
Introduction to Cryptographic Protocols

Claude Crépeau and Simon Pierre Desrosiers

March 29, 2012

2

Contents

0.1 Notation . 5

0.2 Useful Formulae . 6

1 Introduction 7

1.1 Proofs of knowledge vs proofs of membership . 7

1.2 Interactive Proofs vs Arthur-Merlin Games . 8

1.3 Zero-knowledge . 9

1.4 Arguments . 9

1.5 Bit Commitments . 9

1.6 Rudich . 10

1.7 Oblivious Transfer . 11

1.8 Two-party Computations . 11

1.9 Multi-prover Interactive Proofs . 12

2 Interactive Proofs 13

2.1 Proof of Knowledge . 15

2.2 Problems . 19

3 Zero-Knowledge 21

3.1 Graph Non-Isomorphism . 26

3.2 Flavours of Zero-Knowledge . 28

3.3 Problems . 29

4 Bit-Commitment 33

4.1 Computationally Concealing (CC)BC and Computational ZK 35

4.2 Computationally Binding BC . 36

4.3 CCBC from standard Cryptographic Assumptions 37

4.4 Hard-core predicate . 38

4.5 Pseudorandom Generators . 41

4.6 Bit-commitment equality . 42

4.6.1 Rudich’s Trick . 46

4.6.2 Example . 48

4.7 MA, AM and IP in ZK . 49

4.8 Problems . 53

4.9 Problems . 55

3

4 CONTENTS

5 Interactive Arguments 57

5.1 Perfectly Concealing Bit-Commitments . 57

5.2 Zero-Knowledge Interactive Arguments . 59

5.2.1 Arguments vs Proofs . 63

5.3 Bit commitments based on any one-way hash function 63

5.4 Bit commitments based on any one-way permutation 63

5.4.1 Extension to One-Way Functions . 67

5.4.2 Interactive Hashing application . 67

5.4.3 Bounded round Interactive Hashing . 68

5.5 MA in Perfect Zero-Knowledge . 68

5.6 Problems . 68

6 Oblivious Transfer 71

6.1 Rabin Oblivious Transfer . 71

6.2 One-out-of-two Oblivious Transfer . 73

6.2.1
(

2
1

)
-OT from any Random-Self-Reducible Public-key Encryption Scheme . . . 74

6.2.2
(

2
1

)
-OT from any Trap-door one-way permutation 74

6.3 Reductions and Applications . 76

6.3.1 Equivalence of Rabin OT and
(

2
1

)
-OT . 76

6.3.2
(

2
1

)
-OT is symmetric . 77

6.3.3
(

2
1

)
-OT of strings from

(
2
1

)
-OT of bits . 77

6.3.4 A String equality protocol . 78

6.4 Two-party computations . 79

6.4.1 Definition of security . 79

6.4.2 General Protocol . 82

6.5 COT . 84

6.6 Problems . 87

7 Multi-Provers Interactive Proofs 89

7.0.1 Related work . 90

7.1 Preliminaries . 91

7.1.1 Isolation . 91

7.1.2 Bit Commitment . 91

0.1. NOTATION 5

0.1 Notation

1 : x||y String x is concatenated with string y.

2 : λ(C) Distribution of a given instance or random variable C.

3 : D(X,Y) Statistical distance between the distributions of the two random variables
X and Y .

4 : =0 Equality between two Random Variables: X =0 Y is equivalent to
D(PX , PY)=0, where X and Y are random variables.

5 : =ε Epsilon distance between two Random Variables : X=εY imples
D(PX , PY) 6 ε, for random variables X and Y .

6 : =Stat Statistical indistinguishability between two Random Variables: see Defini-
tion 8.

7 : =Comp Computational indistinguishability between two Random Variables: see
Definition 9.

8 : � Protocol proving equality between two bit commitments: b0 � b1 , the
commitment protocol is implied by the flavor of the commitments used.

9 : ↔ When commitment a is unveiled, it is accepted by the receiver as a valid
commitment to the value b : a ↔ b.

10 : U(·) The operator U is a shorthand notation representing all the info necessary
to unveil a given value: U(a) is all the information necessary such that the
receiver can verify that a ↔ a.

11 : Un Uniform random variable over a set of n elements or 2n elements, the mean-
ing will be clear from the context.

12 : Pr[A(x) = y] Probability that probabilistic algorithm A outputs y given x.

13 : Prx[A(x) = y] Average probability, over all x that probabilistic algorithm A outputs y
given x : Prx[A(x) = y] =

∑
x pxPr[A(x) = y].

6 CONTENTS

0.2 Useful Formulae

1 : Statistical Distance Let X and Y be two random variables over the same set {x}x,
then D(X,Y) = 1

2

∑
x |PX(x)− PY (x)|.

2 : Chernoff Upper Tail bound Pr[X > (1 + δ)µ] <
(

eδ

(1+δ)1+δ

)µ
for δ > 0

3 : Chernoff Lower Tail bound Pr[X < (1− δ)µ] <
(

e−δ

(1−δ)1−δ

)µ
for δ > 0

4 : Bound on e For all x we have that 1− x 6 e−x.

Chapter 1

Introduction

In 1982, Goldwasser and Micali had recently introduced the notion of semantic security and estab-
lished the equivalence to computational indistinguishability. Moreover, Probabilistic Encryption
based on Quadratic Residuosity was published in the same paper, and proven semantically secure.
At Eurocrypt ’84, Silvio Micali presented a joint result with M. Fischer and C. Rackoff to the effect
that Rabin’s Oblivious Transfer can be secured by proving the knowledge of a square root of a
quadratic residue without disclosing it !

Unfortunately, the related paper did not formalize the notions involved very rigorously and more
importantly, did not appear in the conference proceedings ! However, it is totally clear that this
work involved the very first Zero-Knowledge Proof of Knowledge, notions that will be introduced in
the next sections. These notions were formalized by Goldwasser, Micali and Rackoff. They had a
hard time getting reviewers to recognize the importance of this contribution !!! In retrospect, this is
one of the most important contributions of that time period and a set of notions absolutely central
to this book.

1.1 Proofs of knowledge vs proofs of membership

The seminal paper of GMR introduced two major concepts, that of an Interactive Proof and that of
Zero-Knowledge. While the former may be more related to Complexity Theory, the later is clearly
motivated by Cryptography. It seems quite likely that both notions were actually motivated by
cryptography, but in the process of formalizing these notions, Interactive Proof probably shifted
from the notion of Proof of Knowledge to the notion of Proof of Membership.

As an example, consider the statement, “This number n is such that I know its two or more prime
factors”. If I give you, two primes p and q such that n = p ∗ q, you may check that they are indeed
primes (using your favorite efficient primality test) and check that indeed n = p ∗ q (using your
favorite multiplication algorithm). Because I gave you p and q, you are convinced “that I know its
two or more prime factors”. This is a proof of Knowledge. You discover that I know something. On
the contrary, consider the statement, “This number n is the product of two or more prime factors”.
This statement can be verified by running your favorite test of composition. As long as n is not
prime it “is the product of two or more prime factors”. This is a proof of membership to the set
(or language) of integers that are “the product of two or more prime factors”

As a second example, consider an valid RSA public-key (n, e). Let c be a ciphertext under this
public-key. The (membership) statement “There exists a plaintext m such that c = me (mod n).”

7

8 CHAPTER 1. INTRODUCTION

is absolutely trivial because every c has this property !!! However, the (knowledge) statement “I
know a plaintext m such that c = me (mod n).” is considerably more interesting...

The notion of proof of knowledge, although it was used in [FMR84], took more time to be formalized
[??] than that of proof of membership [GMR89]. We will see later that Proofs of Knowledge are
central to many of our constructions.

1.2 Interactive Proofs vs Arthur-Merlin Games

The notion of interactive proofs, formalized by [GMR89] states that a computationally unbounded
prover may (interactively) prove membership of an element x to a set L by speaking with a prob-
abilistic polynomial-time (in the size of x) bounded verifier using several back-and-forth messages
of polynomial length in total. What matters at the end of the conversation is (completeness:) that
the verifier accepts with probability (nearly) one when x ∈ L, and (soundness:) that whatever the
prover does, the verifiers accepts with probability (nearly) zero when x 6∈ L.

Because we can amplify the probabilities using a majority vote over many runs, we formally define
the completeness and soundness conditions with respect to arbitrary probabilities of two thirds: for
all x ∈ L, the probability that the verifier accepts is at least 2/3, and for all x 6∈ L, the probability
that the verifier rejects is at least 2/3. The overall “polynomial length in total” bound yields to a
natural complexity class called IP (for Interactive Proofs).

Independently and concurrently to Goldwasser, Micali and Rackoff, another team composed of
László Babai and Shlomo Moran introduced the very similar notion of Arthur-Merlin Games. In
the language of Interactive Proofs, we can express this alternate notion as a restriction of the former:
a computationally unbounded prover, Merlin, may (interactively) prove membership of an element
x to a set L by speaking with a probabilistic polynomial-time bounded verifier, Arthur, using several
back-and-forth messages of polynomial length in total, where Arthur’s messages are restricted to
random coin tosses. The completeness and soundness conditions are defined exactly the same way
as for Interactive Proofs. Another way of comparing the two notions is by observing that in the
latter, the verifier’s coin tosses are public, while in the former, the verifier’s coin tosses are private.
This is indeed the only difference between the two notions.

The Arthur-Merlin games of at most k alternations with Arthur speaking first AM[k], and with
Merlin speaking first MA[k] are natural generalizations of NP=AM[0] and BPP=MA[0]. If we
allow the number of alternation to be polynomial in the length of the input string x then we define
AM[POLY]=MA[POLY].

A natural observation is that if we restrict the completeness probability to be exactly one and the
completeness probability to be exactly zero then we redefine the so-called polynomial-time hierarchy.
For the oracle definition of the polynomial hierarchy, define ∆P

0 := ΣP
0 := ΠP

0 := P . Then for i ≥ 0
define

∆P
i+1 := PΣPi

ΣP
i+1 := NPΣPi

ΠP
i+1 := coNPΣPi

where AB is the set of decision problems solvable by a Turing Machine in class A augmented by an
oracle for some complete problem in class B. For example, ∆P

1 := PP = NP , ΣP
1 := NPP = coNP ,

and ΠP
1 := coNPP = PNP is the class of problems solvable in polynomial time with an oracle for

1.3. ZERO-KNOWLEDGE 9

some NP-complete problem. If we compare the two hierarchies, AM [k] is analogous to ∆P
k and

MA[k] is analogous to ΣP
k .

Within the current knowledge of complexity theory, it is widely believed that all the classes in the
polynomial-time hierarchy are strictly different from each other. It is a well known result that the
least class containing all those PH =

⋃
i≥0 ∆i =

⋃
i≥0 Σi =

⋃
i≥0 Πi ⊆ PSPACE. It is widely

believed that on the contrary, PSPACE 6⊆ PH.

It turns out, the Interactive Proofs and Arthur-Merlin Games hierarchies are full of surprises:

• Babai and Moran have demonstrated that for k > 2, AM [2] = MA[k] = AM [K]; in other
words, the Arthur-Merlin Hierarchy collapses to its second level.

• Goldwasser and Sipser have demonstrated that for k > 2, IP [2k] ⊆ AM [k]; in other words, In-
teractive Proofs are not significantly more powerful than Arthur-Merlin Games. In particular,
IP=IP[POLY]=AM[POLY].

• Shamir has demonstrated that IP = PSPACE; in other words, if you allow a polynomial
number of alternations, whether your soundness and completeness are statistical or perfect,
and whether public or private coins are used, makes absolutely no difference !

1.3 Zero-knowledge

1.4 Arguments

1.5 Bit Commitments

A commitment scheme is a two-phase cryptographic protocol between two parties, a sender and
a receiver, satisfying the following constraints. At the end of the first phase (named Commit)
the sender is committed to a specific value (often a single bit) that he cannot change later on
(Commitments are binding) and the receiver should have no information about the committed
value, other than what he already knew before the protocol (Commitments are concealing). In
the second phase (named Unveil), the sender sends extra information to the receiver that allows
him to determine the value that was concealed by the commitment. Commitments are important
components of zero-knowledge protocols [4, 16], and other more general two-party cryptographic
protocols [19]. A natural intuitive implementation of a commitment is performed using an envelope
(see Figure 1). Some information written on a piece of paper may be committed to by sealing it
inside an envelope. The value inside the sealed envelope cannot be guessed (envelopes are concealing)
without modifying the envelope (opening it) nor the content can be modified (envelopes are binding).
Unveiling the content of the envelope is achieved by opening it and extracting the piece of paper
inside (see Figure 2). The terminology of commitments, influenced by the legal vocabulary, first
appeared in the contract signing protocols of Even [14], although it seems fair to attribute the
concept to Blum [3] who implicitly uses it for coin flipping around the same time. In his Crypto
81 paper, Even refers to Blum’s contribution saying: “In the summer of 1980, in a conversation,
M. Blum suggested the use of randomization for such protocols”. Apparently, Blum introduced
the idea of using random hard problems to commit to something (coin, contract, etc.). However,
one can also argue that the earlier work of Shamir et al. [26] on mental poker implicitly used

10 CHAPTER 1. INTRODUCTION

commitments as well, since in order to generate a fair deal of cards, Alice encrypts the card names
under her own encryption key, which is the basic idea for implementing commitments. The term
“blob” is also used as an alternative to commitment by certain authors [4,8,20]. The former mostly
emphasizes the concealing property, whereas the latter refers mainly to the binding property. Under
computational assumptions, commitments come in two dual flavors: binding but computationally
concealing commitments and concealing but computationally binding commitments. Commitments
of both types may be achieved from any one-way function [18,24,25,17].

