
Computer Science 308-547A

Cryptography and Data Security

Claude Crépeau

These notes are, largely, transcriptions by Anton Stiglic of class notes
from the former course Cryptography and Data Security (308-647A) that
was given by prof. Claude Crépeau at McGill University during the autumn
of 1998-1999. These notes are updated and revised by Claude Crépeau.

2

11 Discrete Logarithm Problems and the Diffie-

Hellman Key Exchange

11.1 Discrete Logarithm Problems

Definition 11.1 (Generalized Discrete Logarithm Problem (GDLP)) Given
a group G of order n, α a generator of G and β ∈ G, find e such that αe ≡ β,
0 ≤ e ≤ n− 1.

Definition 11.2 (Discrete Logarithm Problem (DLP)) DLP is GDLP but
in a group of order p where p is prime.

An even greater generalization is to consider GDLP but with G not nec-
essarily cyclic (α not necessarily a generator) and to find e if such an integer
exists. This problem is considered to be harder than GDLP.

11.2 Diffie-Hellman key exchange

In a landmark paper [?], W. Diffie and M.E. Hellman introduced an algo-
rithm for exchanging a symmetric key in public. They also proposed the
existence of public symmetric encryption, authentication and digital signa-
ture schemes. In the Diffie-Hellman key exchange scheme, Alice and Bob
both share a large public prime p and a primitive element g of Zp. Alice,
(and independently Bob) picks a random integer x ∈R Zp (Bob picks y ∈R Zp)
and computes u = gx mod p (Bob computes v = gy mod p). Alice then sends
u to Bob, via a public channel, and Bob sends his value v to Alice. Alices
private key is computed as KAlice = vx mod p (KBob = uy mod p).
We easily see that KAlice = KBob, this is their symmetric key.

11.2.1 Cryptanalysis: Diffie-Hellman problem

Oscar’s job is to compute K given g, p, u and v, which gives rise to the
following problem

Definition 11.3 (Diffie-Hellman Problem DHP) Given a prime p, a gener-
ator α ∈ Zp, αx mod p and αy mod p, find αxy mod p.

61

Diffie-Hellman assumption: no efficient algorithm can solve the above prob-
lem.
This assumption is at least as strong as the DLP (DHP ≤P DLP), for if
Oscar could easily compute x and y from αx and αy, he can then easily com-
pute K = (αx)y. The Generalized DHP (GDHP) is like DHP but working
on a finite cyclic group G (instead of just Zp

∗).
GDHP is also at least as strong as GDLP. It is still unknown if GDLP is
as strong as GDHP, however some equivalence (for some specific classes of
groups) are known (see [?] and [?]).

62

12 Public Key Cryptography: RSA

R.L. Rivest, A. Shamir and L.M. Adleman introduced, in a landmark paper
[?], the first1 valid public key cryptographic system, it is named RSA. The
security of RSA lies in the famous factoring problem (breaking RSA is not
known to be equivalent to factoring, but if factoring was easy, so would
breaking RSA). We will elaborate more on the security of RSA in section
12.3.

Formally, a Public Key Cryptosystem is defined as follows:

Definition 12.1 Let P be a finite set of messages and C a finite set of ci-
phertexts such that for each (ke, kd) ∈ K, there is an encryption algorithm
Eke

and a corresponding decryption algorithm Dkd
such that Eke

: P → C and
Dkd

: C → P are polynomial-time computable functions and for all m ∈ P

Dkd
(Eke

(m)) = m.

The problem of finding m given only Eke
(m) and ke must be difficult to solve.

1Merkle and Hellman [?] had also proposed a public key system, but it can be broken
in polynomial time ([?]).

63

12.1 Factoring Problem

Definition 12.2 (FACTORING) Given n, find prime integers p1, p2, . . . , pk

such that n = p1 · p2 . . . pk.

