mod φ(n).

7: return(p, q, d, e).

The instances produced by the above key generation scheme satisfy all properties required
except for the fact that d, e are not entirely random, but are only random within a smaller set of
possibilities specified by the images through πβ of concatenations of δH , ε of small prime public
exponents ε.

The size of the concatenations (δH : ε) produced are k/2. Therefore, using extra random
padding, we have freedom to generate exponents e in the range

√
n < e < φ(n).

In terms of running time, this algorithm compares poorly with the standard RSA key gener-
ation Algorithm 2.1: on one hand, the running time of Steps 1 and 6 are identical to the original
while the loop from Steps 2 to 5 will run a number of times roughly equal to the original loop;
the number of gcd calculations inside the loop is about three time as much as the original (since
ε is prime). On the other hand, unfortunately, generating prime ε is going to be time consuming
despite the fact that |e| = |n|/4.

The main advantage of this method is its simplicity and the fact that the keys produced may
be as small as |n|/2.

Once n, e are made public n may be factored as follows, given the secret backdoor β.

Algorithm 3.4 (RSA-HSPEβ attack (n, e))

1: Given (n, e), compute (δH :ε) := π−1
β (e).

2: Compute δ from (n, δH , ε) using BDF low public prime exponent attack (Theorem 1)
with partial knowledge of private exponent.

3: Given (ε, δ) factor n as p,q.

4: return(p, q).

3.3 Hidden small public exponent ε

The basis of our “cheating” RSA-HSEβ key generation scheme is to imbed a backdoor β in the
scheme and use it to hide instances of small values of the public exponent ε together with some
partial information about the corresponding private exponent δ. This is done as described in
the following protocol, using an unspecified permutation πβ of odd integers smaller than n to

5

themselves. We discuss several classes of simple choices for πβ in Section 4. Let t be an integer
in the range [1, ..., |n|/2].

Algorithm 3.5 (RSA-HSEβ key generation)

1: Generate random primes p, q of the appropriate size, set n := pq, a k bit integer.

2: repeat

3: Generate a random ε such that gcd(ε, φ(n)) = 1 and |ε| = t.

4: Compute δ := ε−1 mod φ(n); δH := δet; δL := δck

4

; e := πβ(δH :δL :ε).

5: until gcd(e, φ(n)) = 1.

6: Compute d := e−1 mod φ(n).

7: return(p, q, d, e).

The instances produced by the above key generation scheme satisfy all properties required
except for the fact that d, e are not entirely random, but are only random within a smaller
set of possibilities specified by the images through πβ of concatenations of δH , δL, ε of small
public exponents ε. Notice that Step 3 may be made non-repetitive at the price of biasing the
distribution of the ε’s toward the smaller ones by setting ε := ε/ gcd(ε, φ(n)).

However, to avoid detection, it is necessary to randomize (or discard) the ` ≥ 2 least signif-
icant bits of δL where 2`|φ(n) and 2`+16 |φ(n). This is because εδ ≡ 1 mod 2` and therefore δc̀
is always the inverse modulo 2` of εc̀ . All such obvious redundancy must be removed in order
to allow the permutation πβ to remain simple and fast to compute.

In general, if we request at Step 3 that |ε| = t for t ∈ [1, ..., k/2], the total size of the
concatenated input (δH , δL, ε) is 2t+k/4. Asymptotically if we set t := γk for some small γ > 0
the size is (1/4+ 2γ)k ≈ k/4. Therefore, using extra random padding or by using a larger t, we
have freedom to generate exponents e in the range 4

√
n < e < φ(n). Notice however that despite

the fact that γ vanishes asymptotically, one should make sure that γk be at least, say 80, to
prevent brute force attacks.

In terms of running time, this algorithm compares very well with the standard RSA key
generation Algorithm 2.1: the running time of Steps 1 and 6 are identical to the original whereas
the loop from Steps 2 to 5 will run a number of times roughly equal to the original loop; the
number of gcd calculations inside the loop is about three time as much as the original (that
is if we use the non-repetitive trick suggested above). As long as the computation of πβ(ε) is
negligible with respect to calculations such as gcds, the difference in running time may be made
quite negligible.