1.6 Rudich

1.7. OBLIVIOUS TRANSFER 11

1.7 Oblivious Transfer

1.8 Two-party Computations

12 CHAPTER 1. INTRODUCTION

1.9 Multi-prover Interactive Proofs

Chapter 2

Interactive Proofs

An Interactive Proof is a protocol between two parties 1 a prover P and a veryfier V where P
proves to V some assertion: that the string x belongs to some language L.

Take the problem of Graph-Isomorphism (G-ISO). Let G0 = 〈V,E0〉 and G1 = 〈V,E1〉 be two
undirected graphs, where V is a set of vertices and Ei is a set of edges between the vertices of V .
Furthermore |E0| = |E1|.
We say two graphs are isomorphic if and only if there exists a permutation Π of V such that for all
vertices u and v in V , the edge (u, v) belongs to E0 if and only if the edge (Π(u),Π(v)) belongs to
E1. We shall then write G0 ≈ G1 or G1 = Π(G0).

Let P and V be two Turing machines, then figure 2.1 is a protocol that lets the prover P prove to
the verifier V that G0 and G1 are isomorphic.

G0, G1

P V

-Π

V verifies that
G1 = Π(G0).
V accepts if so
V rejects otherwise.

Protocol 2.1: An IP protocol for Graph Isomorphism

Definition 1 (Interactive Proof) A pair of Turing machines P and V , where machine P has
no time or space limitation and machine V is probabilistic-polynomial time (PPT), constitute an
IP system for the language L if the interaction between the two machines has the two following
properties:

Completeness: for all x ∈ L

Pr[V accepts x after interacting with P] >
2

3
(2.1)

Soundness: for all x 6∈ L and all P ′

Pr[V accepts x after interacting with P ′] 6
1

3
. (2.2)

1Normally considered to be Turing Machines

13

14 CHAPTER 2. INTERACTIVE PROOFS

A protocol is complete when the prover P can convince with high probability a verifier V of the
veracity of the assertion x ∈ L if in fact x ∈ L. In other words, the protocol is actually useful at
proving to V that x ∈ L. On the other hand, a protocol is sound when it ensures that the prover
P cannot abuse V ’s gullibility. That is, if x is not in L, then with high probability, if V follows the
protocol, V will not believe the prover, whatever the prover does.

The set of languages for which there exists an Interactive Proof will be called IP. Obviously, G-ISO
is in IP. The language G-ISO being in NP, there exists a witness (the permutation Π) that P can
give to V and that V can verify all by himself. The same reasoning holds for all languages in NP,
hence NP ⊆ IP.

The problem of Graph-NonIsomorphism (GNI) is a more interesting example of an IP system as
it is not known to be in NP (it is believed that no witness can be provided to the verifier by the
prover). Two graphs, G0 and G1 are said to be non-isomorphic if no permutation exists such that
G1 = Π(G0). Figure 2.2 shows an IP protocol for Graph-nonisomophism. In that Protocol, if the
two graphs G0 and G1 are isomorphic, then the prover P will not be able to guess b every time,
hence, if V really chooses b randomly, then the probability that b′ = b is only one half.

G0, G1

P V

b ∈R {0, 1}
Π ∈R Sn
G′ = Π(Gb)

� G′

Computes b′ s.t.
G′ ≈ Gb′

-b′

V accepts iff b′ = b.

Protocol 2.2: An IP protocol for Graph non-Isomorphism

On the other hand if the two graphs are nonisomorphic, it is always possible for a powerful prover
P to find a unique b′ for which there exists a permutation such that G′ = Π′(Gb′), hence P can
always win the game.

Hence

— Completeness: if G0 6≈ G1 then Pr[(P, V)(G0, G1) = 1] = 1

— Soundness: if G0 ≈ G1 then ∀P ′,Pr[(P ′, V)(G0, G1) = 1] 6 1
2 .

Where (P, V)(x) = 1 means that after interacting with P on common input x, V accepts. As
it is, this protocol does not satisfy definition 1, but this is only a technical issue. If P and V
repeat the protocol twice (and V accept if and only if he accepts in both runs), then this is an IP
protocol. By repeating the protocol, we mean that V ’s random bit and random permutation are
chosen anew in this second round and independently from the first round. Hence, the two rounds
being independent, soundness drops to one quarter (below one third) and therefore satisfies the
definition.

2.1. PROOF OF KNOWLEDGE 15

By repeating several times this two-step protocol, the verifier can be convinced up to an exponen-
tially low error probability of the validity of the proof. Note that GNI is not known to belong to
NP but is in Co-NP and yet GNI belongs to IP. In fact, it turns out as proven by Adi Shamir that
IP=PSPACE.

In general, we can always amplify the probability that V accepts or rejects by repeating a protocol.
In the case where the completeness is smaller than 1, the verifier will run a given protocol which
belongs to IP k times recording each time whether he accepted or rejected the prover’s claim. At
the end of the k rounds, the verifier takes a majority vote : he accepts the prover’s claim, if at
least bk/2c + 1 time, he accepted the IP proof and rejects otherwise. Now let’s consider the case
where x does not belong to the language but the prover is trying to prove otherwise. What is the
probability of error pe, that is the probability that V accepts x as belonging to L ?

The verifier will accept if and only if he accpeted in at least bk/2c + 1 rounds. Hence, since
the soundness probability is no larger than one third, and that all k rounds are independent, the
expected value of the number of times V accepted x over k runs is at most k/3. To err, it must be
that the number of times where V accepts is deviating by at least k/6 + 1 from its expected value
k/3. But by the Chernoff bound (Formula 3), the probability that this happens is exponentially
small for sufficiently large k.

If x ∈ L, then if Pr[(P, V)(x) = 1] > 2
3 we can amplify to Pr[(P, V)(x) = 1] > 1−ε where ε = 1

poly(|x|)
or more precisely ε = 1

exp(|x|) .

Definition 2 (Negligible function) A function µ : N → R is said to be negligible if for every
positive polynomial p(·) there exists an n0 such that for all n > n0 we have

µ(n) <
1

p(n)
.

Interactive Proofs where Pr[V accepts x after interacting with P] = 1 for all x ∈ L can be amplified
faster by taking advantage of this special property. If we repeat k times and accept if and only if all
executions accept then the completeness probability remains one while the soundness probability
drops to pks if ps was the soundness probability of a single run. Notice that we have used a distinct
accpeting criteria. This technique can be used whenever ps < 1, not only for ps <

1
3 .

2.1 Proof of Knowledge

A proof of knowledge is a variation on IP protocols. In this case, the goal is to convince a verifier
that the prover knows something. For example, the prover might want to convince the verifier that
he knows the two prime factors, p and q, of a given RSA number n = pq. The difference with IP
protocols is that we need to formally define a notion of knowledge to exclude the possibility that
the prover proves that n has exactly two prime factors without knowing them.

Consider a relation R constituted of pairs (x,w), where w is a witness. For example, the relation
for RSA numbers is the set {(n, (p, q))|n = pq, p and q are prime}; or a pair which constitutes a
witness to the RSA-Number language. Proving that n is composite does not require knowledge of
p and q because that’s exactly the outcome of Rabin’s primality test. Proving that n has exactly
two prime factors seems much harder to do without knowledge of the explicit factors.

16 CHAPTER 2. INTERACTIVE PROOFS

Another good example is ((G0, G1), π) where (G0, G1) forms the language of pairs of isomorphic
graphs, and π is the permutation such that G1 = π(G0). In this last case, a proof of knowledge is
kind of an IP protocol such that at the end, not only is the verifier convinced that G0 ≈ G1, but
the verifier is also convinced that indeed the prover knows the permutation π.2

The language LR associated with R is the set of all x such that there exists a witness for which
R(x,w) = 1: LR , {x|∃w s.t. R(x,w) = 1}. An explicit proof of knowledge, would be, for instance,
the interaction where P provides V with the witness w (as in protocol 2.1). However, the notion
of proof of knowledge is a lot more subtle. If w appears in the conversation between P and V in
an implicit form, say w̄ for instance, it is still a proof of knowledge. That’s because there exists
an efficient algorithm that computes w from w̄ (by flipping all the bits), and more precisely w can
efficiently be computed from the conversation between P and V . We shall call this algorithm the
Knowledge Extractor. To give a very general notion of implicit knowledge we push the definition
of Knowledge Extractor even further: we say that an efficient algorithm KP is a knowledge extractor
for a relation R if given x ∈ LR, R(x,KP (w)(x)) = 1 with non-negligeable probablity. When no
such witness exists, we don’t care what KP (w) outputs. So here is the formal definition:

Definition 3 (Proof of Knowledge) A pair of (Probabilistic Polynomial-time) Turing machines,
P and V , constitute an interactive proof of knowledge for a relation R if the following two conditions
hold

Completeness: for all (x,w) ∈ R

Pr[(P (w), V)(x) = 1] > 1− ν(|x|) (2.3)

Soundness: for all prover P ′ there exists an efficient 3 KP ′ such that for all x and all w we have

Pr[R(x,KP ′(w)(x)) = 1] > Pr[(P ′(w), V)(x) = 1]− κ(|x|), (2.4)

where κ and ν are negligeable error-functions.

Notice that when x 6∈ LR we have that Pr[R(x,KP ′(w)(x)) = 1] = 0 and therefore κ(|x|) >
Pr[(P ′(w), V)(x) = 1] which is a strong soundness condition of IP protocols. Therefore, all proofs
of knowledge are IP protocols but not the other way around... Intuitively, this definition states that
whenever a prover P ′ given a candidate-witness w manages to convince a verifier that x ∈ LR then
we can obtain a witness (not necessarily w) by running KP ′(w)(x) with similar probability in an
amount of time not too much bigger...

As mentioned before, protocol 2.1 is an explicit proof of knowledge of the isomorphism between G0

and G1. The following protocol 2.3 will be the basis for an implicit proof of knowledge for the same
witness.

2The fact that a prover can convince a verifier that two graphs are isomorphic does not imply that the prover
knows the permuatation π, even if it is hard to imagine otherwise.

3We allow KP ′(w) to run for polynomially more time than P ′(w). One simple way of enforcing this condition is to
define KP ′ as a poynomial-time algorithm that runs P ′ as a black-box.

2.1. PROOF OF KNOWLEDGE 17

G0, G1

P (π) V

Π ∈R Sn
G′ = Π(G0)

-G′

b′ ∈R {0, 1}
� b′

Computes σ (using Π and π) s.t.

G′ = σ(Gb′)

-σ

accepts iff
G′ = σ(Gb′)

Protocol 2.3: Basic protocol for an implicit proof of knowledge of Isomorphism between two Graphs

First, check that protocol 2.3 is an IP protocol for GI. To convince yourself of this fact, check that
the completeness condition is perfect: Pr[(P, V)(x) = 1] = 1. Whereas the IP soundness condition
is also satisfied, when G0 and G1 are not isomorphic, Pr[(P ′(π), V)(x) = 1] ≤ 1

2 whatever P ′ does
(the last step of the protocol can be acomplished properly by P ′ for only one value of b′ because G′

cannot be isomorphic to two graphs that are not isomorphic to each other).

As is, the above protocol does not constitute a proof of knowledge according to our above definition.
That’s because the soundness success probability of a prover P ′ that knows no witness can be as
much as 1

2 . This would imply that the knowledge extractor KP should have Pr[R(x,KP ′(x)) = 1] >
1
2 − κ(|x|) > 0 which is impossible when x 6∈ L.

Consider instead, executing k independant copies of protocol 2.3 for the same input graphs G0, G1

as follows:

G0, G1

P (π) V

Π1,Π2, ...,Πk,∈R Sn
G′i = Πi(G0), 1 ≤ i ≤ k

-G′1, G
′
2, ..., G

′
k

b′1, b
′
2, ..., b

′
k ∈R {0, 1}

� b′1, b
′
2, ..., b

′
k

Computes σi (using Πi and π) s.t.

G′i = σi(Gb′i), 1 ≤ i ≤ k
-

σ1, σ2, ..., σk

accepts iff
G′i = σi(Gb′i), 1 ≤ i ≤ k

Protocol 2.4: Implicit proof of knowledge of Isomorphism between two Graphs

The resulting protocol still has completeness probability Pr[(P (π), V)(x) = 1] = 1. Whereas
the strong IP soundness condition is also satisfied, when G0 and G1 are not isomorphic,
Pr[(P ′(π), V)(x) = 1] ≤ 1

2k
whatever P ′ does. Moreover, the stronger proof of knowledge soundness

condition with κ(|x|) = 1
2k

is also satisfied:

Pr[R(x,KP ′(x)) = 1] > Pr[(P ′(π), V)(x) = 1]− κ(|x|).

When x 6∈ L, we get Pr[R(x,KP ′(x)) = 1] = 0 which yields Pr[(P ′(π), V)(x) = 1] ≤ 1
2k

. When
x ∈ L, we get Pr[R(x,KP ′(x)) = 1] > ε(x) − κ(|x|) where ε(x) = Pr[(P ′(π), V)(x) = 1]. If P ′ is

18 CHAPTER 2. INTERACTIVE PROOFS

so dum that ε(x) is negligeable, then ε(x)− κ(|x|) is negligeable (or even negative!!) and therefore
Pr[(P ′(π), V)(x) = 1] may also be negligeable. In this case, there is no requirements on KP ′ to
succeed at all. If however, P ′ is such that ε(x) is not negligeable then we expect that KP ′ will
succeed with probability at least ε(x). We now present a polynomial time KP ′ that succeeds in
producing a witness with probability nearly 1 under the condition that ε(x) is not negligeable.

The purpose of the knowledge extractor KP ′ is to obtain two executions of P ′ such that the graph
G′ submitted in both runs are identical but the choice bit b′ of the extractor are distinct. Here is
the knowledge extractor for the Protocol 2.4

1. Initialize P ′: copy fresh random bits to the prover’s random tape and fill up

the Auxiliary-Input tape with a witness π if any.