A special “hard case” is when n = p · q.
The best known solutions have time of the form

Ω(ec|n|β(lg|n|)1−β

)

12.2 RSA public-key cryptosystem

Algorithm 12.1 (RSA key generation)

1: Pick two large primes p and q, n← p · q.

2: Pick e such that gcd(e, φ(n)) = 1.

3: Compute d such that e · d ≡ 1 (mod φ(n)).

4: RETURN Ke = (n, e), Kd = (n, d).

Ke is the encryption (public) key, Kd is the decryption (private) key.
RSA-Encryption: EKe

(m) = me mod n.
RSA-Decryption: DKd

(c) = cd mod n.
We now show that decryption is the inverse of encryption. Let x ∈ Z∗

n, then

(xe)d ≡ xtφ(n)+1 (mod n), for some t.

≡ (xφ(n))tx (mod n)

≡ 1tx (mod n)

≡ x (mod n)

12.3 Cryptanalysis of RSA

Theorem 12.3 Knowledge of φ(n) is sufficient to factorize n.

Proof. If n = pq, then

φ(n) = (p− 1)(q − 1)

64

= pq − p− q + 1

= n− p− q + 1

So

p = n− φ(n)− q + 1

= n− φ(n)− n/p + 1

= (n− φ(n) + 1)− n/p

Which is the same as

p2 = (n− φ(n) + 1)p− n

or
p2 − (n− φ(n) + 1)p + n = 0.

p is one of the two solutions to this degree 2 equation.

12.3.1 Factoring given d, e

Theorem 12.4 Knowledge of a square root modulo n extraction algorithm
S is sufficient to factor n.

Proof.
Algorithm 12.2 (Factoring n given S)

1: REPEAT choose r ∈R Z∗
n at random

2: z ← r2 mod n

3: y ← S(z)

4: UNTIL y 6≡ ±r (mod n).

5: RETURN (y − r) mod n, (y + r) mod n.

Theorem 12.5 Knowledge of d corresponding to (n, e) enables to factor n.

Before we give the proof of the above theorem, we state a few facts:

65

• φ(n) = (p− 1)(q − 1) is an even number and so we can write

ed ≡ 1 (mod φ(n)) ⇒ ed− 1 = 2sr

Although p and q might be hard to find, s and r are easily computable.

• If n = pq, then x2 ≡ 1 (mod p) has two solutions, namely x ≡ ±1
(mod p). Same for the solutions modulo q. Since x2 ≡ 1 (mod n)
iff x2 ≡ 1 (mod p) and x2 ≡ 1 (mod q), it follows that x2 ≡ 1
(mod n) iff x ≡ ±1 (mod p) and x ≡ ±1 (mod q). So there are 4
square roots of 1 modulo n, two of them are trivial: 1 and −1. The
other two solutions are called non-trivial, and they are such that they
are additive inverses of each other.

Proof. The following algorithm starts by picking a number w at random.
If we are (very) lucky and 1 < gcd(w, n) < n, then we have found a factor.
If not, we continue on by computing wr, w2r, w4r, . . . by successive squaring,
until w2tr ≡ 1 (mod n) for some t. This will take at most t ≤ lg n tries.
If, at the beginning, wr ≡ 1 (mod n) we quit because this is a trivial
solution. Also, at the end, once we have found t such that w2tr ≡ 1 (mod n),
if w2t−1r 6≡ −1 (mod n) we also quit, because we ended up with a non-trivial
square root, then we are able to factor n.

Algorithm 12.3 (Factoring n given e, d using w)

1: x← gcd(w,n).

2: IF 1 < x < n THEN RETURN SUCCESS: x.

3: write ed− 1 = 2sr, r odd, s > 0; v ← wr mod n.

4: IF v ≡ 1 (mod n) THEN RETURN FAILURE.

5: WHILE v 6≡ 1 (mod n) DO

6: v0 ← v; v ← v2 mod n.

7: IF v0 ≡ −1 (mod n) THEN RETURN FAILURE.

