
Computer Science 308-547A

Cryptography and Data Security

Claude Crépeau

These notes are, largely, transcriptions by Anton Stiglic of class notes
from the former course Cryptography and Data Security (308-647A) that
was given by prof. Claude Crépeau at McGill University during the autumn
of 1998-1999. These notes are updated and revised by Claude Crépeau.

2

6 Information theory

The security of most modern cryptographic system is based on a computa-
tional assumption. In large, a system that is computationally secure relies
on the fact that an attacker does not have enough time to break the sys-
tem, while on the other hand a system that is unconditionally secure relies
on the fact that an attacker will never have enough information. Compu-
tational security uses results from complexity theory, unconditional security
uses information theory which we present in this chapter.

6.1 Notations and probability theory

Let X, Y be distributions on finite sets of events (we will only consider finite
sets of probabilities), we denote PrX(x) as the probability of x occurring,
following the distribution X (when the situation is clear, we will not explicitly
write the distribution on the index).
PrX,Y (x, y) is the mutual probability, it is the probability that both x and
y occur.
PrX,Y (x|y) is the conditional probability, it is the probability that x occurs
knowing that y has occurred.

Definition 6.1 X and Y are two independent distributions if

∀x∈X,y∈Y Pr(x, y) = Pr(x) Pr(y)

By definition, we have that Pr(x, y) = Pr(x|y) Pr(y) = Pr(y|x) Pr(x).
We can now deduce the following theorem

Theorem 6.2 (Bayes)

If Pr(y) > 0 then Pr(x|y) =
Pr(y|x) Pr(x)

Pr(y)

We can easily convince ourselves of the following corollary

Corollary 6.3 X and Y are independent variables iff ∀x∈X,y∈Y

Pr(x|y) = Pr(x)

31

6.2 Shannon’s information theory and entropy

Consider a random source S −→ 100110100111011... We would like to char-
acterize its output. S outputs symbols with probabilities Pr(0), Pr(1). How
much uncertainty do we have about the output of this source (what is the
entropy H [S] of S)?

Example 6.1 S0 −→ 00000000... (always outputs 0), then H [S0] = 0.
S1 −→ 111111111... (always outputs 1), then H [S1] = 0.
SU −→ 100110100111011... (Independent and Uniform), then H [SU] = 1.

In a more general case, how do we define H [S]?

6.2.1 Entropy

The entropy of a source S can be considered as the average length, in bits,
needed to represent the output of S (this was introduced in [?]).

Example 6.2 Consider a random source S −→ a, b, c, where

Pr(a) = 1/2, Pr(b) = 1/4 = Pr(c) = 1/4

and the coding a −→ 0, b −→ 10, c −→ 11 (a prefix coding), then the average
length needed to represent the output of S is

1/2 · 1 bit + 1/4 · 2 bits + 1/4 · 2 bits = 3/2 bits.

More formally, we state the following definition of the entropy of a source
S, where the probabilities of the outputs are p1, p2, ..., pn,

Definition 6.4 (Entropy)

H [p1, p2, ..., pn] =
n∑

i=1

pi lg
1

pi

= −
n∑

i=1

pi lg pi

where lg represents the logarithm base 2. We assume in this definition that
0 lg 0 = 0 (the real fact is that limx−→0+ x lg x = 0).

Another way of defining the entropy is through the following set of prop-
erties

32

6.2.2 Properties of entropy

H [p1, p2, ..., pn], where
∑n

i=1 pi = 1, satisfies the following:

1. H [p1, p2, ..., pn] is maximum when p1 = p2 = ... = pn = 1/n (the
uniform distribution should have the greatest entropy...).

2. H [p1, p2, ..., pn] = H
[

pπ(1), pπ(2), ..., pπ(n)

]

for any permutation π.

3. H [p1, p2, ..., pn] ≥ 0, with = 0 exactly if one pi = 1.

4. H [p1, p2, ..., pn, 0] = H [p1, p2, ..., pn]

5. H







1

n
,
1

n
, ...,

1

n
︸ ︷︷ ︸

n






≤ H








1

n + 1
,

1

n + 1
, ...,

1

n + 1
︸ ︷︷ ︸

n+1








6. H [∗] is continuous

Theorem 6.5 Let H ′(p1, p2, ..., pn) satisfy the above properties.
There exists a constant λ such that

H ′(p1, p2, ..., pn) = λH [p1, p2, ..., pn] .