2. Run P ′ until it sends G′1, G
′
2, ..., G

′
k

3. Send random b′1, b
′
2, ..., b

′
k to P ′ and wait for σ1, σ2, ..., σk

4. Store d′1, d
′
2, ..., d

′
k ← b′1, b

′
2, ..., b

′
k and γ1, γ2, ..., γk ← σ1, σ2, ..., σk

5. Restart P ′ as in step 2 and run it until it sends G′1, G
′
2, ..., G

′
k again

6. Send random b′1, b
′
2, ..., b

′
k to P ′ and wait for σ1, σ2, ..., σk

7. Let i be such that b′i 6= d′i. Compute and output π = σ−1b
′
i

i γ−1d
′
i

i . STOP

8. Go to step 5.

Extractor 2.1: Sketch of the Knowledge Extractor for Graph Isomorphism

The Extractor above is just a sketch because many subtleties have to be considered. As written, we
assume that P ′ is always answering valid σ1, σ2, ..., σk for arbitrary G′1, G

′
2, ..., G

′
k and b′1, b

′
2, ..., b

′
k.

Let p be the probability that P ′ actually answers valid σ1, σ2, ..., σk at step 3. If the first time the
extractor tries this Step, P ′ answers with invalid σ1, σ2, ..., σk then the extractor aborts. The running
time of this possibility is independent of p. If the first time the extractor tries this Step, P ′ answers
with valid σ1, σ2, ..., σk then the extractor should extract a withness. It will do that by finding
another set of b′1, b

′
2, ..., b

′
k for the same G′1, G

′
2, ..., G

′
k that produces valid σ1, σ2, ..., σk. If p was the

probability of hitting a situation that lead P ′ to issue valid σ1, σ2, ..., σk then the probability that
this happens again is still p. Therefore, the expected number of tries until this situation happens
again is 1/p. Therefore the expected running time to produce a witness is p× 1/p× t where t is the
time to run one test at Steps 5–6. This expected running time is again independent of p.

Nevertheless, this argument is slightly wrong: the probability p is computed as an expected value
over the choices of b′1, b

′
2, ..., b

′
k. The Extractor fails if the Prover completes the protocol consistently

on the same sequence b′1, b
′
2, ..., b

′
k. The extreme example is if the Prover solely completes on a

single sequence b′1, b
′
2, ..., b

′
k. In this case, the Extractor would not succeed because he never finds

a second sequence of b′1, b
′
2, ..., b

′
k’s. To escape this undesired situation, the extractor always runs

in parallel to Step 5 a complete enumeration of all possible permutations until he finds one that
maps G0 to G1. If by any chance, it runs long enough that this enumeration completes then the
Extractor output the computer permutation. This case will arise with probability no greater than
2−k, when no other sequence succeeds. All in all, this will double the expected running time of
any situation where ultimately a second sequence is found, while it will force termination of any
situation where no other sequence is actually found. This will only increase the expected running
time of the Extractor by a factor of two as long as 2k is larger than the number of permutations.

2.1. PROOF OF KNOWLEDGE 19

Problems

2.1 Formalize the argument for majority amplification using the Chernoff bound. Do this for both Sound-
ness and completeness.

2.2 Let n be a composite number chosen by the Prover. Let y be a quadratic non-residu modulo n (with
Jacobi symbol +1) also chosen by the Prover. Give an interactive proof for the language

N -QNR = {(n, y)|n is composite and y is a quadratic non-residu mod n (with Jacobi symbol +1)}.

2.3 Let n be a composite number and y be a quadratic non-residu modulo n (with Jacobi symbol +1)
chosen by the Prover. Let z ∈ QRn

⋃
yQRn where we define yQRn = {z ∈ QNRn|z/y ∈ QRn}. Give

a proof of knowledge for the residuosity of z where the prover convinces the verifier that he knows
whether z is a quadratic residue or non-residue but does not tell the verifier which it is...

2.4 Let p be a public prime number with publicly known factorization of p− 1 and g be a public primitive
element. Let (a, b, c) be a triple of elements from Z∗p chosen by the Prover as a = gx mod p, b = gy mod p
and c = gxy+z mod p for some x, y, z. Give a proof of knowledge for the Decisional Diffie-Hellman set
such that (a, b, c) ∈ DDH if and only if there exists x, y such that a = gx mod p, b = gy mod p and
c = gxy mod p. The prover convinces the verifier that he knows whether (a, b, c) is a valid DDH triple
or not but does not tell the verifier which it is...

Hint: Give a proof of knowledge of z without disclosing it.

2.5 Let p be a public prime number with publicly known factorization of p− 1 and g be a public primitive
element. Suppose the Prover has free access to an oracle to decide the DDH. Show how to use the
protocol of 2.4 in order to convince the verifier that he is able to decide DDH. Make sure that the
verifier never learns whether a triple (a, b, c) is a valid DDH-triple or not, unless he already knows...

20 CHAPTER 2. INTERACTIVE PROOFS

Chapter 3

Zero-Knowledge

The proofs seen in the last chapter are interesting, but not so much cryptographically as the verifier
may learn everything. Once the verifier learns the witness to an NP assertion, then he can himself
prove the assertion to anyone else. In this chapter we shall develop another property for protocols.
We shall require that not only do they convince the verifier of the validity of the assertion but that
the verifier learns nothing else from the interaction with the prover. After the proof, the verifier
is really convinced of the validity of the assertion that the prover was in fact proving. Ideally,
the verifier should learn nothing; so little that the verifier cannot even convince his verifier-friends
that he indeed talked to the Prover (or anyone who knew a witness). We shall do that via a very
profound technique which is known as simulation. The result of this definition will be a powerful
new tool.

We shall simulate the interaction of V ′, for any V ′, even a potentially dishonest V ′, with P without
having access to P or his knowledge. Let V IEW [(P, V ′)(x)] be the random variable associated with
all the possible transcripts of all the messages exchanged between P and V ′ and all of V ′’s random
coins and x (basically, anything that V ′ knows and sees). We shall call the transcript the list of
all messages exchanged between P and V . Clearly, the View contains more information than the
transcript.

Definition 4 An IP protocol is Zero-Knowledge (ZK) if for all verifiers V ′ there exits a probabilistic
polynomial-time machine SV ′ such that for all x ∈ L

V IEW [(P, V ′)(x)] =0 SV ′(x). (3.1)

In this definition, SV ′(x) is the random variable that represents the output of the simulator S
that has access to V ′ (as a black-box or an oracle) and the notation X =0 Y means that the two
random variables X and Y have the exact same distribution. In layman words, an IP protocol is
Zero-Knowledge if there exists a PPT machine that can simulate the interaction between P and V ′

without knowing anything specific about x or L (a witness for example).

Let us look at factorization as a first (bad) example. Here, in Protocol 3.1, n = pq, or the language
L is the set of all numbers with exactly two prime factors.

21

22 CHAPTER 3. ZERO-KNOWLEDGE

n

P V

-
p, q

V verifies that n = pq and
that p and q are primes.
V accepts if so
V rejects otherwise.

Protocol 3.1: A first attemp at Zero-knowledge

Of course, Protocol 3.1 cannot be Zero-Knowledge as no simulator that does not know p and q,
which for large n could be hard to obtain, can simulate the interaction between any V ′ and P
efficiently. But even worse, V learns the factorization of n. As we shall see, a protocol is Zero-
Knowledge if the verifier learns nothing but the validity of the assertion even if the verifier does
not behave honestly. This is proven by exhibiting a simulator whose outputs is distributed as the
View of V ′. But how can this be simulated without knowing p and q? In fact, Protocol 3.1 has the
intent of giving p and q to V . In this case obviously V learns more than just the fact that n has
two factors. We can try a second approach where the factors of n do not appear explicitely on the
transcript, see protocol 3.2.

n

P V

r ∈R Z∗n
x = r2 mod n

� x

Computes y =
√
x mod n

-
y

if y 6= ±r mod n then
V factors n and accepts
if p and q are primes

Protocol 3.2: A second attemp at Zero-knowledge

But alas, even if p and q are per say not on the transcript, V still learns the factorization and no
polynomial-time S should be able to simulate this protocol as extracting square roots is as hard
as factoring (if P can reliably accomplish the expected task then V can use him to find p and q
efficiently).

Take a look at the representation of the Verifier of Figure 3.3.

23

V
Communication

Communication

w

r

random

Work

Input

r/w

r

r

r

Auxiliary Input

Figure 3.3: Schematization of the Verifier Turing Machine

This Turing machine has 6 tapes: two of which are used to communicate with the prover, one
contains the input, one is prefllled with unbiased random bits, one is a work tape and the last one
contains the auxiliary input. The auxiliary input represents some prior knowledge that the verifier
might posess: For example, the verifier might know that p in Protocol 3.1 is congruent to 3 mod 4
with probability one quarter. The definition of Zero-Knowledge should hold even if V ′ already
knows something, that is V ′ should not know more after the protocol than before the protocol and
whatever (computational) uncertainty he had about the world has not changed. Look at protocol
2.2 for Graph-Non-Isomorphism. Imagine that V ′ in this protocol knows a third graph G2 and
is trying to know to which graph, G0 or G1, G2 is isomorphic. Then, by cheating and sending
graph G2 instead of choosing between G0 and G1 randomly and permuting it, then V ′ could learn
something it is not suppose to learn that is G2 ≈ Gb for b ∈ {0, 1}. Note that we never claimed
that Protocol 2.2 was safe in that respect.

We can revisit the definition of Zero-Knowledge to protect the prover against such bad behaviors
from V ′.

Definition 5 An IP protocol is Zero-Knowledge (ZK) if for all verifiers V ′ there exits a probabilistic
polynomial-time machine SV ′ such that for every x ∈ L and for all auxiliary input ℵ we have

V IEW [(P, V ′(ℵ))(x)] =0 SV ′(ℵ)(x). (3.2)

Let us revisit Protocol 2.3 that we used in the context of Proof of Knowledge previously:

24 CHAPTER 3. ZERO-KNOWLEDGE

G0, G1

P V

Repeat for i = 1 to k

Πi ∈R Sn
G′i = Πi(G0)

-G′i

b′ ∈R {0, 1}
� b′i

Computes σi s.t.
G′i = σi(Gb′i)

-
σi

accepts iff
G′i = σi(Gb′i)

Protocol 3.4: A successful attempt at Zero-Knowledge: Graph-Isomorphism

Note that in this protocol, σ is easy to compute for the prover: if b′ = 0, then σ = Π and if b′ = 1
then σ = Π ◦ ρ where ρ is a permutation such that G1 = ρ(G0).

This protocol obiously belongs to IP if it is repeated k times:

— Completeness: If G0 ≈ G1, then Pr[(P, V)(x) = 1] = 1,

— Soundness: If G0 6≈ G1, then ∀P ′Pr[(P ′, V)(x) = 1] 6 1
2k

.

But contrary to what we did in the proof of knowledge of Protocol 2.4, to obtain Zero-Knowledge
the repetitions in Protocol 3.4 are sequential instead of in parallel.

To prove that this protocol is Zero-Knowledge, we only have to present a simulator, see Figure 3.5.

1. Copy fresh random bits to the verifier’s random tape and fill up the

Auxiliary-Input tape.

2. Pick a bit c ∈R {0, 1} and permutation ρ ∈R Sn.

3. Compute G′ = ρ(Gc)

4. Run the verifier V on input (G0, G1) and G′ and wait for his reply b′.

5. (a) If b′ = c, then send ρ and finish simulation

(b) if b′ 6= c, then rewind V as if nothing had happened and go back to step 2

Simulator 3.5: Simulator for Graph-Isomorphism

Here are a few comments on the simulator for Graph-Isomorphism:

1. As long as V runs in polynomial time, the simulator runs in expected polynomial time.

2. The simulator has access to all the tapes of V in read-write mode but does not have access
to the internal logic of V .

3. The verifier has a reset switch to which S has access, using this button the simulator can
rewind V to its initial state (right after step 1 in Simulator 3.5).

25

4. The distribution of G′ does not depend on c.

5. Since G0 ≈ G1, V ′ cannot know if G′ was generated applying a permutation to G0 or G1.

6. The two distributions V IEW [(P, V ′(ℵ))(x)] and SV ′(ℵ)(x) are identical.

7. The bit c never appears on the transcript.

To enlighten some of these comments, let us prove that V IEW [(P, V ′(ℵ))(x)] and SV ′(ℵ)(x) are
identically distributed. A View is the following tuple (G0, G1, r,ℵ, (G′1, b′1, σ1), . . . , (G′k, b

′
k, σk)),

where r is the content of V ′’s random tape which is constituted of uniform random bits and ℵ, the
auxiliary input, is the same in both cases:

We shall write, for j 6 k,

(G0, G1, r,ℵ, (G′1, b′1, σ1), . . . , (G′j , b
′
j , σj))

S

for a partial View generated by the simulator and

(G0, G1, r,ℵ, (G′1, b′1, σ1), . . . , (G′j , b
′
j , σj))

P

for a partial View generated by a real interaction between P and V ′. Note that these Views are
really random variables. What we shall prove is that for any j the distribution of the real and of
the simulated Views are the same.