Once n, e are made public, n may be factored as follows, given the secret backdoor β.

Algorithm 3.6 (RSA-HSEβ attack (n, e))

1: Given (n, e), compute (δH :δL :ε) := π−1
β (e).

2: Compute δ from (n, δH , δL, ε) using BDF low public exponent attack (Theorem 2)
with partial knowledge of private exponent.

3: Given (ε, δ) factor n as p,q.

4: return(p, q).

6

4 Choices of πβ

Our main simple and very easy to compute permutation is

πβ(x) = x⊕ (2β)c|x| .

It appears sufficient for schemes of Section 3 in the sense that the instance spaces are sufficiently
large that even if a distinguisher tries to discover the fact that our schemes have been used they
will likely fail. In scheme RSA-HSD for instance, the distinguisher would be able to compute
the XOR of ε’s corresponding to small δ’s by computing the XOR of the corresponding e’s, but
those will look very random.

Similarly in scheme RSA-HSE, XORing e’s together is likely to look very random as long
as they have been processed as described above, to remove obvious redundancy. In scheme
RSA-HSPE, the XOR of e’s will yield the XOR of primes ε’s but this too is random enough to
be indistinguishable.

4.1 More examples

Of course one can always rely on different cryptosystems to generate efficient π’s, for instance

πβ(x) = DESβ(x) or πβ(x) = AESβ(x)

may be used. However it seems more desirable to use permutations π that use the same kind of
arithmetic as RSA itself since these operation are readily available for normal key generation.
It may be a problem in a smartcard scenario to use program space to implement DES or AES.

When working with fixed sizes k bit information to permute, a very simple way to create
randomization is to choose β as a prime in the range 2k−1 ± 2k/2 and then define

πβ(x) = x−1 mod β

which is computed with a single extended gcd calculation.

4.2 Permutations using operations modulo n + 1

Another example uses an even translation of the odd exponents x modulo an even number such
as n + 1. Let N be an upper bound on all the n’s produced by the key generation scheme, and
let β be a fixed parameter, picked at random such that N ≤ β ≤ 2N . The permutation

πβ(x) = (x + 2β) mod (n + 1)

maps the odd integers modulo n + 1 to themselves. Notice that the probability that this
permutation maps an element to a value greater than φ(n) is negligible, since (n+1)−φ(n) = p+q
which is exponentially small with respect to φ(n). This permutation is different for each n and
so makes it even harder to notice the cheat. However, this specific permutation is not a good
choice in the context of Section 3.1 since Vaudenay [12] found a way to identify our RSA-HSD
generated keys within 24 hours of posting of our proposal on the web [4] !

This can be generalized in several directions using several extra hidden parameters. First
notice that n + 1− 2

√
n is always an upper bound on φ(n) and thus

πβ,µ(x) = (x + 2β) mod (n + 1− 2m)

may also be used, where m := µ mod
⌊

√

(n)
⌋

for any fixed µ, such that
√

N ≤ µ ≤ 2
√

N .

In other words, µ is an arbitrary constant at least half the size of the largest n’s we want to
generate.

Notice, however, that generalizing expression e + 2β to affine functions using yet another
secret parameter α, 1 ≤ α ≤ N :

7

πn,α,β,µ(e) = ((2α + 1)e + 2β) mod (n + 1− 2m)

will cause a problem if gcd(2α+1, φ(n), n+1− 2m) > 2. In this case, given two different sets of
exponents, but with the same modulus (p, q, e, d) and (p, q, e′, d′), a user could compute e′ − e
which is the same as (2α+1)(ε′− ε) up to a multiple of (n+1−2m). The user could notice that
gcd(e′ − e, φ(n)) > 2 all the time which is unusual, despite the fact that µ and β are unknown.

4.3 Discussion: avoiding and securing hidden exponent attacks

Of course, a very simple strategy will foil these attacks : make sure d (or e) is picked from an
exponentially large subset S of possible values which is only an exponentially small fraction of
all the d’s, such that gcd(d, φ(n)) = 1. For example, consider the set of valid private exponents
to be S = {d| gcd(d, φ(n)) = 1 and d <

√
n}. It seems quite unlikely that one can find a simple

permutation πβ(e) that frequently maps inverses modulo φ(n) of d’s, d < n1/4, to inverses
inverses modulo φ(n) of d’s in S, in a random looking fashion. But, who knows really if such a
thing is impossible ?

