
Computer Science 308-547A

Cryptography and Data Security

Claude Crépeau

These notes are, largely, transcriptions by Anton Stiglic of class notes
from the former course Cryptography and Data Security (308-647A) that
was given by prof. Claude Crépeau at McGill University during the autumn
of 1998-1999. These notes are updated and revised by Claude Crépeau.

2

15 Digital signatures

A digital signature scheme allows Alice to compute a signature s for a mes-
sage m in a way that Bob, and others, can verify that s was in fact computed
by Alice and no one else.
Formally, a digital signature scheme is defined as follows:

Definition 15.1 Let M be a finite set of messages and T a finite set of
digital signatures such that for each (ka, kv) ∈ K, there is a signing al-
gorithm sigka

and a corresponding verification algorithm verkv
such that

sigka
: M → T and verkv

: M× T → {true, false} are polynomial-time
computable functions and

verkv
(m, y) =

{

true : if y = sigka
(x)

false : if y 6= sigka
(x)

A major difference between an authentication scheme and a signature scheme
is that in an authentication scheme where Alice authenticates herself to Bob,
Bob can ”fake” Alice’s authentication for any message.

Kv

Ka

M T

authentication

verification

76

15.1 RSA signature scheme

The RSA cryptographic scheme can be directly used as a signature scheme:
the decryption function is used as the signature function and the verification
function is obtained by comparing the message with the encryption of the
signature.

15.2 ElGamal signature scheme

We use the same keys as in the ElGamal encryption scheme, that is we have
K = {(p, α, a, β) : β ≡ αa (mod p), α a generator of Z∗

p}, p, α and β are
public, a is kept secret.
Unlike RSA, the functions for the ElGamal signature scheme are not identical
to those of the ElGamal encryption scheme. The functions are constructed
to try to make forgery difficult.

Algorithm 15.1 (ElGamal signature)

1: Pick a random k such that 1 ≤ k ≤ p− 2 and gcd(k, p − 1) = 1.

2: γ ← αk mod p, δ ← (x− aγ) · k−1 mod p− 1.

3: RETURN s = (γ, δ).

Verification:

V erK(x, γ, δ) = true ⇐⇒ βγγδ = αx mod p

If the signature was constructed correctly, then the verification will succeed
since

βγγδ = βγ(αk)δ mod p

= βγ(αk)(x−aγ)k−1

mod p

= (αa)γ(α)(x−aγ) mod p

= αx mod p

15.3 Bad usage

Revealing k or using the same k twice can cause forgery of chosen messages.
If k is known, one can compute information on a from:

aγ ← x− δk mod p− 1.

77

If the same k is used for two messages, we obtain the following

δ1 = k−1(x1 − aγ) mod p− 1

δ2 = k−1(x2 − aγ) mod p− 1

Thus
(δ1 − δ2)k = x1 − x2 mod p− 1.

If δ1 − δ2 6= 0 mod p− 1, we can compute

d← gcd(δ1 − δ2, p− 1).

Since d|δ1 − δ2 and d|p− 1, we know that d|(x1 − x2). Thus we can write

x′ :=
x1 − x2

d

δ′ :=
δ2 − δ1

d

p′ :=
p− 1

d
.

The equation becomes
x′ = kδ′ mod p′

Since gcd(δ′, p′) = 1, we can compute (δ′)−1, then

k = x′(δ′)−1 mod p′

This yields d candidate values for k, we can choose the right k by verifying
with the signature verification function. From k we can then deduce a.

15.4 Forgeries

Some forgeries are now discussed by categories corresponding to the way
Oscar forges a signature:

• Given x, set a γ and then try to find δ.
The problem at hand would be to solve for δ given βγγδ = αx mod p,
which is equivalent to solving for δ given

γδ = (αx)(βγ)−1 mod p

this is equivalent to the DLP modp.

78

• Given x, set a δ, try to find γ.
This reduces to trying to find γ given

βγγδ = αx mod p.

No efficient solution to this problem is known, this problem is not
known to be related to any ”well-studied” problem like DLP.

• Given x, try to simultaneously find δ and γ.
There is no known way of doing this.

Is it possible for Oscar to sign a random message? If Oscar chooses γ and
δ and then tries to solve for x, he must compute logα(βγγδ), yet another
instance of the DLP.

However, there is a way for Oscar to sign a ”random” message by choos-
ing γ, δ and x simultaneously, it is described by the following algorithm

Algorithm 15.2 (Forge ElGamal)

1: Pick i and j such that 0 ≤ i, j ≤ p− 2 and gcd(j, p − 1) = 1.

2: γ ← αiβj mod p.

3: δ = −γj−1 mod p− 1, x← −γij−1 mod p− 1.

Theorem 15.2 The above algorithm gives a valid signature.

Proof.

βγγδ = βγ(αiβj)−γj−1

mod p

= βγ(α−γij−1

β−γ) mod p

= α−γij−1

mod p

= αx mod p

Note: in a variation of the ElGamal signature scheme, one uses h(x) instead
of x, where h is a cryptographic hash function. Other than the fact that this
enables signatures of data of arbitrary size, it also prevents the above forgery
from being successful.

79

It is also possible for Oscar to forge some message given a previous mes-
sage and signature (x, γ, δ).

Algorithm 15.3 (Forge From Previous ElGamal)

1: Pick h, i, j such that 0 ≤ h, i, j ≤ p− 2 and gcd(hγ − jδ, p − 1) = 1.