The first thing to notice is that at any given step j, V ′ is really just a deterministic function of the
prefix of the partial View up to that step. So before that first step we have

(G0, G1, r,ℵ)S = (G0, G1, r,ℵ)P (3.3)

The next item on the View is G′1. But the honest prover and the simulator create that graph
according to the same distribution: that is they use the graph G0 (or G1 at random for the simulator)
and compute a random isomorphism of it (by choosing uniformly a random permutation). But since
G0 and G1 are isomorphic, a random permutation of either is the same. Hence

(G0, G1, r,ℵ, (G′1))S =0 (G0, G1, r,ℵ, (G′1))P . (3.4)

The next element, which is V ′’s challenge to G′1 is a deterministic function of the View up to that
point, as V ′ uses the bits in r as randomness. Hence Equation (3.4) means that

V ′((G0, G1, r,ℵ, (G′1))P) =0 V
′((G0, G1, r,ℵ, (G′1))S),

hence
(G0, G1, r,ℵ, (G′1, b′1))S =0 (G0, G1, r,ℵ, (G′1, b′1))P . (3.5)

And finally as both the prover and the simulator chose their permutation to create G′1 at random
uniformly, and that for a fixed permutation γ, {Π ◦ γ}Π = Sn the probability to see a given
permutation is the same in both Views

(G0, G1, r,ℵ, (G′1, b′1, ρ1))S =0 (G0, G1, r,ℵ, (G′1, b′1, σ1))P . (3.6)

However, the Simulator is only able to complete this part of the View when b′1 = c. On the
contrary, the Prover can always complete it because he knows an isomorphism between G0 and G1.
Nevertheless, the choice of b′1 by V ′ is completely independent of c since the distribution of G′1 is

26 CHAPTER 3. ZERO-KNOWLEDGE

the same for both values of c. This observation is absolutely crucial. This is the reason why the
Simulator may fail and that doing so will not skew the distribution of the simulated View. If the
Simulator “forgets” that he tried and fails (rewinds) and try again, the distribution will be exactly
the same again next time... Notice that if we ran the proof in parallel, the success probability of
the simulator at Step 5a would be 2−k which would lead its running time to be exponential. That
is why we favor runing the protocol sequentially.

This reasoning is for the first triple of the View. But the same argument will hold for all steps j
larger than 1 as well (as long as the rewinding used by the simulator loops back to the most recent
execution of Step 2. Once an iteration is successfully simulated, the simulator never tries to undo
it.). Hence

V IEW [(P, V ′(ℵ))(x)] = SV ′(ℵ)(x),

that the simulator outputs can be the View of the verifier and this happens with the exact same
probability.

3.1 Graph Non-Isomorphism

Let us discuss a more elaborate example : a Zero-Knowledge Interactive Proof for Graph-Non-
Isormophism.

Take a look back at Protocol 2.2. As we have already discussed, this protocol cannot be Zero-
Knowledge as V ′ might not compute G′ honestly. In fact, a clever V ′ could feed a third graph G2

and learn whether G2 is isomorphic to G0 or G1. One solution would be to force V ′ to compute G′

honestly. Fortunately we can use a variation on the Proof of Knowledge for Graph-Isomorphism that
we already know (Protocol 2.4) in order to achieve this. The following Protocol is an improvement
of Protocol 2.2 by introducing an extra Step represented by the internal box.

G0, G1

P V

b ∈R {0, 1}, Π0,Π1 ∈R Sn
G′0 = Π0(Gb), G

′
1 = Π1(Gb̄)�

(G′0, G
′
1)

G0, G1, G
′
0, G

′
1

VP PV (b,Π0,Π1)

�
Protocol 3.7 : PofK(b,Π0,Π1)

IF the inner Protocol aborted
THEN aborts
ELSE computes b′ s.t. G′0 ≈ Gb′ -b′

accepts iff b = b′

Protocol 3.6: Zero-Knowledge proof for Graph-Non-Isomorphism

3.1. GRAPH NON-ISOMORPHISM 27

G0, G1, G
′
0, G

′
1

VP PV (b,Π0,Π1)

b1, ..., bk ∈R {0, 1}
π1

0, π
1
1, ..., π

k
0 , π

k
1 ∈R Sn

FOR i = 1 to i = k
Gi0 = πi0(Gbi), G

i
1 = πi1(G

bi
)�

(G1
0, G

1
1), ..., (Gk0, G

k
1)

c1, ..., ck ∈R {0, 1}
-c1, ..., ck

FOR i = 1 to i = k
IF ci = 0
THEN di = bi, σi0 = πi0, σ

i
1 = πi1

ELSE computes ei = bi ⊕ b
ρi0 s.t. Gi0 = ρi0(G′

ei
)

ρi1 s.t. Gi1 = ρi1(G′
ei

)

di = ei, σi0 = ρi0, σ
i
1 = ρi1.�

d1, σ1
0, σ

1
1, ..., d

k, σk0 , σ
k
1

Accepts if
FOR i = 1 to i = k
WHEN ci = 0
THEN Gi0 = σi0(Gdi), G

i
1 = σi1(G

di
)

ELSE Gi0 = σi0(G′
di

), Gi1 = σi1(G′
di

).

else aborts the entire protocol

Protocol 3.7: Proof of Knowledge of (b,Π0,Π1)

The Internal box is really a Proof of Knowledge going backwards : the Verifier PV (b,Π0,Π1) proves
to the prover VP that he knows b such that (G′b, G

′
b̄
) = (Π0(G0),Π1(G1)). First, let’s check that the

modified Protocol is still an Interactive Proof for Graph Non-Isomorphism. It should be obvious
that the completeness of the outer Protocol still holds : the sub-Protocol does not change that. We
have to work harder to prove that the soundness of the outer Protocol still holds. Soundness could
be lost if somehow b was communicated to VP during the sub-protocol. If we prove that everything
that happens inside the internal box is statistically independent from the bit b, we demonstrate
that this issue is not a problem. If that is the case, then the internal protocol carries no information
about b and hence, cannot help P ′ cheat soundness if the two graphs are in fact isomorphic.

It is interesting to notice that we do not need to guarantee that the internal protocol carries no
information about b if the two graphs are in fact non-isomorphic. Moreover, in the case where the
graphs are isomorphic, we do not require the sub-protocol to be zero-knowledge, but simply carries
no information about b. If P is infinitely powerful, as we often assume in Interactive Proofs, the
zero-knowledge property (efficiency of a simulator) of the sub-Protocol would be totally irrelevant.

For the sake of argument, let us assume that G0 and G1 are isomorphic to start with. Then,
for honest PV , all graphs in the sub-Protocol will be isomorphic to each other. Hence, even for
an infinitely powerful prover VP ′ it is impossible to compute b nor any of the bi’s from (G0, G1),
(G′0, G

′
1) and all the (Gi0, G

i
1) because they are all isomorphic to G0 (and to G1). Then answer to

ci is also totally independent from b as bi, πi0 and πi1 are all chosen at random independently from
b. The same holds for ei, ρi0 and ρi1, as ei is really a one-time-pad encryption of b using bi as a key.
But since nothing was learned about the bi’s from (G0, G1), (G′0, G

′
1) and all the (Gi0, G

i
1)’s, b is

perfectly encrypted. Hence we conclude that when the time comes to compute b′ even an infinitely
P ′ cannot have better probability of guessing b than one half (that is if G0 ≈ G1).

After checking that the modified Protocol is still an Interactive Proof, let’s consider its Zero-
Knowledge aspect. Here is the simulator for the Protocol 3.6

28 CHAPTER 3. ZERO-KNOWLEDGE

1. Initialize V : copy fresh random bits to the verifier’s random tape and fill

up the Auxiliary-Input tape.

2. Run V until it sends (G1
0, G

1
1)

3. Run the Knowledge-Extractor on PV (b,Π0,Π1) to obtain (b,Π0,Π1).

4. Run the full protocol as honest P would until V waits for b′ and give b′ as
extracted in Step 3.

Simulator 3.8: Simulator for Graph Non-Isomorphism

This simulator is written with honest V in mind, but something could go wrong with this simulator
if V ′ is cheating. What if there is no bit b such that (G0, G1) ≈ (G′b, G

′
b̄
), or PV ′ does not know it.

The simulator will most likely discover this at step 3 because the knowledge extractor will fail to
obtain such values. There is, however, a small probability that VP accepts and then tells V ′ what
he wants to know. Although that probability is low, it is not zero. Hence, with very low probability,
V could abuse P and learn something which he is not supposed to.

How is the simulator suppose to deal with this? Well, after discovering that V ′ is trying to cheat,
S should simply try to finish the protocol (step 4) and hope to catch V ′ in the cheating. If V ′ is
lucky, that is, if V ′ successfully cheats every round, S will be forced to output ⊥ (that is S does
not output a View) or S should go ahead and compute b′ such that (G0, G1) ≈ (Gb′ , Gb′).

In the latter case, the simulator will run in expected polynomial time since for all runs where V ′

gets caught cheating the simulator runs in polynomial time (as long as V ′ runs in polynomial time),
but for the case in which V ′ can cheat without being caught by S, which happens with negligible
probability (that is lower than 2−k), then S will run in exponential time. If k ∈ ω(log t(n)), where n
is the number of vertices of G0 and G1 and computing the isomorphism between G0 and G′b belongs
to O(t(n)), then on average, S would still run in expected polynomial time because 2−kt(n) can be
made less than 1 for an appropriate choice of k (see the analysis of Protocol 2.1).

In the former case, were S outputs ⊥, the transcript where V ′ can cheat and P answers anyway
will never be produced, hence V IEW [(P, V ′(ℵ))(x)] and SV ′(ℵ)(x) will not be distributed identically.
Although the distance between the two distributions is negligible, this protocol would not qualify
as Zero-Knowledge according to Definition 5. But it is very close to satisfying it. In fact we say
that if the statistical distance between the two random variables is negligible, then the protocol is
called statistical Zero-Knowledge. Let us define this new concept more formally.

3.2 Flavours of Zero-Knowledge

Definition 6 (Ensemble) Let I be a countable set of indices. An Ensemble indexed by I is a
sequence of random variables indexed by elements of I.

Namely, if X = {Xi}i∈I , where each Xi is a random variable, then X is an ensemble.

Definition 7 (Absolute (Perfect) Indistinguishability) Let X and Y be two ensembles, then
X and Y are perfectly indistinguishable if and only if

∀h, ∀n,Pr[h(Xn) = 1] = Pr[h(Xn) = 1], (3.7)

where h is a predicate.

3.2. FLAVOURS OF ZERO-KNOWLEDGE 29

Definition 8 (Statistical Indistinguishability) Let X and Y be two ensembles, then X and Y
are statistically indistinguishable if and only if for all predicate h we have that

|Pr[h(Xn) = 1]− Pr[h(Yn) = 1]| 6 µ(n) (3.8)

where µ(n) is a negligible function.

Definition 9 (Computational Indistinguishability) Let X and Y be two ensembles, then X
and Y are computationally indistinguishable if and only if for all probabilistic polynomial time
algorithm A we have that

|Pr[A(Xn) = 1]− Pr[A(Yn) = 1]| 6 µ(n) (3.9)

where µ(n) is a negligible function.

To each of these notions of indistinguishability corresponds a notion of Zero-knowledge: Perfect
Zero-Knowledge, Statistical Zero-Knowledge and Computational Zero-Knowledge.

Going back to the Simulator for GNI, Simulator 3.8, we can conclude that Protocol 3.6 is a Statis-
tical Zero-Knowledge protocol as the two random variables V IEW [(P, V ′(ℵ))(x)] and SV ′(ℵ)(x) are
identical but on points were S outputs ⊥ which happens with negligible probability (see Problem
3.6).

If we consider n to be the number of vertices in G0 or G1, then if we fix k in protocol 3.6 to be in
Θ(n), then the probability of failure of S is no more than 2−k 6 1/poly(n) for all poly(n). And as
was already argued, if S computes the isomorphism, then the protocol is a Perfect Zero-Knowledge
protocol. The next Chapter will introduce Computational Zero-Knowledge protocols.

Problems

3.1 Prove formally that the simulator for Graph-Isomorphism is only expected-poly-time. Then fix the
simulator so that it always runs in polynomial time. What can you conclude from your new simulator?

3.2 Prove formally that protocol 3.6 is a statistical-Zero-Knowledge protocol.

3.3 1. Prove that the proof of knowledge of Protocol 3.6, which we revisit at the end of this chapter,
can be done in parallel. That is, if all pairs (Gi0, G

i
1), all the challenges and all replies are each

sent in one message so that the full proof of knowledge consists of three messages.

2. Is the Proof of knowledge still Zero-knowledge if done in parallel?

3. Prove that Protocol 3.6 is still zero-knowledge if the proof of knowledge is done in parallel.

3.4 Prove that for two ensemble Xn and Yn that have negligible distance for all n, Theorem ?? implies
that Xn and yn are statistically indistinguishable (Definition 8).

3.5 quadratic residu.

1.

3.6 Prove that D(V IEW [(P, V ′(ℵ))(x)], SV ′(ℵ)(x)) negligeable in the case were the Simulator outputs ⊥.
That is use convexity and the fact that the two random variables V IEW [(P, V ′(ℵ))(x)] and SV ′(ℵ)(x)
are the same with very high probability and very different with very low probability.

30 CHAPTER 3. ZERO-KNOWLEDGE

3.7 Let n be a product of two primes, and y be a quadratic non-residu modn. Provide a protocol which is
a Zero-Knowledge proof of Knowledge that a number x is a quadratic residu or a quadratic non-residu
modn. As your protocol is a proof of knowledge, it should not disclose whether x is or is not a residu,
but only prove that the prover knows a witness to one or the other (it should also be simulatable).

Note that this is proving something trivial and is yet a very powerful tool. Can you find a situation
where this could be used ?

3.8 We define COCKS as all the numbers n with two distinct prime factors p, q such that gcd(n, φ(n)) = 1,
where φ(·) is the euler totient function (so that n is invertible modulo φ(n) as required in Cocks’
variation of the RSA cryptosystem using the public exponent e = n).

COCKS = {n| gcd(n, φ(n)) = 1, n = pq, p 6= q, p and q are primes}.

Provide a Zero-Knowledge proof, with its simulator, to prove that a given integer n is a COCKS
number, under the assumption that the verifier already knows an arbitrary y ∈ QNRn[+1]1.

Hint:

Let WRSA (Weak-RSA) be the following language:

WRSA = {n|n = pαqβ , p 6= q, p and q are primes and α, β > 0}.