Bad choices of S can be no help to foil the attack. For example, S = {d| gcd(d, φ(n)) =
1 and (d−1 mod φ(n)) <

√
n} is easily foiled by methods of Sections 3.2 and 3.3.

Alternatively, forcing some redundancy onto d’s may help foil the attack. For instance,S =
{d| gcd(d, φ(n)) = 1 and d = (x : x)} where x is a half size odd number, seems a good counter-
measure to our hidden exponent schemes.

The indistinguishability of resulting schemes depend extensively on the permutation chosen
but in many cases the simpler ones seem to suffice. Notice also that the security of our three
schemes decrease as they produce e’s of smaller and smaller size. Indeed, even more relevant is
the fact that the set of possible e’s gets smaller from the first to the third scheme. The size of
the valid e’s set is an important factor of security.

Finally, notice that the last of the three schemes, which produces the smallest e’s may involve
extra weaknesses similar to those already exposed because of the redundancy of the lsb’s of ε
and the corresponding lsb’s of δ. Further analysis of this redundancy should be performed. It
could otherwise lead to countermeasures.

5 Hidden prime factor

Our last proposal is very similar to the PAP (Pretty-Awful-Privacy) of [14] but we address and
solve a number of deficiencies left unnoticed or unresolved by their scheme. We investigate the
idea of imbedding some bits of the prime factor p in the product n = pq, thus choosing q to
be a special prime satisfying a number of constraints. However, as long as the key β remains
secret it should be hard to tell from the distribution of p, q, n’s produced that cheating is going
on. Our proposal differs from PAP in two major ways:

• After [3] we only hide the half most significant bits of p

• We make sure the distribution of numbers n, p, q is similar to the honest one.

The PAP method generates numbers n where the most significant bits are uniformly dis-
tributed which is not the proper distribution for products of two randomly selected (prime)
integers of a fixed size. For instance, if one picks two random (prime) integers of 512 bits each,
their product will be 1023 bits long with probability 38% whereas with probability 48% it will
be 1024 bits long with leading bits “10” and with probability 14% it will be 1024 bits long with
leading bits “11”. This issue was ignored by [14] . Of course this problem does not happen if p
and q are picked over the more appropriate interval [

√
2× 2511, ..., 2512− 1], but we see that the

distribution of p, q influences the distinguishability of the result.
Let e be some fixed public exponent such as 3, 17, 65537, etc, for which an appropriate n

must be found. Our scheme RSA-HPβ proceeds as follows:

8

Algorithm 5.1 (RSA-HPβ(e) key generation)

1: Pick a random prime p of the appropriate size, such that gcd(e, p− 1) = 1.

2: Pick a random odd q′ of the appropriate size, set n′ := pq′, a k-bit integer.

3: Compute τ := n′ek

8 , µ := πβ(pek

4) and λ := n′c5k

8

.

4: Set n := (τ :µ :λ) and q := bn/pc+ (1± 1)/2 so that it is odd.

5: while gcd(e, q − 1) > 1 or q is composite do

• Pick a random even m such that |m| = k
8 , set q := q ⊕m and n := pq.

6: Compute d := e−1 mod φ(n).

7: return(p, q, d, e).

The instances produced by the above key generation scheme is the product of a truly random
p and a somewhat random q such that

• the top k/8 bits of n have the correct distribution of such a product

• the next k/4 bits of n are an “encryption” of the k/4 most significant bits of p

• the least k/8 bits of q are randomly chosen so that q is prime.

The running time of the above algorithm is more or less the same as the standard algorithm
where p and q are individually picked at random until they are prime. Prime p is produced
exactly in the same way, whereas prime q is picked according to the method of Step 5, which on
average takes the same number of steps as Step 1. All other extra computations are negligible
with respect to a single primality test.

Algorithm 5.2 (RSA-HPβ attack (n, e))

1: Given n, compute pek

4 := π−1
β (ne3k

8 ck

4

).

2: Factor n as p,q using Coppersmith’s partial information attack.