6.2.3 Entropy of random variables

For a random variable X such that PrX(x1) = p1, ..., PrX(xn) = pn we abuse
notation and write H [X] instead of H [p1, p2, ..., pn].

Look ahead: For a cryptosystem (P, C,K, E ,D), we will be interested in
random variables P, K, C describing the uncertainty about the plaintext,
ciphertext and key, and in H [P |C] (uncertainty of the message given the
ciphertext) and H [K|C] (uncertainty of the encryption key given the cipher-
text).

Now, a couple more theorems and definitions...

Theorem 6.6
H [X, Y] ≤ H [X] + H [Y]

(equal iff X and Y are mutually independent)

33

Theorem 6.7

H [X1, X2, ..., Xn] ≤
n∑

i=1

H [Xi]

(equal iff X1, X2, .., Xn are mutually independent)

6.3 Conditional Entropy

Definition 6.8 (Conditional entropy)

H [X|Y = y] = −
∑

x∈X PrX|Y =y(x) lg PrX|Y =y(x)

H [X|Y] =
∑

y∈Y PrY (y)H [X|Y = y]

= −
∑

y∈Y

∑

x∈X PrY (y) PrX|Y =y(x) lg PrX|Y =y(x)

Theorem 6.9 H [X|Y] = 0 exactly if X = f(Y) for some function f.

Theorem 6.10 H [X|Y] = H [X] exactly if X and Y are independent.

Theorem 6.11
H [X, Y] = H [Y] + H [X|Y]

and thus, H [X|Y] ≤ H [X] (using Theorem 6.6), with equality iff X, Y are
indepenent.

6.4 Mutual Information

Definition 6.12
I [X; Y] = H [X]−H [X|Y]

Theorem 6.13
I [X; Y] = I [Y ; X]

option vs vote OUI NON und.

separation 30% 60% 10%
offer of partnership 39% 46% 15%
certainty of partnership 54% 35% 11%

34

6.5 Example:

Pr[OPTION = “separation”] = 1/4

Pr[OPTION = “offer of partnership”] = 1/2

Pr[OPTION = “certainty of partnership”] = 1/4

Pr[V OTE = “OUI”] = 40.5%

Pr[V OTE = “NON”] = 46.75%

Pr[V OTE = “undec.”] = 12.75%

H [V OTE] = −.405 lg .405− .4675 lg .4675− .1275 lg .1275 = 1.4198

H [OPTION] = −.25 lg .25− .5 lg .5− .25 lg .25 = 1.5

H [V OTE|OPTION = “separation”]

= −.3 lg .3− .6 lg .6− .1 lg .1 = 1.2955

H [V OTE|OPTION = “offer of partnership”]

= −.39 lg .39− .46 lg .46− .15 lg .15 = 1.4557

H [V OTE|OPTION = “certainty of partnership”]

= −.54 lg .54− .35 lg .35− .11 lg .11 = 1.3604

H [V OTE|OPTION] =

H [V OTE|OPTION = “separation”]

4
+

H [V OTE|OPTION = “offer of partnership”]

2
+

H [V OTE|OPTION = “certainty of partnership”]

4
=

1.2955

4
+

1.4557

2
+

1.3604

4
= 1.3918

I [V OTE; OPTION] = H [V OTE]−H [V OTE|OPTION]

= 1.4198− 1.3918 = 0.0280

35

6.6 Jensens Lemma

The following theorem will be used to prove some more interesting statements
about entropy functions. First, a preliminary definition.

Definition 6.14 A real function f is said to be concave on an interval I if
∀x,y∈I

f
(

x + y

2

)

≥
f(x) + f(y)

2

Theorem 6.15 (Jensens inequality) If f is continuous and strictly con-
cave on I, and

∑n
i=1 ai = 1, ai ≥ 0, 1 ≤ i ≤ n , then, ∀xi∈I

n∑

i=1

aif(xi) ≤ f(
n∑

i=1

aixi)

with equality iff x1 = x2 = ... = xn

6.6.1 Application

Theorem 6.16 if X takes values x1 with probability p1, x2 with probability
p2, ..., xn with probability pn, then

H [X] ≤ lg n

(with equality when p1 = p2 = ...pn = 1/n)

Proof.