A**) Construct a zero-knowledge proof for the language WRSA, under the assumption
that the verifier already knows an arbitrary y ∈ QNRn[+1].

Sub-Hint: use Protocol 5.1. You may use the following theorem without proof:

Theorem 1 If n = pα1
1 pα2

2 . . . pαk

k (which is not a square) has exactly k distinct prime fac-
tors then exactly 2−k+1 of the elements in Z∗n with Jacobi symbol +1 are quadratic residues

mod n.

Let NphiN be the following language:

NphiN = {n|gcd(n, φ(n)) = 1}.

B) Construct a zero-knowledge proof for the language NphiN.

Sub-Hint: You may use the following theorem without proof:

Theorem 2 Let n be a composite odd number. If n belongs to NphiN, then every element
x ∈ Z∗n has an nth root mod n, i.e. there exists an element y such that x ≡ yn mod n. On
the contrary, if n is not in NphiN, then at most half the elements in Z∗n have an nth root

mod n.

C) Prove that we have
COCKS = WRSA ∩NphiN.

D) Combine your two zero-knowledge proofs for languages WRSA, and NphiN to prove
membership to COCKS in zero-knowledge, under the assumption that the verifier already
knows an arbitrary y ∈ QNRn[+1].

3.9 Following on the previous question, define the following set of numbers

BLUM = {n|n = pq, p ≡ q ≡ 3 mod 4, p 6= q are primes}.

Prove that the language BLUM has a statistical zero-knowledge proof.

Hint:

1This technicality is necessary because we currently do not know an efficient algorithm to find such a y from n
only.

3.2. FLAVOURS OF ZERO-KNOWLEDGE 31

Define the Weak-BLUM integers as

WBLUM = {n| − 1 ∈ QNRn[+1]}

Prove2 that BLUM = COCKS ∩ WBLUM.

3.10 Revisit question 2.4 and make sure your protocol is Zero-Knowledge.

3.11 Revisit question 2.5 and make sure your protocol is Zero-Knowledge.

2In fact this statement is not 100% correct because COCKS excludes numbers n = pq such that p|q− 1 or q|p− 1
while BLUM does not. However, in practice the difference is irrelevant.

32 CHAPTER 3. ZERO-KNOWLEDGE

Chapter 4

Bit-Commitment

A bit commitment scheme is a protocol between a sender S and a receiver R akin to locking a secret
in a locked box and giving the box without the key to the receiver in a first phase (called commit
Phase) and then in a second phase (called unveil Phase, or unveiling) to hand the key to the
receiver.

In a more schematic way:

S(b) R

Commit phase

computes

b = Com(b, key)

-
b

Unveil phase

-b, key
accept b⇐⇒
b = Com(b, key)

Protocol 4.1: General abstract bit-commitment

Here b is often called a blob. It is a string of bits which is essentially an encryption of b (albeit
with one more property that we shall see below). Note that in general there might be a more or
less long period of time between the commit phase and the unveil phase. The key variable is simply
some side data needed to do the commitment, usually some side randomness. There are two main
properties that a bit commitment should have :

First, a concealing property: the receiver is unable to tell whether the Sender committed to b or
b̄ until the unveil phase. This is essentially akin to a Semantically secure encryption of b.

Second, a binding property: that is the sender cannot change the bit b to b̄ between the reception
of b by R and the unveil phase. This is a property that encryption schemes do not usually have.
More mathematically:

Binding: {Com(b, key)}key ∩ {Com(b̄, key)}key = ∅
Concealing: PCom(b,key) =0 PCom(b̄,key),

(4.1)

33

34 CHAPTER 4. BIT-COMMITMENT

where PCom(b,key) is the distribution of the possible bit commitment for b using the side information
key and {Com(b, key)}key is simply the set of all possible bit-strings that can be commitment to b
indexed by the possible key’s.

As stated in (4.1), the binding and conceilling properties are mutually exclusive. How can two
random variables be equal (hence undistinguishable) if they are defined on orthogonal sets? We
shall water down the definition in order to reach it. Let us do that by looking at a few examples.

G0 6≈ G1
S(b) R

Commit phase

Chooses Π ∈R Sn
and compute

b = G = Π(Gb) -b

Unveil phase

-b,Π
accept b⇐⇒
b = Π(Gb)

Protocol 4.2: Bit commitment based on GNI

It is impossible for the sender to change b to b̄ as this would tantamount to finding a permutation
ρ that maps Π(Gb) to Gb̄, and we know that such a permutation does not exist. Or do we? How can
the receiver be sure of that? For that matter, the Sender would need to prove to him that indeed
the graphs are not isomorphic. We should thus revisit our protocol like this:

G0 6≈ G1
S(b) R

Bootstrap phase

-
ZK(G0 6≈ G1)

Commit phase

Chooses Π ∈R Sn
and compute

b = Π(Gb) -b

Unveil phase

-b,Π
accept b⇐⇒
b = Π(Gb)

Protocol 4.3: BC based on GNI with bootstrap

Now the receiver is convinced that the two graphs are not isomorphic, thus the receiver is con-
vinced that the binding property of the bit-commitment will hold. The concealing property of
this bit-commitment cannot be stronger than computational, as a more powerful receiver might
go ahead and compute an isomorphism between b and Gc for some c. But we assume R to be

4.1. COMPUTATIONALLY CONCEALING (CC)BC AND COMPUTATIONAL ZK 35

probabilistic-polynomial time, hence if the pair of graph (G0, G1) is well chosen, then the protocol
is computationally conceiling1. Note that to prove this, one needs to reduce the problem GNI to
an adversary that could break the concealing property.

4.1 Computationally Concealing (CC)BC and Computational ZK

Before going forward with commitment schemes, let us see how to use them in a cryptographic set-
ting. Here is a computational zero-knowledge protocol for an NP-Complete problem: 3-Coloring.

For this protocol, we extend the notion of a graph so that each vertex also holds a color. Let us
have 3 colors, red, green, blue: Col = {red, green, blue} = {00, 01, 10}, and 11 be an invalid color.

So the colored graph G is G = 〈{cv}v∈V , E〉 and for all u, v if (u, v) ∈ E then we have that cu 6= cv.
Hence a graph is now a vector of colors and an adjacency matrix. Let C = (c1, c2, . . . , cn) be the
vector of colors for the graph G. Here is the protocol:

G

P V

Π ∈R S3

Compute C ′ s.t.
c′i = Π(ci)

-
C ′

Chooses an edge
(i, j) ∈R E

� (i, j)

-
unveils ci and cj

accepts iff
ci 6= cj

Protocol 4.4: A Zero-Knowledge protocol for 3-Col

The first thing to mention is the notion of a commitment to such a large object as C ′. The vector

C ′ is composed of 2n bits if there are n vertices in the graph. Hence C ′ is really constituted of 2n

standard bit-commitments. Two bit-commitments per color. If c′i = 01, then c′i = 0 1 . From this,

we conclude that unveiling ci and cj is as easy as unveiling the four distinct bit-commitments.

So we only need to verify the completeness and soundness properties and then provide a simulator.

• if G ∈ 3-Col: Pr[(P, V)(G) = 1] = 1

• if G 6∈ 3-Col: Pr[(P ′, V)(G) = 1] 6 |E|−1
|E| = 1− 1

|E| .

If the graph is not 3-colorable, then it must be that for at least one edge, the vertices of that edge
are labeled with the same color. If V is honest, then V will choose the edge (vi, vj) at rancom,
hence V has probability at least 1/|E| of choosing an edge for which the coloring is not valid. If
there are more than one edge for which the coloring is invalid, then the probability can only be
higher. So we only need to amplify this probability in order to get a valid interactive proof.

1For as long as there exists a class of Graphs for which GI is hard.

36 CHAPTER 4. BIT-COMMITMENT

We know that |E| < n2, where n = |V |. If we repeat k times the protocol, where k = |E| ∈ O(n2)
we get that

Pr[(P ′, V)(G) = 1] 6

(
1− 1

|E|

)k
=

(
1− 1

k

)k
≤ 1

e
(4.2)

were we have used Formula 4. Hence we get an interactive proof. If we repeat a factor of n times
more this composite protocol, then we get a negligible probability of error, that is, if k ≥ n3 we
have

Pr[error] = Pr[(P ′, V)(G) = 1|G 6∈ 3-Col] 6
1

en
. (4.3)

We can now present a simulator and thus prove that the protocol is zero-knowledge.

1. Initialize V : copy fresh random bits to the verifier’s random tape and

fill-up the Auxiliary-Input tape.

2. Pick a random Π ∈R S3 and a random edge (i′, j′) ∈R E. Compute C ′′ s.t.
c′′i′ = Π(red), c′′j′ = Π(green), c′′k′ = Π(blue) for all k′ 6= i′, k′ 6= j′.

3. Commit to that vector by giving C ′′ to V .

4. Wait for V to answer with an edge (i, j)

5. (a) if i′ = i and j′ = j, then write transcript,

(b) else rewind to Step 2.

Simulator 4.5: Simulator for Graph 3-Coloring

By the properties of the bit commitment, a vector of colors generated by the simulator is com-
putationally indistinguishable from a vector generated by a genuine prover. Hence, V cannot see
a difference between the bogus vector to which S is committed and a real one as the Random

Variables C ′ and C ′′ are computationally indistinguishable. Hence, the forged transcript will be
computationally indistinguishable from a real one. The output of V being based on computationally
indistinguishable random variables, it must also be computationally indistinguishable between the
run with the real prover and the run with the simulator. Hence, we have a computational zero-
knowledge proof system for 3-Col that runs in expected polynomial time, as the probability that
i′, j′ is equal to i, j is 1/|E|, thus on average, S will run the simulation |E| times before being able

to write a triple
(
C ′′ , (i, j),unveils(c′′i , c

′′
j)
)

to the transcript ; |E| < n2, where n is the number of

vertices in the graph.

Note, that to any one with the capacity to break the concealing property of the bit-commitment, it
will be obvious that the simulator generated transcript is not a real one. The protocol would not
be zero-knowledge anymore, as that better-than-PPT-verifier could just read the coloring in the
prover’s commitment to C ′.

4.2 Computationally Binding BC

Let us now look at a different flavor of bit-commitments, that is a commitment which is perfectly
conceiling, but computationally binding.

4.3. CCBC FROM STANDARD CRYPTOGRAPHIC ASSUMPTIONS 37

G0 ≈ G1

S(b) R

Bootstrap phase

�
ZK(G0 ≈ G1)

Commit phase

Chooses Π ∈R Sn
and compute

b = Π(Gb)
-b

Unveil phase

-b,Π
accept b⇐⇒
b = Π(Gb)

Protocol 4.6: Bit commitment based on GI

This protocol looks like a mirror image of Protocol 4.3. The main difference is that the two public
graphs G0 and G1 are now isomorphic and that the commitment completely hides the bit b, whilst
the sender is only computationally bounded to his bit b. Protocols of this type and their applications
will be the subject of next chapter.

4.3 CCBC from standard Cryptographic Assumptions

Here is a more practical example (similar to Protocol 4.3) based on the problem of deciding quadratic
residuosity. It is more practical in the sense that S can peform the entire protocol in polynomial-
time and for practical sizes of the parameter n, the resulting Bit Commitment is currently hard to
break whereas in Protocol 4.3 it is not clear that we can find graphs for which GI is hard to decide...

For p and q congruent to 3 mod 4, we know that −1 is a quadratic non-residue with Jacobi symbol
+1 modulo n = pq and furthermore, computing square roots is easy for anyone who knows p and q
see Problem 3.5.

n
S(b) R

Bootstrap phase

-
ZK(∃p, q|n = pq and p ≡ q ≡ 3 mod 4)

Commit phase

Chooses m ∈R Z∗n
b ≡ (−1)bm2 mod n

-b

Unveil phase

-m, b

accept b⇐⇒
b = (−1)bm2 mod n

Protocol 4.7: Bit commitment based on Quadratic reduosity

38 CHAPTER 4. BIT-COMMITMENT

Because −1 is a non-residue with Jacobi symbol +1, we know that (−11)m2 is also a non-residue and
that (−10)m2 is a residue, both with Jacobi symbol +1. The two sets being disjoint, the protocol
is obviously statistically2 binding . As for the concealing property, distinguising between random
non-residues and residues is believed to be hard. Problem 4.3 asks you to prove formally that the
protocol is concealing.

4.4 Hard-core predicate

Definition 10 (Hard-Core predicate) A polynomial time computable predicate
g : {0, 1}∗ −→ {0, 1} is called a hard-core predicate for the function f if for every polynomial-time
probabilistic algorithm A′ and every sufficiently large n we have∣∣∣∣Prm

[
A′(f(m)) = g(m)

]
− 1

2

∣∣∣∣ 6 µ(n) (4.4)

where µ(·) is a negligible function and the m are chosen with uniform probability.

In layman’s terms, this says that it is hard on average for A′ to guess g(x) given f(x) (that is
without seeing x itself), if x is chosen uniformly in its domain. If the function f is injective, then
the existence of a hard-core predicate of f implies that f is a one-way function.

Note that this definition also implies that the bias of the predicate g cannot be to large, or

|Pr[g(Un) = 0]− Pr[g(Un) = 1| < µ′(n) (4.5)

for some other negligible function µ′(·).
Using hard-core predicate we can build perfectly binding and computationally concealing bit-
commitment. Here is a first example using RSA.

n, e
S(b) R

Bootstrap phase

-
ZK(n, e ∈ RSA)

Commit phase

Chooses m ∈R Z∗n s.t.

lsb(m) = b and

b = m′ ≡ me mod n

-b

Unveil phase

-m, b

accept b⇐⇒
b = me mod n

and b = lsb(m)

Protocol 4.8: Bit commitment based on RSA
2it is not perfect because with exponentially small probablity, an n of the wrong form may be accepted by the

verifier and -1 can be a quadratic residue. Consequently the commitment may not be binding at all.