8: ELSE x← gcd(v0 + 1, n); RETURN SUCCESS: x.

Notice the similarity to the Rabin-Miller primality test.

66

Theorem 12.6

#{w|Factoring n given e, d using w succeds} > n/2.

Indeed this algorithm will also work with identical probability for any
multiple of φ(n) instead of ed − 1 because the success of an element w only
depends on its order.

Theorem 12.7

if d < n1/4/3 then d is esay to recover from (n, e).

12.3.2 Homomorphic property of RSA

Theorem 12.8 (RSA is multiplicative)

RSAe(m1) · RSAe(m2) ≡ RSAe(m1 ·m2) (mod n).

[?] showed how to use the multiplicative property of RSA to come up
with the following result:

Theorem 12.9 (Self random reducible) Any algorithm A that can break
RSA on a ε = 1

poly(|n|)
fraction of the instances may be used to invert RSA

on all instances.

Proof. Consider the following algorithm:

Algorithm 12.4 (INVRSA(n, e, me mod n
︸ ︷︷ ︸

c

))

1: REPEAT:

2: Pick a random m ∈R Z∗
n.

3: w ← c ·RSAe(m) mod n (= RSAe(m ·m)).

4: z ← A(w). (if A is correct, z is m ·m).

5: UNTIL RSAe(z · (m)−1) ≡ c (mod n).

6: RETURN (z · (m)−1) mod n.

In step 3, since m is picked at random, w is also. Since A will find a correct
answer for a 1

poly(|n|)
fraction of the φ(n) elements of Zn, the algorithm will

run in an expected time of poly(|n|) REPEAT loops.

67

12.4 Security of certain bits in RSA

Given y = RSA(e,N)(x), it is possible to gain some information on x. For

example, given y, it is possible to compute the Jacobi symbol
(

x
N

)

of x.

Thankfully (for the RSA scheme), computing certain bits of y is computa-
tionally equivalent to computing x (inverting RSA). This is true, for example,
for the least significant bit of y.

Theorem 12.10 Given y = RSAe(x), one can easily compute
(

x
N

)

.

Proof. The RSA exponent e is always odd, so

(
x

N

)e

=
(

x

N

)

.

Knowing that
(

x·x
N

)

=
(

x
N

) (
x
N

)

(section 1.4), we can deduce that
(

xe

N

)

=
(

x
N

)e
. We thus easily conclude that

(
x

N

)

=
(

y

N

)

.

12.4.1 Security of RSA least significant bit

Let N be the RSA modulus and n = |N |. lsbN (m) will denote the least
significant bit of m. For the following subsections, it will be convenient to
view the elements of ZN as points on a circle:

0

N/4

N/2

3N/4

Cyclic representation of Zn

68

Theorem 12.11 ([?]) If we have an algorithm to determine lsbN(m) given
RSAe(m)
︸ ︷︷ ︸

me mod N

, then we can compute m.

Proof.
We first define the following function

halfN (m) =

{

1 : N
2

< m < N
0 : 0 < m < N

2

Notice that we have
halfN(m) = lsbN (2 ∗m)

This can be seen by the fact that if N/2 < m < N then if N < 2m < 2N ,
2m − N ≡ 2m (mod N) is odd. If 0 ≤ m ≤ N/2, then 2m < N and
2m mod N is necessarily even. So we can use halfM instead of lsbM .
Now observe that

halfN (m) = 0 ⇐⇒ x ∈ [0,
N

2
[

halfN (2m) = 0 ⇐⇒ x ∈ [0,
N

4
[∪ [

N

2
,
3N

4
[

halfN (4m) = 0 ⇐⇒ x ∈ [0,
N

8
[∪ [

N

4
,
3N

8
[∪ [

N

2
,
5N

8
[∪ [

3N

4
,
7N

8
[

· · ·

69

Thus giving us the following algorithm:

Algorithm 12.5 (INVRSA(n, e, me mod n
︸ ︷︷ ︸

c

) given LSB)

1: FOR i = 0 TO lg N DO

2: c← c ·RSA(2) mod N .