3: return(p, q).

Unlike the methods of Section 3, the simple permutation πβ(x) = x ⊕ (2β)c|x| is definitely

not secure; upon receiving two pairs (p, q) and (p′, q′) generated as above, one can easily check
that

(n′ ⊕ n)e3k

8 ck

4

= (p′ ⊕ p)ek

4

which should not happen normally. For this method we recommend permutations from Sections
4.1 and 4.2. Again the last permutation of Section 4.1 πβ(x) = x−1 mod β is definitely not
secure by itself; upon receiving a pair (p, q) generated as above, one can easily compute

ne3k

8 ck

4

pek

4 − 1

which should be a multiple of the secret prime β. Running this experiment several times will
lead to several multiples of β and a simple gcd calculation will yield β. Notice however that if
pek

4 is padded with a large enough number of extra random bits, the above attack is foiled.
Our favorite permutation is computing of a modular inverse mod a fixed predetermined

prime near 2
k

4 as proposed at the end of Section 4.1 and XORing with a fixed string:

πβ,µ(x) =
(

x⊕ (2µ)c|x|
)−1

mod β or πβ,µ(x) =
(

x−1 mod β
)

⊕ (2µ)c|β|

9

which seem to foil both attacks presented above.
The unfortunate drawback of this method is that, while the first prime p can be picked

according to any rule, the second prime q is picked according in a way that will not modify
too much of its bits, once a first approximation is found. This opens the door to some attacks
that may use this deficiency. Also it requires that a more elaborate encryption be used to hide
the half of p in n. If by accident a “bad” prefix is selected, the amount of attempts to reach
a prime may be very high. However on average the number of such attempts is the same as
standard generation. Moreover we must find a valid portion of n that is uniformly distributed
as long as p and q are picked according to any particular distribution. In the above example, we
make the assumption that despite the fact that the first few and last bits of n are not uniformly
distributed, the k/4 positions past the first k/8 are.

5.1 Combining with exponent method

Using the result of Slakmon (Theorem 3) it is possible to combine the above method with
the hidden small exponent method with larger small exponents ! For instance, if n is used to
subliminally transmit the |n|/6 ≈ |n−φ(n)| − |n|/3 most significant bits of n−φ(n) (instead of
|n|/4 msb of p required by Coppersmith’s method), then a variation of Weiner’s method is able
to recover hidden exponents d up to size |n− φ(n)| − |n|/3/2 ≈ |n|/3 which is better than both
Weiner and Boneh-Durfee methods. Thus exponents d up to n0.333 may be used and broken.

Increasing the size of acceptable d’s increases the security of the hidden small exponent
method and reducing the amount of information transmitted subliminally through n increases
the security of the hidden prime method. However, the resulting method suffers the deficiencies
of both methods.

5.2 Discussion: avoiding and securing hidden prime attacks

Providing constraints in the way of Lenstra’s work [7] do not seem to be an effective way of
stopping the attack. Our method offers sufficient freedom in the choice of p and q that fixing
the msb’s or lsb’s of n is not strong enough to foil our attack.

However, if we try to reduce the running time to be comparable to the primes generation
algorithm of Joye, Paillier and Vaudenay [6] our method falls short because we could not find
a way to generate p and q efficiently using their method while subliminally sending through n
some portions of the bits of p.

An important issue to secure the hidden prime methods is to identify parts of n that are
sufficiently uniformly distributed when p and q are picked from their respective distributions.
Making very strict restrictions on the distributions of p and q can make that task very difficult.

6 Conclusions

We have introduced in Sections 3 and 5 a variety of simple backdoors that can be used to generate
apparently normal RSA keys (p, q, d, e) in such a way that the owner of a secret key imbedded
in the generation scheme may recover the private primes p and q from the public information
e, n. Each of these schemes use (n, e) as a subliminal channel to carry special information useful
to factor n. The security of the subliminal channel is parametrized by the choice of a secret
mapping πβ . Several possibilities of πβ were proposed in Section 4.

We are well aware that no proof of security of our schemes have been provided or even
hinted. Indeed, introducing a backdoor is somewhat like introducing a new computational
assumption. Only time will tell whether these backdoors resist to cryptaptanalysis. The scheme
of Section 3.1 is the only one that has been made public so far (on a web page) and has survived
cryptaptanalysis for more than a year.