4.4. HARD-CORE PREDICATE 39

Here lsb(m) is the least significant bit of the string m. Note that RSA is a one-way permutation
for all m ∈ Z∗n and that for RSA the predicate lsb(m) is considered intractable given me. Note also
that for this to work, p, q (where n = pq) and d , the decryption exponent, are to be kept secret
from the receiver. Only n and e are public, see problem ?? for the Bootstrap phase.

Here is a more reasonable example using the discrete logarithm.

p, g
S(b) R

Commit phase

Chooses x ∈R Z∗p s.t.

half(x) = b, computes

b = gx mod p

-b

Unveil phase

-x, b
accept b⇐⇒
b = gx mod p

and b = half(x)

Protocol 4.9: Bit commitment based on Discrete Logarithm

For Protocol 4.9, g is a generator for the multiplicative group Z∗p and the hard-core predicate half
is defined as follows:

half(x) =

{
0 if 1 6 x 6 p−1

2

1 if p−1
2 < x 6 p− 1,

which is intractable if the discrete log is a one way function.

The constructions of bit-commitment based on hard-core predicate we have seen so far use the
algebraic notions of the intractable problem used and the properties of the hard-core predicate
itself. But there is a way to construct bit-commitment schemes that will work for any hard-core
predicate and which does not rely on any algebraic structure for its security.

Let f : {0, 1}n −→ {0, 1}n be a one-way permutation and g a hard-core predicate of the permutation
f and let Dom(f) be the domain of the function f . Protocol 4.10 is a general bit-commitment scheme
that only uses the fact that f is a one-way permutation.

40 CHAPTER 4. BIT-COMMITMENT

f, g
S(b) R

Commit phase

Chooses x ∈R Dom(f)
Computes

b = (α, β) = (f(x), g(x)⊕ b)
-b = (α, β)

Unveil phase

-x, b

accepts b⇐⇒
α = f(x)

and β = g(x)⊕ b

Protocol 4.10: Bit commitment based on any hard-core predicate

Now is a good time to remind the reader of the definition of a one way function (or permutation).

Definition 11 (One-Way function) A function f : {0, 1}n −→ {0, 1}m is said to be one-way if
the two following conditions hold.

1. There exists an probabilistic-polynomial time algorithm A such that f(x) = A(x) for all x in
the Domain of the function f ,

2. For all probabilistic-polynomial time algorithm A′ we have

Prx[A′(f(x), 1n) ∈ f−1(f(x))] 6 µ(n), (4.6)

where x is chosen at random uniformly in the Domain of f and µ is a negligible function.

What if a one-way function does not have any obvious hard-core predicate. Does there exists a
general one that we could use for any given function? Well yes, as the next Theorem states. First
let x = x1x2 . . . xn and r = r1r2 . . . rn be two n-bit strings. Then we write the inner product between
the two strings as x� r ,

⊕
i xi ∧ ri = (

∑
i xi · ri) mod 2.

Theorem 3 (Goldreich-Levin) Let f be a one-way function with domain over n-bit strings and
let the function f ′ be defined by f ′(x, r) , (f(x), r), where |x| = |r|. Define the predicate g(x, r) ,
x� r, then g is a hard-core predicate of the function f ′.

Clearly, if f is a one-way function(permutation) then f ′ is a one-way function(permutation) too. Us-
ing this general hard-core predicate and a general one-way permutation, we can do bit-commitment.

4.5. PSEUDORANDOM GENERATORS 41

f
S(b) R

Commit phase

Chooses x ∈R Dom(f)

and r ∈ {0, 1}n s.t.
x� r = b and Computes

b = (α, β) = (f(x), r)

-b

Unveil phase

-x, b

accepts b⇐⇒
α = f(x)
and b = x� β

Protocol 4.11: Bit commitment based on Goldreich-Levin predicate

4.5 Pseudorandom Generators

Definition 12 (Pseudorandom Generators) An algorithm G : {0, 1}n −→ {0, 1}l(n), deter-
ministic polynomial time, where l(n) > n, is a pseudorandom generator if for every probabilistic
polynomial time algorithm A′ we have∣∣Prx[A′(G(x)) = 1]− Pry[A

′(y) = 1]
∣∣ < µ(n), (4.7)

where, x ∈R {0, 1}n, y ∈R {0, 1}l(n) and µ(n) is a negligible function.

The function l(·) is called the expansion factor of G.

Theorem 4 (Pseudorandom Generator amplification) Let G : {0, 1}n −→ {0, 1}n+1 be a
pseudo random generator and l(·), where l(n) > n, be a function, then a pseudorandom Generator
G′ : {0, 1}n −→ {0, 1}l(n) can be constructed from G.

Generator G′ will be constructed by by calling multiple times the generator G and then combining
all these calls output into one output for G′. Let G(si) = si+1||σi+1 where σi+1 is a one-bit string
and si and si+1 are n-bit strings. And concatenation of string is denoted by the the symbol ||. The
output of G′(s0) is then σ1||σ2|| . . . ||σl(n).

We can build a n + 1 pseudogenerator using the discrete logarithm. Let g be a generator of the
group, then G(s) = (gs mod p)||half(s). Hence, using the construction above, we can construct
a pseudorandom generator G′ based on G(s), G′(s0) = half(s0)||half(s1)|| . . . ||half(sl(n)−1), which
is just a succession of hard-core predicate. In fact, this construction using hard-core predicate
can always be done for any one way permutation. The following is a very important result about
pseudo-random generator.

Theorem 5 Pseudorandom generators exist if and only if one-way functions exist.

42 CHAPTER 4. BIT-COMMITMENT

Pseudorandom generators have many uses, in particular, one can build bit-commitment from them.
Here is the construction of a general bit-commitment from any pseudorandom generator whose
output length is three times as long as it input length: |G(s)| = 3|s|.

G
S(b) R

Commit phase

Chooses r ∈R {0, 1}3n

� r

Chooses s ∈R {0, 1}n

computes b = G(s)⊕ rb

-b

Unveil phase

-s, b

accepts b⇐⇒
b = G(s)⊕ rb

Protocol 4.12: Bit commitment based on Pseudorandom generator

Concealment follows from the property of pseudorandom generator, that is, G(s) is computationally
undistinguishable from the uniform distribution over 3n bits. The uniform distribution xored with
a fixed string r is itself the uniform distribution which is undistinguishable from G(s)⊕ r. Hence,
G(s) and G(s)⊕ r are indistinguishable, as indistinguishability is a transitive property, see Problem
5.10.

Binding comes from the fact that the image of G(s) is very sparce, or Pr[∃s′ s.t. G(s) = G(s′)⊕ r]
is low. It is possible (not necessarily easily) to cheat if and only if ∃s′ s.t. G(s) ⊕ G(s′) = r. The
number of pairs (s, s′) is easy to compute, it simply

(
2n

2

)
< 22n whilst the number of dirrent r is of

course 23n. Hence

Pr[R chooses r s.t. S cannot cheat] > 1− 22n−3n = 1− 2−n.

Hence binding is statistical and concealment is computational.

4.6 Bit-commitment equality

Until now, commitments have being considered as blobs that behave as locked-boxes. To do useful
computation, we need more properties. One important property will be to compare commitments
and prove that two commitments in fact hide the same value without revealing that value. Here is
a simple example based on Graph Non-Isomorphism.

4.6. BIT-COMMITMENT EQUALITY 43

G0 6≈ G1

S(b0, b1) R

Commit phase as in Protocol 4.3

Computes b0 ≈ Gb0 ,

Computes b1 ≈ Gb1
-

b0 , b1

Equality phase

Computes Π s.t.

b1 = Π(b0)
-Π

accepts equality

⇐⇒ b1 = Π(b0)

Protocol 4.13: Bit commitment Equality using GNI

If, in the bootstrap phase, the two graphs G0 and G1 are shown to be non isomophic, then if b0

and b1 are commitments to different bits, then no permutation Π mapping one to the other should
exist. Hence this protocol can succeed if and only if the two commitments are in fact to the same
bit: b0 = b1 and b0 ≈ b1 . Of course, if the receiver cannot distinguish between commitments to a
zero and commitments to a 1, then after seeing a permutation between the two commitments, the
receiver cannot tell whether they are two commitments to a zero or to a one (Otherwise, one could
build a concealing breaking adversary from such an adversary), see Problem 3.5

Here is a more practical example using quadratic non-residues.

y ∈ QNRn[+1]
S(b0, b1) R

Commit phase as in Protocol 4.7

Chooses r0, r1 ∈R Z∗n
Computes b0 ≡ yb0r2

0 mod n

Computes b1 ≡ yb1r2
1 mod n

-
b0 , b1

Equality phase

Computes

z ≡
√

b0 · b1
≡ yb1r0r1 mod n -z

accepts equality
⇐⇒
z2 ≡ b0 · b1 mod n

Protocol 4.14: Bit commitment Equality using QNR

If the two commitments b0 and b1 are not to the same bit, then the equality phase cannot be
won by S as a quadratic residue multiplied by a quadratic non-residue always gives a quadratic
non-residue. Hence this equality proof is correct. But this last observation gives us the means to
also easily prove inequality between b0 and b1 . Let the two commit phases in Protocol 4.15 be
as in Protocol 4.14.

44 CHAPTER 4. BIT-COMMITMENT

y ∈ QNRn[+1]
S(b0, b1) R

Inequality phase

Computes

z′ ≡
√
y · b0 · b1

≡ yr0r1 mod n
-z′

accepts equality
⇐⇒
z′2 ≡ y · b0 · b1 mod n

Protocol 4.15: Bit commitment Inequality using QNR

From here on, we shall denote a bit commitment scheme equiped with equality as b and the action

of proving equality between two such commitements b0 and b1 by b0 � b1 , for whatever

commitment scheme used. Now that we know how to prove equality between bit commitments, we
shall show how to compute boolean circuits on committed inputs. For example, here is an abstract
version of what we shall show for the AND gate.

L
S R

-
b0 , b1 , b2

-
b0 ∧ b1 � b2

Protocol 4.16: Abstract protocol for boolean circuit

We shall prove this using a truth table. For example, for the AND gate, we have the following table
T = (t0, t1, t2, t3)T , where ti = (ti,0, ti,1, ti,2):

t0 : 0 ∧ 0 = 0
t1 : 0 ∧ 1 = 0
t2 : 1 ∧ 0 = 0
t3 : 1 ∧ 1 = 1

To prove that the three bit-commitments obey some boolean gate relation, the sender will choose
a random permutation over S4 and permute the rows of T , that is Π(T) = Π(t0, t1, t2, t3) =
(t′0, t

′
1, t
′
2, t
′
3) = T ′, and send a committed permuted table to the receiver. The receiver will chose

a bit c at random and send it to the receiver who will then, depending on the bit c, either un-
veil the permuted table to show that he was committed to a valid table or prove that the three
bit-commitments are equal bit by bit to one of the rows of the table.

4.6. BIT-COMMITMENT EQUALITY 45

L, T

S R

Chooses Π ∈R S4

Computes T ′ = Π(T)
-

T ′

c ∈R {0, 1}
� c

if c = 0

-
Π, Unveils T ′

accepts iff
T ′ = Π(T)

if c = 1

-

i, b0, b1, b2 � t′i

Protocol 4.17: Zero-knowledge computation of a boolean gate

Here, in Protocol 4.17, b0, b1, b2 is the triplet of the three individual commitment for b0, b1 and b2;

t′i is also a triplet of commitments and b0, b1, b2 � t′i means running three times the equality

part of Protocol 4.14 for example with the pairs

(
b0 , t′i,0

)
,

(
b1 , t′i,1

)
and

(
b2 , t′i,2

)
,

which would reveal nothing but that the three commitments to b0, b1 and b2 do obey one of the
row of the table T ′.

If the sender S is commited to three bits which in fact obey a specific boolean gate relation repre-
sented by T , then the sender will always pass this protocol. What if S is cheating. Then, it means,
that for any valid T ′, there is no row in T ′ that can be proven equal to the three bits b0, b1 and
b2. Hence if the sender tries to cheat, then he has two choices: either he commits to a valid T ′ and
he gets caught with probability one half if the receiver ask to see the proof of equality (although
he will pass the test if c = 0 with probability one half); or he commits to a table T ′ which is not
a permutation of T , which in this case will let him pass successfully the test if c = 1, which also
happens with probability one half. In any case, if S is cheating, he will get caught with probability
one-half. So Protocol 4.17 is definitely a valid interactive proof to show that a triplet obeys a certain
boolean relationship defined by T .

We only need to provide a simulator in order to prove that this protocol is indeed Zero-knowledge.
The simulator for Protocol 4.17 ressembles Simulator 3.5: that is the simulator first choses to which
queries he wishes to answer and prepares for that eventuality. If the Receiver asks the question
for which the simulator was prepared, then the Simulator happily writes down the transcript oth-
erwise the simulator resets R and prepares for a new question. The idea being that from the bit

commitments T ′j and b0b1b2 the receiver does not know that these do not constitute a valid

IP system; the real bits being hidden by the commitment protocol, the Receiver’s choice cannot be
biased toward detecting that the simulator is cheating. Hence, the probability that the simulator
can cheat and can write a transcript is about one half. Note, that in a larger protocol, step one
of Simulator 4.6 would be different; it would probably not exists as the receiver would have already

been initialized and the values b0 , b1 and b2 , as table T , would already have been fixed.

This protocol can implement any boolean gate (¬,∧,∨,⊕, . . .), as table T only has to be correctly
defined and the protocol is easily adapted to unary gates.

46 CHAPTER 4. BIT-COMMITMENT

1. Copy fresh random bits to the receiver’s random tape, fill up the

Auxiliary-Input tape and fix table T and commitments b0 , b1 and b2 .