3: yi ← LSB(c, e,N) (= halfN (2im)).

4: low ← 0.

5: high← N .

6: FOR i = 0 TO k DO

7: mid = b(high + low + 1)/2c.

8: IF yi = 1 THEN low = mid ELSE high = mid− 1.

9: RETURN high

where we use a speculative algorithm LSB that is defined such that
LSB(me mod N, e, N) gives lsbN (m).

The algorithm LSB used in the above proof had to be error free. That
is, we had to be able to predict lsbN (m) exactly. There is a variant of this
protocol that can use an oracle that is correct with probability 1− α

n
(α < 1

a constant), but we can invert RSA with much lesser assumptions.

Theorem 12.12 ([?]) Predicting lsbN (m) with probability > 1/2 + ε, 1/ε <
poly(|N |), ⇒ inverting RSA.

The proof of this very important result is outside the scope of these notes.

70

13 Rabin Public-Key scheme

Rabin’s cryptosystem ([?]) was the first example of a provably secure encryp-
tion scheme, it is equivalent to the FACTORING problem.

Algorithm 13.1 (Rabin key generation)

1: Pick two large prime numbers p, q

2: n← pq

3: RETURN Ke = n, Kd = (p, q)

Encryption: c = m2 mod n.
Decryption: Find the four2 square roots m1, m2, m3, m4, and pick the one
that makes sense.

13.1 Cryptanalysis

The task of recovering m from c, not knowing the factorization of n, is
exactly the SQROOT problem (1.8) which is polynomialy equivalent to the
FACTORING problem (12.1).

13.1.1 Chosen-ciphertext attack

Rabin’s scheme is vulnerable to a chosen-ciphertext attack. The attack goes
as follows: Oscar picks a random m ∈R Z∗

n and computes c = m2 mod n.
He then gives c to the decryption box, which in turn will give him y that is
not necessarily equal to m. With probability 1

2
, y 6≡ ±m (mod n), in which

case gcd(m− y, n) is a prime factor of n. If m ≡ ±y (mod n), then Oscar
just picks another m.

13.2 Public-key Cryptography from PRBG

In order to take advantage of this theory and build a semantically secure
public-key cryptosystem, Blum-Goldwasser had the idea of combining the
Blum-Blum-Shub generator with the public-key set up.

2In the unlikely case where gcd(m, n) 6= 1, the ciphertext c has only one or two square
roots.

71

Algorithm 13.2 (BG/E(m))

1: Pick a random x ∈ QRn

2: FOR i← 1 TO |m|/t DO ki ← x mod 2t ; x← x2 mod n

3: k ← k1||k2|| . . . ||k|m|/t

4: RETURN 〈(m⊕ k), x〉

The parameter t indicates how many bits are extracted from each iteration
of the generator. It is known that t ∈ O(log |n|) bits of x2 mod n (and of
RSA) are simultaneously secure. What makes this cryptosystem reasonably
efficient is that instead of recovering the message m by successive square root
extractions, which would be costly, a single root extraction of higher order
is applied to recover the start point of the sequence which is then calculated
in the forward direction.

Algorithm 13.3 (BG/D(c, y))

1: x← 2
|c|
t
√

y mod n

2: FOR i← 1 TO |m|/t DO ki ← x mod 2t ; x← x2 mod n

3: k ← k1||k2|| . . . ||k|c|/t

4: RETURN c⊕ k

The 2
√̀

x mod n operation can be computed efficiently using the following
algorithm. Notice that for a fixed ` the first two steps can be pre-computed
once and for all. Alternatively, for a standard set of sizes the first step can
be pre-computed for all of them and a table of the standard values can be
pre-computed for step 2.