We challenge the cryptology community to break the several schemes/permutations possi-
bilities proposed in this paper.

10

Acknowledgements

We thank Don Coppersmith, Jean-Marc Robert, Serge Vaudenay, and Moti Yung for helpful
discussions and for breaking some early schemes. We are grateful to Martin Courchesne and
Simon Wong for their web programming assistance.

References

[1] D. Boneh and G. Durfee, Cryptanalysis of rsa with private key d less than n0.292,
Information Theory, IEEE Transactions on, 46 (2000), pp. 1339–1349.

[2] D. Boneh, G. Durfee, and Y. Frankel, An attack on rsa given a small fraction of

the private key bits., in Advances in Cryptology - AsiaCrypt ’98, K. Ohta and D. Pei, eds.,
Berlin, 1998, Springer-Verlag, pp. 25–34. Lecture Notes in Computer Science Volume 1514.

[3] D. Coppersmith, Finding a small root of a bivariate integer equation; factoring with high

bits known, in Advances in Cryptology - EuroCrypt ’96, U. Maurer, ed., Berlin, 1996,
Springer-Verlag, pp. 178–189. Lecture Notes in Computer Science Volume 1070.

[4] C. Crépeau and S. Wong, the RSA hidden small exponent method., in
http://crypto.cs.mcgill.ca/~crepeau/RSA, 2001.

[5] B. de Weger, Cryptanalysis of rsa with small prime difference, Applicable Algebra in
Engineering, Communication and Computing, 13 (2002), pp. 17–28.

[6] M. Joye, P. Paillier, and S. Vaudenay, Generating rsa moduli with predetermined

portion., in CHES 2000, Ç. K. Koç and C. Paar, eds., Berlin, 2000, Springer-Verlag, pp. 340–
354. Lecture Notes in Computer Science Volume 1965.

[7] A. K. Lenstra, An attack on rsa given a small fraction of the private key bits., in Advances
in Cryptology - AsiaCrypt ’98, K. Ohta and D. Pei, eds., Berlin, 1998, Springer-Verlag,
pp. 1–10. Lecture Notes in Computer Science Volume 1514.

[8] G. L. Miller, Riemann’s hypothesis and tests for primality, J. Comput. System Sci., 13
(1976), pp. 300–317.

[9] R. L. Rivest and A. Shamir, Efficient factoring based on partial information., in Ad-
vances in Cryptology - EuroCrypt ’85, F. Pichler, ed., Berlin, 1985, Springer-Verlag, pp. 31–
34. Lecture Notes in Computer Science Volume 219.

[10] R. L. Rivest, A. Shamir, and L. M. Adleman, A method for obtaining digital signa-

tures and public-key cryptosystems, Comm. ACM, 21 (1978), pp. 120–126.

[11] A. Slakmon, Sur des méthodes et algorithmes de factorisation et leur application en cryp-

tologie, Master’s thesis, Université de Montréal, dépt. IRO, 2000.

[12] S. Vaudenay, Private e-mail communication., 2 may 2001.

[13] M. Wiener, Cryptanalysis of short rsa secret exponents, Information Theory, IEEE Trans-
actions on, 36 (1990), pp. 553–558.

[14] A. Young and M. Yung, The dark side of “black-box” cryptography, or: Should we

trust Capstone?, in Advances in Cryptology - Crypto ’96, N. Koblitz, ed., Berlin, 1996,
Springer-Verlag, pp. 89–103. Lecture Notes in Computer Science Volume 1109.

[15] , Kleptography: Using cryptography against cryptography, in Advances in Cryptology
- EuroCrypt ’97, W. Fumy, ed., Berlin, 1997, Springer-Verlag, pp. 62–74. Lecture Notes in
Computer Science Volume 1233.

[16] , The prevalence of kieptographic attacks on discrete-log based cryptosystems, in Ad-
vances in Cryptology - Crypto ’97, B. Kaliski, ed., Berlin, 1997, Springer-Verlag, pp. 264–
276. Lecture Notes in Computer Science Volume 1294.

11