2. Pick a bit c′ ∈R {0, 1} and permutation Π ∈R S4.

3. (a) If c′ = 0 compute T ′ = Π(T)

(b) If c′ = 1 compute T ′ = Π(T ′′), where T ′′ is the table T with the row t0
changed to (b0, b1, b2)

4. Run the receiver R on input T ′ and wait for his reply c.

5. (a) If c = c′, then finish simulation

(b) if c 6= c′, then rewind R as if nothing had happened and go back to step 2

Simulator 4.18: Simulator for table T

4.6.1 Rudich’s Trick

What if the bit-commitment protocol we wish to use does not naturally provide an easy way to prove
equality between two commitments? Think of the bit commitment based on the hard-core predicate
”half” and the discrete logarithm problem. How can one easily compare two bit-commitments
based on ”half”? In general, there are no theoretical arguments arguing for the existence of such a
procedure for every bit-commitment protocol. Yet, we can do something thanks to Rudich’s trick.

The trick is to represent a commitment to a bit b by using two commitments to random bits b0 and

b1 such that b = b0 ⊕ b1. Hence a rudich’s commitment to b, which we shall denote b , is simply

the pair b =
(
b0 , b1

)
and the commitment flavor used is whatever commitment scheme that is

available. The next protocol allows the sender to prove to the receiver that two commitments b

and c are equal if ω is zero and unequal if ω is one.

b , c and ω

S R

Computes
d = b0 ⊕ c0

-
d

e ∈R {0, 1}
� e

-
Unveils be and ce

accepts iff
be ⊕ ce = d⊕ (e ∧ ω)

Protocol 4.19: Destructive equality for Rudich’s commitment

The following table proves that protocol 4.19 is complete and has soundness one half.

4.6. BIT-COMMITMENT EQUALITY 47

b = c b 6= c

b0 b1 c0 c1 b0 ⊕ c0 b1 ⊕ c1 b0 b1 c0 c1 b0 ⊕ c0 b1 ⊕ c1

0 0 0 0 0 0 0 0 0 1 0 1

0 0 1 1 1 1 0 0 1 0 1 0

0 1 0 1 0 0 0 1 0 0 0 1

0 1 1 0 1 1 0 1 1 1 1 0

Table 4.1: Visual proof of correctness

Of course, Table 4.1 represents only half of the possibilities that b and c can take, but the second
half is obtained by taking the complement of every bit bi and ci in the table. From this table we

conclude that if S is honest and that b is a commitment to the same value as c , then R will

always accept at the end. Whilst if b and c are not commitments to the same value, then

whatever value d is sent in the first message, with probability one half, S will be asked to open a
pair of value that do not xor to it.

But this protocol has a slight problem, it has destroyed the commitments. Hence we know that

b and c were commitments to the same value, but S cannot use them any more (See Problem

4.10). We need to be a little more creative. Consider the next protocol, Protocol 4.21 in which two
new commitments are introduced and one pair shall survive at the end.

b and c

S R

Computes

b′ , c′

for b = b′

and c = c′

-
b′ , c′

e ∈R {0, 1, 2, 3}
� e

if e = 0

-
b � c

if successfull

keep b′ and c′

if e = 1

-
b � c′

if successful

keep b′ and c

if e = 2

-
b′ � c

if successfull

keep b and c′

if e = 3

-
b′ � c′

if successfull

keep b and c

Protocol 4.21: Non-destructive equality for Rudich’s commitment

48 CHAPTER 4. BIT-COMMITMENT

Here, in protocol 4.21, by the equation b � c we mean that S proves to R using protocol

4.19 that the commitments b and c are equal. By ”if succesfull keep b′ and c′ ” we

mean that the new representations for b and c are respectively b′ and c′ as the other bit

commitments might have been destroyed.

It is easy to observe that if S is honest, then S will pass this protocol with probability one and
will still be comitted to values which are equal to the original values. Furthermore, the receiver

will be convinced of their equality. But if S is cheating and b 6= c then a finite case analysis

proves that for at least two values of e, the prover cannot convince the verifier with probability one
(remember that the the rudich’s commitments always define a value). The soundness is at most
one half. The protocol is completely symmetric and can easily be transformed into an unequality

protocol with equivalent soundness. If we wish to have better soundness, we can use many b and

test them all3.

ADD THE ANALYSIS THAT B=C but B’6=C’

4.6.2 Example

Let us use that equality protocol to do 3-Col again. No one would ever implement this protocol,
but it cleanly uses together many concepts that we have learnt. We shall now use the symbol � to
mean equality as implemented by Protocol 4.21.

As an example, consider a new version or protocol 4.4. Let T be the table
[
R R G G B B
G B R B G R

]T
. Hence

every row of T is a pair of colors which are different : (R,G) or (B,G) for example and each color
is itself encoded using 2 bits.

G

P V

-
C

Repeat for all edges (i, j) ∈ E
ρij ∈R S6

Computes Tij = ρij(T)
-

Tij

dij ∈R {0, 1}
� dij

if dij = 0

-
ρij and unveils Tij

Accepts iff

ρij(T)↔ Tij
if dij = 1

-

k and ci, cj � Tijk

Accepts iif
every step ij
was accepted.

Protocol 4.22: A Zero-Knowledge protocol for 3-Col

3the reader may notice that it is possible to commit to inconsistant values with some pairs XORing to zero and
some pairs XORing to one. Such commitments will be discarded automatically if ever unveilled, and thus do not
constitute any advantage over valid ones. See problem 4.12.

4.7. MA, AM AND IP IN ZK 49

In Protocol 4.22 we use protocol 4.17 with table T and pairs of vertices color comming from the
vector of color C in order to prove color difference between vertices. Here, the symbol a ↔ b means
that once unveiled, the commitment a is accepted as a valid commitment to b. The prover first
commits to a vector of colors C. Then for every edge (i, j) the prover commits to a row permutation
of the table T . Then either the provers opens that table to show that it is correctly constructed
or the prover provides k, a row in the table Tij and shows equality of the colors ci and cj with the
colors contained in the table thereby proving that ci is not the same color as cj and this for every
edge.

Completeness is obvious for any one who knows a coloring C for the graph G. Soundness is more

tricky, but still a finite case analysis can be done. If two vertices have the same color in C , let us

say vertex ci is equal to vertex cj , then the prover has to cheat at least once somewhere. They are
two cases, either nor ci nor cj where involved in the previous steps of the protocol or one of them
(possibly both) were involved in comparison with other edges cl for some l.

Let us first assume none of them were involved in a previous steps. Then either the table Tij to
which P comits is valid or it is not. If it is not, then P gets caught with probability one half. If
the table is valid, then for all rows in the table, there is at least one difference between (ci, cj) and
Tijk and the prover will be caught with probability one fourth. So if ci and cj where not involved
before, the prover can cheat with probability at most seven height.

If either one of is involved before, the cheater can try to change the future value of ci for example.
Assume ci is compared to ck before and that ci 6= ck. Then as protocol 4.21 allows, the prover
can enter the protocol with two values that are distinct but submits new commitments to c′i and
c′k which are not respectively equal to ci and ck. Then, as at least one bit of c′i is different from
its counterpart in ci, then the prover might get caught with probability one quarter. Hence, if the
Prover tries to change the value to which he is committed while still proving the unequality between

ci and ck , the prover will be caught with probability at least one height. If the prover succeeds

in changing his values, then, down the road, he will not have to cheat anymore. Whatever happens,
if C is not a valid coloring, the Prover needs to cheat at least once and will be caught doing so with
probability at least one height. This probability is a constant, hence the full protocol 4.22 can be
amplified by standard repetition.

We shall not provide a full simulator but just remark that the simulator can cheat by choosing a
table T ′ that is either equal to T or equal to T with one row replaced so that a relation between
ci and cj can be proven (if both ci and cj are equal to R for example, then a row of the table is
simply (RR)). Then, if that choice is equal to whatever V ′ wants to see, the simulator can complete
simulation for the pair (ci, cj) of vertices; otherwise, he can just start over for that pair.

4.7 MA, AM and IP in ZK

In this section, we present a major result of complexity theory : PSPACE = ZKIP. We shall
accomplish this using a result from chapter one : PSAPCE = IP = MA[poly], where poly is a
polynomial in the size of the input. We shall do here only a sub-case, that is : MA[2] ∈ ZKIP and
leave the general result as an exercise.

If a language L ∈ MA, then there exists a poly-time Arthur that will accept value x ∈ L with
probability at least 2/3 when given an appropriate witness by Merlin, and that will reject value
x 6∈ L with probability at least 2/3 for whatever witness Merlin uses.

50 CHAPTER 4. BIT-COMMITMENT

We shall assume that the provided bit commitment scheme is equipped with an equality protocol.We
have a few things to prove.

Here is a general MA protocol proving that x belongs to a fixed language L:

x

M A

-
m

c ∈R {0, 1}n
� c

accepts iff
Va(x,m, c) = 1

Protocol 4.23: Merlin-Arthur protocol

In Protocol 4.23, Va is a fixed deterministic validation circuit where the length (n) of the randomness
c is polynomial in the length of the input |x|. Here is a zero-knowledge version of that protocol with
some obvious details (by now, you should be comfortable with them) not shown.

x ∈ L

P (m) V

Let r ∈R {0, 1}n

-
m , r

s ∈R {0, 1}n
� s

Let c = r ⊕ s, and
let a = Va(x,m, c)

-
c , a

-

c � r ⊕ s

-

Va
(
x, m , c

)
� a

-
Unveils a

accepts iff

a ↔ 1

Protocol 4.24: Wrong ZK version of Merlin-Arthur protocol

Protocol 4.24 uses the following protocol named coin tossing in a well implicitly:

P V

r ∈R {0, 1}
-

r

s ∈R {0, 1}
� s

b = r ⊕ s

-
b , b � r ⊕ s

Protocol 4.25: Coin tossing in a well

4.7. MA, AM AND IP IN ZK 51

In Protocol 4.25, the bit b is a fair coin if at least one of the parties is honest. Let V be honest,
then whatever distribution used by P to choose its bit r, since the bit s is perfectly random, the
bit b will also be. Note that if we use a perfectly concealing bit commitment scheme to commit to

r, the choice of s cannot depend on the value of r. Also, since r is transmitted before s is, it

must be that r is independent of s. Hence, if P his honest, then the bit b will also be uniformly
distributed. Hence the bit b is fair and unbiased. We qualify the primitive of “in a well” because
the coin is tossed but one party does not know the outcome of the tossing. The analogy is that if
you flip an actual coin in a well, you must get very close to the well to actually find out about the
outcome.

Protocol 4.24 would definitely be an IP protocol and its completeness and soundness would be
essentially the same as the MA protocol. We would need to amplify this protocol in order to get
good soundness. But this would let V learn a vector of answers ~a = (a0, a1, . . . , ak). Although this
looks harmless consider the following scenario. Let x have two witnesses and let the soundness vary
with the witness. For example the protocol has soundness 3/4 with one witness and 7/8 with the
second witness. After k repetitions, it would be possible with good probability (by the chernoff
bound), to distinguish between the two witnesses. Intuitively, this is not a desirable property of a
ZK protocol. In fact no simulator would be able to simulate that without the witness and without
intimate knowledge of the witnesses of a given x. Remember, a simulator has to simulate for all
members of the language.

This problem is solved by not revealing the individual ai’s as below:

x

P (m) V

Let ~r ∈R {0, 1}nk and U = 1

-
U , m , ~r

~s ∈R {0, 1}nk
� ~s

Let ~c = ~r ⊕ ~s, and
∀i, 0 6 i < k

let ai = Va(x,m, ci)

-
~c , ~a

∀i, 0 6 i < k

-

ci � ri ⊕ si

-

Va

(
x, m , ci

)
� ai

-

Maj

(
~a

)
� U

-
Unveils U

accepts iff

U ↔ 1

Protocol 4.26: ZK version of Merlin-Arthur protocol

In this protocol, Maj is a Majority circuit. If ~a is a commitment to a string (a0, a1, . . . , ak−1),

then Maj

(
~a

)
= 1 if and only if at least half the bits of ~a are ones. The strings ~r and ~s are

parsed as k strings, ri and si respectively, of n bits each.

52 CHAPTER 4. BIT-COMMITMENT

In Protocol 4.26, the step Va

(
x, m , ci

)
� ai means that P and V evaluate gate by gate in

zero-knowledge the circuit representing Va. Of course, P and V have to agree on a sequence of gates
and their inputs, but this can be done before the protocol starts. We have seen in Section 4.6 how
to compute a gate over commitments using a table; using the trick described above, this can even
be done with random strings. Since we repeat this k times, this is in fact equivalent to running the
circuit Va k times using k independent random strings. Since Protocol 4.23 was in MA, we know
that Protocol 4.23 has soundness at most two thirds. Hence running this k time should accept
2k/3 times on average and if k is large enough, the probability that more than half the runs do not

accept is negligible (by the Chernoff bound). Note that the ai are never unveiled. Protocol 4.26

runs a majority circuit in zero-knowledge on the string ~a which is in fact the k results from the k
invocations of Va. As just argued, this circuit should output 1 with overwhelming probability.

We can now argue that Protocol 4.26 is zero-knowledge.

Completeness:
If P is honest and receives a valid witness m, then P can follow the true protocol. For every i,
the probability that Va (x,m, ci) = 1, is at least two thirds. Therefore, as argued before, with
overwhelming probability the evaluation of the Maj circuit will yield a commitment to a 1 which
once opened will still be a one. Therefore the Verifier will accept with overwhelming probability.

Soundness:
If the prover is cheating, then he needs to either cheat when he opens a commitment to the 1 at
the end, cheat when he proves the equality between two values, or cheat when he computes a gate.
He needs to cheat at least once. But since the equality procedure has an overwhelming probability
of catching a cheating prover, this cannot be done reliably. If he tries to cheat a gate computation,
he will get caught again with overwhelming probability as repeating k′ times Protocol 4.17 ensures

overwhelming soundness. Finally, if the prover could open a 1 whilst the commitment U was in

fact to a zero and this with non-negligible probability, this would contradict the fact that the bit
commitment is binding. The compounded probability of cheating is bounded above by the sum,
hence the protocol is sound.