H [X] = −
n∑

i=1

pi lg pi

=
n∑

i=1

pi lg 1/pi

≤ lg
n∑

i=1

pi1/pi

= lg n (eq. when p1 = p2 = ... = pn = 1/n)

36

6.7 Perfect Secrecy, Key Equivocation, Unicity Dis-
tance

Definition 6.17 (Perfect Secrecy) Let P, K, C be random variables de-
scribing the uncertainty about the plaintext, ciphertext and key of a cryp-
tosystem (P, C,K, E ,D). We say that a cryptosystem has perfect secrecy if
∀p∈P ,c∈C PrP,C(p|c) = PrP (p)

Example 6.3 Vernam’s one-time pad has perfect secrecy. Here, P = K =
C = {0, 1}n, with K the uniform distribution on K (no distribution condition
necessary on P). Encryption and decryption are given by ek(p) = p ⊕ k,
dk(c) = c⊕ k.

Pr
P,C

(p|c) = Pr
P,C

(p|p⊕ k)

= Pr
P

(p) Pr
P,C

(p⊕ k|p)/ Pr
C

(p⊕ k) (Bayes)

for any fixed p, p ⊕ K is the uniform distribution, so PrP,C(p ⊕ k|p) =
1/2n = PrC(p⊕ k) and so

Pr
P,C

(p|c) = Pr
P

(p)
1

2n
/

1

2n

= Pr
P

(p)

An equivalent definition is the following

Definition 6.18 Cryptosystem (P, C,K, E ,D) has perfect secrecy iff

H [P |C] = H [P]

Theorem 6.19
H [C] ≥ H [P]

when K and P are independent.

Proof.

H [C] ≥ H [C|K]

= H [C, K]−H [K]

= H [P, K]−H [K] (encryption function is bijective)

= H [P] + H [K|P]−H [K] (Thm 6.11)

= H [P] + H [K]−H [K] (we suppose P, K independent)

= H [P]

37

We could also show the following

Theorem 6.20 (when we know the key...)

H [C|K] = H [P |K]

Theorem 6.21
H [P |C] ≤ H [K]

Proof.

H [P |C] ≤ H [P, K|C]

= H [P |K, C]
︸ ︷︷ ︸

0

+H [K|C] (Bayes)

= H [K|C]

≤ H [K]

This shows that if there is not much doubt about the key, there can’t be
much doubt about the plaintext knowing the ciphertext.

Definition 6.22 (key equivocation) H [K|C] is called the key equivoca-
tion, it is a measure of how much we know about the key, knowing the ci-
phertext.

Theorem 6.23

H [K|C] = H [K] + H [P]−H [C]

Proof.

(1) H [K, P, C] = H [C|K, P]
︸ ︷︷ ︸

0

+H [K, P]

= H [K, P]

= H [K] + H [P] (by independence)

(2) H [K, P, C] = H [K, C] (because from K and C, we can induce P)

38

we conclude

H [K|C] = H [K, C]−H [C]

= H [K, P, C]−H [C]

= H [K] + H [P]−H [C]

Let P n = (P1, . . . , Pn) be a distribution on n − grams of P, and Cn =
(C1, . . . , Cn) be a distribution on n− grams of C, Suppose that we are work-
ing in a cryptographic system (P, C,K, E ,D) where a plaintext x1x2 . . . xn is
encrypted into a ciphertext y1y2 . . . yn by some permutation function. We
want to know how much ciphered letters we have to see to know what the
key is. The distribution depends on the language in use.

Definition 6.24 Rate of a Language L

HL = limn−→∞
H [P n]

n

For english we have 1 ≤ HL ≤ 1.5

Definition 6.25 Redondancy of language L

RL = 1−
HL

lg |P|

If we take 1, 25 as an estimation of HL in english, we have a redondancy
of 0.75.

For a c ∈ C, it is possible that many keys can be found such that there
exists plaintexts that encrypt to c.

Definition 6.26 (Spurious Keys) Given some c ∈ Cn, we define

K(c) = {k ∈ K|∃x ∈ P
n, Pr

P n
(x) > 0 and c = ek(x)}

Finally we can define the notion of unicity distance, which is a measure
of the amount of ciphered letters we have to see to know, without doubt, the
unique key that was used.

39

Definition 6.27 (Unicity Distance)

Sn =
∑

c∈Cn

Pr(c)(|K(c)| − 1)

We are interested in knowing for what value of n will Sn = 0.