2: λ← γhαiβj mod p

3: µ← δλ(hγ − jδ)−1 mod p− 1

4: x′ = λ(hx + iδ)(hγ − jδ)−1 mod p− 1.

Theorem 15.3 The above algorithm gives (x′, λ, µ) such that

βλλµ = αx′

mod p

15.5 Digital Signature Standard

The Digital Signature Standard (DSS) describes a Digital Signature Algo-
rithm (DSA) in FIPS 186, it is a variation of the ElGamal system. DSS
relieves the burden of oversized signatures (with ElGamal signing a 160-bit
message using a 512 bit prime, for example, produces a signature that is 1024
bits long, DSS would produce a 320-bit signature).

Algorithm 15.4 (DSA key generation)

1: Choose a 512-bit prime p

2: Pick a 160-bit prime q such that q|p− 1.

3: Choose α ∈ Z∗

p a qth primitive root of 1 mod p.

4: Compute β ← αa mod p.

5: RETURN public p, q, α, β and private a

Note: To pick α, you can start by picking αo a primitive element of Z∗

p and

then computing α← α(p−1)/q
o .

80

Algorithm 15.5 (DSS signature)

1: Pick a random k such that 1 ≤ k ≤ p− 2.

2: γ ← (αk mod p) mod q

3: δ ← (x + aγ)k−1 mod q.

4: IF δ = 0, GOTO step 1

5: RETURN s = (γ, δ).

Verification:

e1 ← xδ−1 mod q

e2 ← γδ−1 mod q

V erK(x, γ, δ) = true ⇐⇒ (αe1βe2 mod p) mod q = γ.

If the signature was constructed correctly, then the verification will succeed
since

(αe1βe2 mod p) mod q ≡ αe1αae2

≡ αxδ−1

αaγδ−1

≡ αδ−1(x+aγ)

≡ αk

= (γ mod p) mod q.

15.6 Undeniable signatures

In this type of signature scheme, the verification protocol requires the co-
operation of the signer. The scheme is composed of three components: a
signing algorithm, a verification protocol and a disavowal protocol. A dis-
avowal protocol enables one to determine whether the signer is attempting
to disavow a valid signature or whether the signature was forged.

81

15.6.1 Chaum-Van Antwerpen’s scheme

The first undeniable signature scheme was introduced in [?].

Algorithm 15.6 (Chaum-Van Antwerpen key generation)

1: Select a random prime p = 2q + 1, where q is also prime.

2: Select α← y2 mod p, for a random y ∈R {2, 3, . . . , p− 2}.

3: Select a random a ∈R {1, 2, . . . , q − 1}, β ← αa mod p.

4: RETURN public (p, α, β) and private a.

α is selected in such a way as to be a generator of the subgroup of order q in
Z∗

p. The scheme operates in Zp, however, we need to be able to compute in a
multiplicative subgroup of Z∗

p. Picking p = 2q + 1, p, q primes, enables us to
do this, and in a large as possible subgroup.

Algorithm 15.7 (Chaum-Van Antwerpen signature)

1: s← xa mod p.

2: RETURN s

Algorithm 15.8 (Chaum-Van Antwerpen verification)

1: Bob selects random secret integers e1, e2 ∈R {1, 2, . . . , q − 1}.

2: Bob computes z ← se1βe2 mod p and sends z to Alice.

3: Alice computes w = (z)a
−1

mod p and sends w to Bob.

4: Bob accepts ⇐⇒ w = xe1αe2 mod p

If Alice is honest, Bob will accept:

w = (z)a−1

mod p

= (se1βe2)a−1

mod p

= (xae1αae2)a−1

mod p

= xe1αe2 mod p

Theorem 15.4 Suppose s 6= xa mod p is a forged signature, the probability

82

that Bob will accept the signature in the above algorithm is 1/q.

The following disavowal protocol allows Alice to convince Bob that a cer-
tain value is not a valid signature. However, Alice might attempt to disavow
a valid signature. The following protocol essentially performs the verification
protocol twice and checks that Alice is not cheating:

Algorithm 15.9 (Chaum-Van Antwerpen Disavowal)

1: Bob randomly selects e1, e2 ∈R {1, 2, . . . , q − 1}

2: Bob computes z ← se1βe2 mod p, sends z to Alice.

3: Alice computes w = (z)a
−1

mod p and sends w to Bob.

4: IF w = xe1αe2 mod p THEN RETURN valid

/* Bob concludes that Alice is trying to disavow a valid sig */

5: Bob selects random e3, e4 ∈R {1, 2, . . . , q − 1}

6: Bob computes z′ ← se3βe4 mod p, sends z′ to Alice.

7: Alice computes w′ ← (z′)a
−1

mod p and sends w′ to Bob.

8: IF w′ = xe3αe4 mod p THEN RETURN valid

/* Bob concludes that Alice is trying to disavow a valid sig */

9: Bob computes c← (wα−e2)e3 mod p, c′ ← (w′α−e4)e1 mod p

10: IF c = c′ THEN RETURN forgery

/* Bob concludes that the sig was a forgery */

11: ELSE RETURN valid

/* Bob concludes that Alice is trying to disavow a valid sig */

Theorem 15.5 The probability for Alice to successfully disavow a valid sig-
nature s = xa mod p, in the above algorithm, is 1/q.

83