72

Algorithm 13.4 (2
√̀

x mod n)

1: find a, b such that ap + bq = 1

2: i← [(p + 1)/4]` mod p− 1 ; j ← [(q + 1)/4]` mod q − 1

3: RETURN (xj mod q)ap + (xi mod p)bq mod n

A similar cryptosystem roughly as efficient can be implemented from RSA
with exponent 3 instead. The same remarks as for the pre-computation in-
volved in 2

√̀
x mod n apply here as well.

Algorithm 13.5 (RSA/E(m))

1: Pick a random x ∈ Z∗
n

2: FOR i← 1 TO |m|/t DO ki ← x mod 2t ; x← x3 mod n

3: k ← k1||k2|| . . . ||k|m|/t

4: RETURN 〈(m⊕ k), x〉
Algorithm 13.6 (RSA/D(c, y))

1: x← 3
|c|
t
√

y mod n

2: FOR i← 1 TO |m|/t DO ki ← x mod 2t ; x← x3 mod n

3: k ← k1||k2|| . . . ||k|c|/t

4: RETURN c⊕ k

Algorithm 13.7 (3
√̀

x mod n)

1: find d such that 3d ≡ 1 (mod φ(n))

2: i← d` mod φ(n)

3: RETURN xi mod n

73

14 El Gamal

This scheme was invented by El Gamal [?]. Its security is based on the DH
and DL problems.

Algorithm 14.1 (El Gamal key generation)

1: Pick a large random prime p.

2: Pick a generator α of Z∗
p and a random integer a, 1 ≤ a ≤ p− 2.

3: β ← αa mod p.

4: RETURN Ke = (p, α, β) and Kd = a.

Algorithm 14.2 (El Gamal public-key encryption)

1: Pick a random integer k, 1 ≤ k ≤ p− 2.

2: γ ← αk mod p, δ ← m · βk mod p.

3: RETURNc = (γ, δ).

Decryption: m← δ(γ)−a mod p.
Proof that d(e(x)) = x:

d(γ, δ) ≡ δ · (γ)−a mod p

≡ m · βk(αk)−a mod p

≡ m · βk(β)−k mod p

≡ m mod p.

Theorem 14.1 Random integers k must be used if no information about the
cleartexts is to be revealed.

Proof. Say we have

e(m1, k) = (αk mod p, m1 · βk mod p
︸ ︷︷ ︸

δ1

) and

e(m2, k) = (αk mod p, m2 · βk mod p
︸ ︷︷ ︸

δ2

)

74

we can then compute δ1/δ2 = m1/m2 mod p.

Theorem 14.2 The security of the El Gamal System is based on the DH
problem.

Proof. Denote OElGamal to be an oracle for decrypting El Gamal encrypted
messages, given p, α, αa, αk, m · αak and ODH an oracle for solving the DH
(that is DH(p, α, αa, αb) gives αab).

• (OElGamal from ODH) Compute αak using ODH . We then have m ←
(αak)−1 · δ.

• (ODH from OElGamal) Pick a random δ ∈ Zp. Compute OElGamal(p, α, αa, αb, δ),
which gives m such that m · αab = δ. We have αab ← δ ·m−1 mod p.

14.1 Generalizing El Gamal

We described the El Gamal system in a group Z∗
p, but it can be generalized

to work in any finite cyclic group G. It’s security is then based on the DL
problem of that particular group. Examples of groups in which the DL
problem is believed to be hard and in which operations can be efficiently
executed are

Z∗
p,F∗

2m ,F∗
qm, Z∗

pq

.

Theorem 14.3 In the case of Z∗
N where N = pq and p ≡ q ≡ 3 (mod 4),

the DL problem is as hard as FACTORING.

Note: for the case of Z∗
N where N = pq, it is recommended to pick p and q

in such a way that p− 1 and q − 1 do not have small factors, so as to guard
against Pollard’s factoring algorithm.

75

