Computer Science 308-547A Cryptography and Data Security

Claude Crépeau

These notes are, largely, transcriptions by Anton Stiglic of class notes from the former course *Cryptography and Data Security (308-647A)* that was given by prof. Claude Crépeau at McGill University during the autumn of 1998-1999. These notes are updated and revised by Claude Crépeau.

17 Zero-Knowledge Proofs

17.1 Interactive Proofs

The statement is valid \Rightarrow Verifier will accept. The statement is invalid \Rightarrow Verifier will reject with high probability.

Zero-Knowledge: Whatever strategy the Verifier uses, all the data that he gets from the prover could have been generated by himslef, alone, aussing that he knew the validity/invalidity of the statement.

17.1.1 ZK proof for graph isomorphism.

P wants to prove that $G_0 \cong G_1$. $G_0 = \Pi(G_1)$.

$$\begin{array}{ccc}
\underline{Prover} & \underline{Verifier} \\
\Pi \in_R S_{N_1}, \\
G \leftarrow \Pi(G_0) & & \\
& & \\
G \leftarrow \Pi(G_0) & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

Definition 17.1 (Interactive Proof) An interactive proof (I, P) is a two party game between:

P: all-powerful prover, and V: the verifier (probabilistic polynomial time verifier), such that

$$\forall_{x \in L} Pr(V \ accepts \ x \ after \ talking \ to \ P) \ge \frac{2}{3}$$

$$\forall_{x \notin L} \forall_{P'} Pr(V \ accepts \ x \ after \ talking \ to \ P') < \frac{1}{3}$$

where P' is an arbitraly behaviored and all powerfull (can decide any language in constant time).

Note: "Talking to P" does not mean "invoking P'", because V has to be probabilistic polynomial time bounded.

For the above graph isomorphism proof to be an IP, one must execute two rounds of it. We will give a 1 round IP for this problem latter on.

17.1.2 Definiton of ZK-ness

definition of the Verifier:

View(V) = a computation history of V on some input.

Definition 17.2 An IP(P,V) is ZK if

$$\forall_{V'}, \exists_{S_{V'}}: \ \forall_{x \in L} View(V', (P, V'), x) = S'(x).$$

where V' is an arbitrary behavior of V that is probabilistic and polynomially time bounded and $S_{V'}$ is a simulator, also probabilistic polynomial time bounded.

Example 17.1 (graphs isomorphism:) An IP for graph isomorphism in 1 round that is ZK:

 $\begin{array}{cccc} G_0 \cong G_1 & & V \\ \Pi \leftarrow_R S_n, & & \\ \sigma \leftarrow_R S_n, & \\ G \leftarrow \Pi(G_0) & & \\ G' \leftarrow \sigma(G_0) & & \\ &$

Variations on ZK: $View_{V'}(x) = S'(x)$ (distributions are the same): ZK is **perfect**. $View_{V'}(x) \approx S'(x)$ (statistical indistinguishability): ZK is **statistical**. $View_{V'}(x) \approx_P S'(x)$ (computational indistinguish.): ZK is **computational**.

17.2 RSA

P wants to prove that he knows m such that $c = m^e \mod n$, where e, n and c are given publicly.

17.3 ElGammal

P wants to prove that he knows *m* such that $c = (\alpha^k \mod p, m\beta^k \mod p)$, for some *k* where $p, \alpha.\beta$ and *c* are given publicly.

17.4 Factoring

P wants to prove that he knows the factorization of n. The Verifier provides some quadratic residue x the Prover shows that a knows a square root r.

$$\begin{array}{ccc} \underline{Prover} & \underline{Verifier} \\ r' \in_R Z_n^*, & & \\ y \leftarrow r'^2 \bmod n & & \\ & & & \\ & & & \\ \hat{r} \leftarrow r^b r' \bmod n & & \\ & & & \\ & & & \\ \hat{r} & & \\ & & & & \\ & & & & \\$$

17.5 Discrete log

P wants to prove that he knows a such that $\beta = \alpha^a \mod p$, where p, α, β .

References

- [BB88] Pierre Beauchemin and Gilles Brassard. A generalization of hellman's extension of shannon's approach to cryptography. In Carl Pomerance, editor, *Proc. CRYPTO 87*, pages 461–461. Springer-Verlag, 1988. Lecture Notes in Computer Science No. 293.
- [BS93] E. Biham and A. Shamir. A Differential Cryptanalysis of the Data Encryption Standard. Springer-Verlag, 1993.
- [dB88] Bert den Boer. Cryptanalysis of F.E.A.L. In Christoph G. Günther, editor, Advances in Cryptology—EUROCRYPT 88, volume 330 of Lecture Notes in Computer Science, pages 293–299. Springer-Verlag, 25–27 May 1988.
- [Hel80] M. E. Hellman. A cryptanalytic time-memory trade off. *IEEE Transactions on Information Theory*, IT-26:401–406, 1980.
- [Mat94] M. Matsui. Linear cryptanalysis method for DES cipher. Lecture Notes in Computer Science, 765:386–397, 1994.
- [Mur90] S. Murphy. The cryptoanalysis of FEAL-4 with 20 chosen plaintexts. *Journal of Cryptology*, 2:145–154, 1990.
- [MVV97] A. J. (Alfred J.) Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. *Handbook of applied cryptography*. The CRC Press series on discrete mathematics and its applications. CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868, USA, 1997.
- [NBS93] Data encryption standard (des). Technical Report FIPS PUB 46-2, National Bureau of Standards, 1993.
- [NIS80] Des modes of operation. Technical Report FIPS PUB 81, National Institute of Standards and Technology, december 1980.
- [NIS99] http://www.nist.gov/aes/, 1999.
- [Sha48] C. E. Shannon. A mathematical theory of communication. volume 27, pages 379–423, 623–656, 1948.

- [Sta99] William Stallings. Cryptography and network security: principles and practice. Prentice-Hall, Inc., Upper Saddle River, NJ 07458, USA, second edition, 1999.
- [Sti95] Douglas R. Stinson. Cryptography Theory and Practice. CRC Press, Boca Raton, 1995.
- [VK84] V. L. Voydock and S. T. Kent. Security mechanisms in a transport layer protocol. *Computer Networks*, 8:433–450, 1984.