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17 Zero-Knowledge Proofs

17.1 Interactive Proofs

The statement is valid ⇒ Verifier will accept.
The statement is invalid ⇒ Verifier will reject with high probability.

Zero-Knowledge: Whatever strategy the Verifier uses, all the data
that he gets from the prover could have been generated by himslef, alone,
aussimg that he knew the validity/invalidity of the statement.

17.1.1 ZK proof for graph isomorphism.

G0   = (N 0, E0) G1  = (N 1, E1)

P wants to prove that G0
∼= G1. G0 = Π̃(G1).

P rover V erifier

Π ∈R SN1
,

G← Π(G0)
G

>

b ∈R {0, 1}

<
b

Π0 ← Π,

Π1 ← Π · Π̃
Πb >

verify G = Πb(Gb)

Definition 17.1 (Interactive Proof) An interactive proof (I, P ) is a two
party game between:
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P : all-powerful prover, and
V : the verifier (probabilistic polynomial time verifier),
such that

∀x∈LPr(V accepts x after talking to P ) ≥ 2

3

∀x6∈L∀P ′Pr(V accepts x after talking to P ′) < 1

3

where P ′ is an arbitraly behaviored and all powerfull (can decide any language
in constant time).

Note: “Talking to P” does not mean “invoking P ′”, because V has to be
probabilistic polynomial time bounded.

For the above graph isomorphism proof to be an IP, one must execute
two rounds of it. We will give a 1 round IP for this problem latter on.

17.1.2 Definiton of ZK-ness

definition of the Verifier:

Communication Tape Random Tape

Input Tape
Aux. Input (memory of the past...)

v

V iew(V ) = a computation history of V on some input.

Definition 17.2 An IP (P, V ) is ZK if

∀V ′, ∃S
V ′

: ∀x∈LV iew(V ′, (P, V ′), x) = S ′(x).
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where V ′ is an arbitrary behavior of V that is probabilistic and polynomi-
aly time bounded and SV ′ is a simulator, also probabilistic polynomial time
bounded.

Example 17.1 (graphs isomorphism:) An IP for graph isomorphism in
1 round that is ZK:

G0
∼= G1

P V

Π←R Sn,

σ ←R Sn,

G← Π(G0)

G′ ← σ(G0)
G,G′

>

b, b′ ←R {0, 1}

<
b,b′

G = Πb(Gb),

G′ = σb′(Gb′)
Πb,σ

b′

>

verify :

if G = Πb(Gb) and G′ = σb′(Gb′)

then accept

else reject.

Variations on ZK:
V iewV ′(x) = S ′(x) (distributions are the same): ZK is perfect.
V iewV ′(x) ≈ S ′(x) (statistical indistinguishability): ZK is statistical.
V iewV ′(x) ≈P S ′(x) (computational indistinguish.): ZK is computational.
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17.2 RSA

P wants to prove that he knows m such that c = me mod n, where e, n and
c are given publicly.

Prover V erifier

m′ ∈R Z∗
n,

c′ ← m′e mod n
c′

>

b ∈R {0, 1}

<
b

m̂← mbm′ mod n
m̂

>

verify cbc′ = m̂e mod n

17.3 ElGammal

P wants to prove that he knows m such that c = (αk mod p, mβk mod p),
for some k where p, α.β and c are given publicly.

Prover V erifier

m′ ∈R Z∗
p ,

k′ ∈R Zp−1,

c′ ← (αk′

mod p, m′βk′

mod p)
c′

>

b ∈R {0, 1}

<
b

m̂← mbm′ mod p

k̂ ← bk + k′ mod p− 1

m̂,k̂
>

verify cbc′ = (αk̂ mod p, m̂β k̂ mod p)
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17.4 Factoring

P wants to prove that he knows the factorization of n. The Verifier provides
some quadratic residue x the Prover shows that a knows a square root r.

Prover V erifier

r′ ∈R Z∗
n,

y ← r′2 mod n
y
>

b ∈R {0, 1}

<
b

r̂ ← rbr′ mod n
r̂
>

verify xby = r̂2 mod n

17.5 Discrete log

P wants to prove that he knows a such that β = αa mod p, where p, α, β.

Prover V erifier

a′ ∈R Zp−1,

β ′ ← αa′

mod p
β′

>

b ∈R {0, 1}

<
b

â← ba + a′ mod p− 1
â
>

verify βbβ ′ = αâ mod p
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