Theorem 6.28 ([?]) For large n,

Sn ≥
|K|

|P|nRL
− 1

If we take Sn = 0 and solve for n we get

n ≥
lg |K|

RL lg |P|

Example 6.4 • Shift Cipher
|P| = 26, |K| = 26, RL = 0.75, n ≥ 1/RL = 4/3

• Substitution Cipher
|K| = 26!, lg 26! ≈ 88.4, n ≥ 88.4

0.75 4.7
≈ 25

• One-Time Pad
|K| = 26n, lg 26n = n lg 26, n ≥ n lg 26

0.75 lg 26
= n/0.75 (n = 0 is the only

solution!).

40

7 Pseudo-Randomness

7.1 Pseudo-Random Bit Generator (PRBG)

Informally, a PRBG is a deterministic algorithm that stretches a random
n-bit string to an l(n)-bit string (where l(n) > n) which is indistinguishable
from a truly random l(n)-bit string, in a time that is polynomial in |n|.
Random bits are useful in probabilistic computation, we could always flip a
coin l(n) times to get an l(n)-bit random string, but if l(n) is large this is
costly, this is but one motivation to have PRBGs.

7.1.1 Indistinguishability

We give some definitions that will be useful from here on.

For the tree following definitions, let X = {Xn}n and Y = {Yn}n be
families of distributions.

Definition 7.1 (Absolute Indistinguishability) X is absolutely indistin-
guishable from Y if

∀f ∀n Pr(f(Xn) = 1) = Pr(f(Yn) = 1)

Definition 7.2 (Statistical Indistinguishability) X is statistically indis-
tinguishable from Y if

∀f ∀P :polynomial ∀n≥n0 |Pr(f(Xn) = 1)− Pr(f(Yn) = 1)| ≤ 1/P (n)

Example 7.1 Let Un be the uniform distribution on {0, 1}n and let Vn be
the uniform distribution on {0, 1}n − {0n}. Then U and V are statistically
indistinguishable.

Definition 7.3 (Computational Indistinguishability) X is computation-
ally indistinguishable from Y if

∀
A:fast algo. ∀P :polynomial ∀n≥n0 |Pr(A(Xn) = 1)−Pr(A(Yn) = 1)| ≤ 1/P (n)

Example 7.2 Let N be a random n-bit integer, product of two primes p, q.
Let Un be the uniform distribution on QRN and let Vn be the uniform distribu-
tion on JN . Then U and V are computationally indistinguishable if deciding
quadratic residuosity modulo a composite number is a hard problem.

41

We now formally define a secure PRBG

Definition 7.4 (SPRBG) We say that a family of functions

gn : {0, 1}n → {0, 1}l(n)

for a superpolynomial function l(n), is a secure PRBG if, for all x ∈ {0, 1}n,
gn(x) can be computed in polynomial time (in n) and if for every polynomial
P , the families

Xn = g(Un)|P (n) and Yn = UP (n)

are computationally indistinguishable.

7.2 Examples of PRBG

We will give examples of PRBGs that take a seed s0 ∈ {0, 1}
n and expand

it to an element of {0, 1}l(n)

We first give an example of a PRBG that is not a SPRBG,

Algorithm 7.1 (Linear Congruential BG(s0))

1: M ← 2n, and a, b such that 1 ≤ a, b ≤M − 1

2: FOR i← 0 TO l(n)

3: si+1 ← (a si + b) mod M

4: zi+1 ← si+1 mod 2

5: ENDFOR

6: RETURN z1‖z2‖...‖zl(n).

Theorem 7.5 ([?], [?])
Given a segment z1z2...zi of Linear Congruential BG(s0), it is computa-
tionally easy to find a, b, and to predict zi+1

So the generator is not cryptographically “secure”. In particular, if one
uses this generator to do one-time-pad encryption and the adversary knows a

42

sufficient portion of the plaintext, then he can deduce the sequence and obtain
the rest of the pad (key) and the plaintext. Nevertheless, this generator is
very often used for its well behaved statistical properties. It is very well
adopted to applications outside of cryptography.

The next bit generator we present is from [?], it is similar to the one above,
but with a variation that makes it a cryptographically secure PRBG. Let
N ← pq, where p, q are random (n/2)-bit primes such that p ≡ q ≡ 3 mod 4.

Algorithm 7.2 (Blum Blum Shub PRBG(so ∈ QRN))

1: FOR i← 0 TO l(n)

2: si+1 ← si
2 mod N

3: zi+1 ← si+1 mod 2

4: ENDFOR

5: RETURN z1‖z2‖...‖zl(n).

One intriguing property of the Blum Blum Shub bit generator is the fact
that knowledge of the seed s0 and the factorization of the modulus N allows
direct access to each of the first exp(n) bits. To compute s2`

0 mod N for large

values of ` compute s` ← s
2` mod φ(N)
0 mod N .

The security of generator is reflected in the following result (due to [?])

Theorem 7.6 The Blum-Blum-Shub bit generator is a SPRBG if factoring
Blum-integers is hard (N is a Blum-integer if it is of the form pq, where
p ≡ q ≡ 3 mod 4).

We will see a similar result using the RSA function in the public-key
cryptosystem section.

The next example is from Blum-Micali [?], it is also a cryptographically
secure PRBG. Let p be an odd prime and g a generator of ∈ Z∗

p.

43

Algorithm 7.3 (Blum Micali PRBG(s0))

1: FOR i← 0 TO l(n)

2: si+1 ← gsi mod p

3: IF si ≤ (p + 1)/2 THEN zi+1 ← 0, ELSE zi+1 ← 1

4: ENDFOR

5: RETURN z1‖z2‖...‖zl(n).

Theorem 7.7 The Blum Micali bit generator is a SPRBG if DLP (discrete
log problem, finding x given p, g, gx mod p) is hard.

7.3 Examples of application of PRBGs

Example 7.3 (Stream-Cipher from PRBG) Alice and Bob share a ran-
dom secret s ∈ {0, 1}n. To encrypt a message m of size l(n), Alice generates
a pseudo-key k ∈ {0, 1}l(n) using the PRBG on s, sets c ← k ⊕ m, and
transmits the ciphertext c. To decrypt, Bob computes m ← k ⊕ c where k is
computed similarily.

Example 7.4 (Message Authentication from PRBG) Alice and Bob share
a random secret s ∈ {0, 1}n. To authenticate a message m of size l(n), Al-
ice generates a pseudo-key (i, j) ∈ {0, 1}2∗l(n) using the PRBG on s, sets
t ← i ∗m + j|50, and transmits the pair 〈m, t〉. To check authenticity, Bob
computes (i, j) and t from s and m and verify the equality with the received
tag.

Example 7.5 (Identification from PRBG) Alice and Bob share a ran-
dom secret s ∈ {0, 1}n. When Alice wants to identify herself to Bob, they
both generate a pseudo-key k ∈ {0, 1}l(n) using the PRBG on s, and run the
interactive identification protocol seen in section 5.4.

44

7.4 General Results on PRBGs

Theorem 7.8 Definition 7.9 (one-way function) A function f is one-
way if there exists a polynomial time algorithm to compute f(x) from x,
whereas for any polynomial time inverting algorithm I, Pr [f(I(f(x))) = f(x)]
is negligeable when x is picked at random from the domain of f .

Definition 7.10 (hard-core predicate) A predicate b is hard-core for a
one-way function f if there exists a polynomial time algorithm to compute
b(x) from x, whereas for any polynomial time predicting algorithm P , Pr [P (f(x)) = b(x)]
is no more than 1/2+negligeable when x is picked at random from the domain
of f .

Given a PRBG that has an expansion factor l(n) = n + 1, it is possible
to construct a PRBG with any polynomial expansion factor.

Construction: Let G1 be a PRBG from {0, 1}n to {0, 1}n+1. Define
G(s) = σ1 . . . σp(n), where σi is the first bit of G1(si−1) and si is the n-bit
suffix of G1(si−1) (i.e. σisi = G1(si−1)), with s0 = s being the initial random
value.

Theorem 7.11 ([?]) Given any one-way permutation f and a hard-core
predicate b for f , f ||b is a PRBG.

s

b(s)

f(s)G(s)

b: 1 bit hard-core predicat

f: one-way permutation

Idea of proof. Let Uf be the uniform distribution on the elements of
the domain of f . We use theorem 7.8 and the fact that if the distribution
{f(Uf)||b(Uf)} was not pseudorandom, then it would be possible to efficiently
compute b(Uf) from f(Uf).

45

Goldreich and Levin gave a hard-core predicate with respect to any one-
way function:

Theorem 7.12 (([?])) Let f be a one-way function from {0, 1}n to {0, 1}n
′

and define
f ′ : (x, r)→ (f(x), r), where r, x ∈ {0, 1}n

(f ′ is also one-way)
Define x� r to be the inner product bit of x and r (x� r = ⊕n

i=1xi ∧ ri).
The predicate x� r is hard-core for f ′ !

Impagliazzo, Levin and Luby generalize theorem 7.11 to any one-way
function:

Theorem 7.13 ([?]) Given a function that is one-way , it is possible to
construct a PRBG.

46

8 Pseudo-Random Function Generators (PRΦG)

For some cryptographic tasks it would be useful to agree on a random func-
tion. Let Hn be the set of all functions from {0, 1}n to {0, 1}n. The car-
dinality of this set is 2n2n

, thus to specify a function in Hn we would need
n2n bits, which is a lot. Moreover, if we randomly select a subset H ′

n ⊆ Hn

of cardinality 2n so that each function in H ′
n has a unique n-bit index, then

there is no polynomial time bounded algorithm that, given an index to a
function f ∈ H ′

n and a x ∈ {0, 1}n, can evaluate f(x). Pseudo-Random
Function Generators are used instead of truly random functions.

Informally, a PRΦG is such that it generates a family F = Fn of functions
from {0, 1}n to {0, 1}n where each function f ∈ Fn has a unique n-bit index,
for all x ∈ {0, 1}n f(x) can be efficiently computed and no polynomial time
algorithm (in n) can distinguish Fn from Hn.
Formally, we have the following definition

Definition 8.1 (PRΦG) Let H = {Hn} and F = {Fn} where

Hn = {h ∈ {0, 1}n → {0, 1}n} and Fn = {fk ∈ Hn : k ∈ {0, 1}n}.

F is a pseudo-random function generator (PRΦG) if for all large enough n,
for h picked at random from Hn and a random n-bit string k
∀

T :fast algo.∀P,p:polynomials ∀x1,x2,...,xp(n)

|Pr(T [(x1, h(x1)), (x2, h(x2)), ..., (xp(n), h(xp(n)))] = 1)−
Pr(T [(x1, fk(x1)), (x2, fk(x2)), ..., (xp(n), fk(xp(n)))] = 1)| ≤ 1/P (n)

8.1 Constructing PRΦGs

[?] showed how to construct a PRΦG from any given PRBG. Let G be a
PRBG that stretches a seed x ∈ {0, 1}n into a 2n-bit long sequence,
G(x) = bx

1 . . . bx
2n. Denote G0(x) to be the first n bits output (G0(x) =

bx
1 . . . bx

n) and G1(x) the last n bits (G1(x) = bx
n+1 . . . bx

2n). Let α = α1α2 · αt

be a binary string. We define

Gα1α2·αt
(x) = Gαt

(. . . (Gα2(Gα1(x))) . . .).

The function fk : {0, 1}n → {0, 1}n is defined as follows: For y = y1y2 . . . yn,

fk(y) = Gy1y2...yn
(k).

47

Set Fn = {fk}k∈{0,1}n and F = {Fn}n. F is a PRΦG. It might be useful
to picture the function fx as a full binary tree of depth n with n-bit strings
stored in the nodes and edges labelled 0 or 1.

x

G 0 (x) G 1 (x)

G 0 0 (x) G 0 1 (x) G 1 0 (x) G 1 1 (x)

G y (x)

y = 01y`

8.2 Examples of application of PRΦGs

Example 8.1 (Block-Cipher from PRΦG) Alice and Bob share a secret
k ∈ {0, 1}n. To encrypt an n-bit message m, Alice picks a random y ∈
{0, 1}n, sets c← φk(y)⊕m, and transmits the ciphertext 〈c, y〉.
To decrypt, Bob computes m← φk(y)⊕ c.

Example 8.2 (Message Authentication and Time-Stamping) Say Alice
wants to send authenticated messages to Bob, Alice and Bob need just share a
random value k. When Alice wants to send a message m she simply appends
φk(m) for authentication. To prevent replay attacks, Alice could concate-
nate m with the date and time, then apply φk. One can tradeoff security for
efficiency by simply appending the first t < n bits of the result of the function.

Example 8.3 (Identification from PRΦG) Alice and Bob share a secret
k ∈ {0, 1}n. When Alice wants to identify herself to Bob, Bob sends Alice
an x ∈ {0, 1}n, if Alice returns φk(x) to Bob, then Bob is convinced that it
is indeed Alice, with small probability of error.

48