Simulator: We shall give a more hand-wavy simulator this time as the Protocol is already high
level. The Simulator will follow the protocol as P would, only with a bogus m as a witness. Since
the bit-commitment is computationally concealing, this ensures the forged transcript is distributed
in an undistinguishable way from the real one. The simulator will simulate honestly until the last

gate of the Maj circuit. Let the last gate be q · t = U . The simulator did commit to a one

with U . The values q and t have been honestly computed as P would have. Hence until now,

everything is distributed the same way. But since S has no witness, it must be, that with high
probability, q · t 6= 1 (note that if q · t = 1, then the simulator does not even have to cheat and can
in fact just finish the computation). Then S just needs to cheat this last gate. We know how to
do that. Every turn, the simulator chooses to either commit to a valid table T or to a bad table

T ′ and then respectively open T or prove equality between (q , t , U) and one row of the

bad table T ′. We have already seen that this protocol is zero-knowledge. As the bit-commitements
are perfectly hiding, the forged transcript will be distributed just as the real transcript is, albeit

proving something false this time. And then S just unveils U which is an honest commitment to

a one showing that A would accept M ’s proof.

4.7. MA, AM AND IP IN ZK 53

Every single step of the protocol and of the simulation can be done in polynomial time. Hence this
is a valid ZK protocol.

For languages L in AM we proceed exactly as above except that P and V jointly produce the random

strings ci before P commits to his favorite witnesses m1, ...,mk. In the case of AM, Merlin is

allowed to choose his witnesses as a function of ci (but not in MA). At the end of this process,

V should believe that the committed output bit ai is indeed the output of Va

(
x, mi , ci

)
.

P unveils U = Maj

(
~a

)
and V accepts iff U ↔ 1.

Finally, for languages L ∈ IP=PSPACE, the same technique is used on the AM[poly] protocol for
L. We proceed exactly as above except that there are now polynomially many (`) rounds of joint
creation of randomness and commitments to witnesses. At the end of this process, V should believe

that the committed output bit ai is indeed the output of Va

(
x, m1

i , c1
i , ..., m`

i , c`i

)
. P

unveils U = Maj

(
~a

)
and V accepts iff U ↔ 1.

Problems

4.1 Prove that Protocol 4.3 is computationally conceiling. Assume that an adversary A to the concealing
property of the bit-commitment scheme exists. Use this adversary as a prover to the GNI problem.
You may asume A has a reset button.

4.2 Consider the following alternative simulator to 4.5 :

1. Initialize V : copy fresh random bits to the verifier’s random tape and

fill-up the Auxiliary-Input tape.

2. Pick a random vector of colors C ′′.

3. Commit to that vector by giving C ′′ to V .

4. Wait for V to answer with an edge (i, j)

5. (a) if c′′i = c′′j, rewind to Step 2

(b) if c′′i 6= c′′j, write transcript.

Simulator 4.27: Alternate Simulator for Graph 3-Coloring

Show that the above simulator succeeds with probability at least 2/3 and thus the expected number
of iterations before the simulator writes a transcript is only 3/2.

4.3 Prove formally that Protocol 4.7 is computationally concealing.

4.4 Provide a computational zero-knowledge proof for the Hamiltonian circuit problem under suitable
computational assumption. (A directed graph G is Hamiltonian if its edges contain a circuit visiting
each vertex exactly one).

4.5 Prove that if a function f is injective, then the existence of a hard-core predicate of f implies that f
is a one-way function. Start by proving that this does not have to hold for functions g which are not
injective.

54 CHAPTER 4. BIT-COMMITMENT

4.6 Prove equation (4.5).

4.7 Prove that Protocol 4.13 for equality is secure by reducing its security to the security of concealing
property of the bit-commitment protocol.

4.8 Devise an computationally secure unbiased protocol to flip a random coin between two parties. Use
this chapter’s material.

4.9 Give a computational zero-knowledge interactive proof for the Clique problem under suitable compu-
tational assumption.

4.10 In Protocol 4.19 one pair of bit-commitments is destroyed, lets called it

(
bi , ci

)
. Show how the

pair

(
b1−i , c1−i

)
can still be useful and explain how one needs to modify larger protocols in

order for your trick to work in them.

4.11 Provide a protocol akin to Protocol 4.21 but for inequality. Prove that it is sound.

4.12 Provide a simple protocol to autotest a Rudich’s Commitment : a procedure by which a multiple
Rudich’s commitment via k pairs (supposed to all XOR to a single bit b) can be tested for concistancy,
which succeeds only if the vast majority of the pairs really XOR to a single bit b. Make your procedure
non-destructive as in Protocol 4.21.

4.13 In protocol 4.26, is it important that the verifier does not learn ri ⊕ si ? Explain.

4.7. MA, AM AND IP IN ZK 55

Problems

4.1 Prove that Protocol 4.3 is computationally conceiling. Assume that an adversary A to the concealing
property of the bit-commitment scheme exists. Use this adversary as a prover to the GNI problem.
You may asume A has a reset button.

4.2 Consider the following alternative simulator to 4.5 :

1. Initialize V : copy fresh random bits to the verifier’s random tape and

fill-up the Auxiliary-Input tape.

2. Pick a random vector of colors C ′′.

3. Commit to that vector by giving C ′′ to V .

4. Wait for V to answer with an edge (i, j)

5. (a) if c′′i = c′′j, rewind to Step 2

(b) if c′′i 6= c′′j, write transcript.

Simulator 4.28: Alternate Simulator for Graph 3-Coloring

Show that the above simulator succeeds with probability at least 2/3 and thus the expected number
of iterations before the simulator writes a transcript is only 3/2.

4.3 Prove formally that Protocol 4.7 is computationally concealing.

4.4 Provide a computational zero-knowledge proof for the Hamiltonian circuit problem under suitable
computational assumption. (A directed graph G is Hamiltonian if its edges contain a circuit visiting
each vertex exactly one).

4.5 Prove that if a function f is injective, then the existence of a hard-core predicate of f implies that f
is a one-way function. Start by proving that this does not have to hold for functions g which are not
injective.

4.6 Prove equation (4.5).

4.7 Prove that Protocol 4.13 for equality is secure by reducing its security to the security of concealing
property of the bit-commitment protocol.

4.8 Devise an computationally secure unbiased protocol to flip a random coin between two parties. Use
this chapter’s material.

4.9 Give a computational zero-knowledge interactive proof for the Clique problem under suitable compu-
tational assumption.

4.10 In Protocol 4.19 one pair of bit-commitments is destroyed, lets called it

(
bi , ci

)
. Show how the

pair

(
b1−i , c1−i

)
can still be useful and explain how one needs to modify larger protocols in

order for your trick to work in them.

4.11 Provide a protocol akin to Protocol 4.21 but for inequality. Prove that it is sound.

4.12 Provide a simple protocol to autotest a Rudich’s Commitment : a procedure by which a multiple
Rudich’s commitment via k pairs (supposed to all XOR to a single bit b) can be tested for concistancy,
which succeeds only if the vast majority of the pairs really XOR to a single bit b. Make your procedure
non-destructive as in Protocol 4.21.

4.13 In protocol 4.26, is it important that the verifier does not learn ri ⊕ si ? Explain.

56 CHAPTER 4. BIT-COMMITMENT

Chapter 5

Interactive Arguments

Until now, we have presented protocols that are secure even if the prover or the sender are infinitely
powerful. However powerful is the prover, he cannot cheat and prove as isomorphic two graphs
that are in fact not isomorphic. The prover could be lucky, but the probability that he is lucky
cannot really be improved by any devious strategy. Hence the verifier is pretty convinced that
the prover is not lying. In this chapter, we shall show how to build protocol which are secure
against polynomial-time prover only. That is, any too powerful prover would be able to abuse
the verifier and convince him of something false, i.e. break soundness. However, as we will see in
this chapter, that this compromise allows to improve the zero-knowledge aspect and exhibit perfect
zero-knowledge arguments for all languages in NP and even MA.

5.1 Perfectly Concealing Bit-Commitments

Upto this point, bit-commitments have been Perfectly, or statistically, binding for the sender and
computationally concealing. That is for any prover, however powerful, the committed value cannot
be changed when unveiling, whilst for all polynomial time verifiers, the committed value is unknown.

n
Sb R

Bootstrap phase

Chooses x ∈R Z∗n and

sets z = x2 mod n�
z

�
ZK(z ∈ QRn)

Commit phase

Chooses r ∈R Z∗n and

sets b = r2zb mod n
-b

Unveil phase

-b, r
accepts b ⇐⇒
b = r2zb mod n

Protocol 5.1: Bit commitment based on Factoring

57

58 CHAPTER 5. INTERACTIVE ARGUMENTS

We shall now introduce a couple of commitment schemes which have the inverse properties: binding
will be computational and concealing will be perfect or statistical. A first example was shown in
Protocol 4.6 which is using Graph-isomorphism. As the sender is not aware of the permutation
mapping G0 to G1 and should not be able to compute it in polynomial time, the protocol should
be computationally binding. But as the two graphs are isomorphic (the zero-knowledge proof made
sure of that), the receiver has no clue what the committed bit can be. Hence the protocol is
statistically concealing. Protocol 5.1 is an example based on factoring.

Observe that the bootstrap phase could also have a step to convince the Sender that n is an RSA
integer, or has exactly two factors (see Exercise ?? in Chapter 4); this all depends on were n comes
from. In this type of bit commitments, since the Receiver is choosing the public parameters, it is
not in his interest to choose them weak. Observe a few things. First for all r there exists an r′ such
that r2 = r′2z mod n, hence this protocol is perfectly concealing. Second, to cheat, S really needs to
compute a square root mod n. Finally, it comes with equality. Let b = r2zb and c = s2zc. Then

b · c , (rs)2zb+c. Hence if b = c = 0, we can prove equality by returning

√
b · c = rs mod n, if

b = c = 1, we can prove equality by returning

√
b · c = rsz mod n. Inequality can be proven by

returning

√
z · b · c = rsz mod n.

If we wish for more efficiency, a parallel version can be used.

n
S(b1,b2,...,bk) R

Bootstrap phase

∀i s.t. 1 6 i 6 k
Chooses xi ∈R Z∗n
Sets zi = x2

i mod n
�

(z1, z2, . . . , zk)

�
∀i, ZK(zi ∈ QRn)

Commit phase

Chooses r ∈R Z∗n
Sets ~b = r2zb11 z

b2
2 . . . zbkk mod n

-
~b

Unveil phase

-(b1, b2,bk), r
accepts (b1, b2, . . . , bk) ⇐⇒
~b = r2zb11 z

b2
2 . . . zbkk mod n

Protocol 5.2: Parallel bit commitment based on Factoring

Let us present a last example based on the discrete logarithm problem. Let p be a Sophie Germain
prime (strong prime) and let g be a generator of Z∗p and α be equal to gs mod p for some s.

5.2. ZERO-KNOWLEDGE INTERACTIVE ARGUMENTS 59

Sb R

Bootstrap phase

Chooses p = 2p′ + 1, s ∈R Zp′
and a generator g of order p′

Sets α = gs mod p
�

p, g, α

Commit phase

Chooses r ∈R Z∗p
Sets b = grαb mod p

-b

Unveil phase

-b, r
accepts b ⇐⇒
b = grαb mod p

Protocol 5.3: Bit commitment based on Discrete Logarithm

Now Protocol 5.3 is obviously concealing, since b is just a random element in Z∗p which distribution
does not depend on whether b is zero or one. As for binding, consider what is needed to unveil both
ways, values b ≡ gr0α0 mod p and b ≡ gr1α1 mod p, then α ≡ gr0−r1 mod p, hence cheating is
akin to computing the discrete logarithm of α. Note that this protocol can easily be made parallel.

5.2 Zero-Knowledge Interactive Arguments

What would happens if we were to use a perfectly concealing bit-commitment scheme in a Zero-
Knowledge protocol for 3-Col for example. Obviously, the protocol would not be sound anymore
as a very powerful prover could cheat and change his commitments at will. But if we were to
define interactive proofs for polynomial-time provers only, we would still get something convincing,
not as convincing as interactive proofs but still convincing. Here is the definition of Interactive
Arguments or also sometimes called computationally sound interactive proofs:

Definition 13 (Interactive Argument) A pair of Turing machines P and V , both probabilistic-
polynomial time, constitute an Interactive Argument system for the language L if the interaction
between the two machines has the two following properties:

Completeness: for all x ∈ L

Pr[V accepts x after interacting with P] >
2

3
; (5.1)

Soundness: if for all x 6∈ L and all PPT P ′

Pr[V accepts x after interacting with P ′] 6
1

3
. (5.2)

Here is an interactive Argument protocol for the Hamiltonian cycle problem.

60 CHAPTER 5. INTERACTIVE ARGUMENTS

G

P (ρ) V

Π ∈R Sn
S = Π(S0)

-
S

c ∈R {0, 1}
� c

if c = 0
-

unveils S

accepts iff

S ↔ a cycle
if c = 1
σ = Π ◦ ρ

-
σ, unveils S(σ(G))

accepts iff

S(σ(G)) ↔M(0)

Protocol 5.4: A Zero-Knowledge protocol for Hamiltonian cycle

Here, S0 is a fixed adjacency matrix with a fixed cycle and no other edge; that matrix is also known
from V . The permutation ρ maps the hamiltonian cycle contained in G to the one contained in
S0; which means that σ maps the Hamiltonian cycle in G to the one in S. The notation S(σ(G))
means that only the entries which encodes non-edges of σ(G), which we denote by σ(G). Of course
a non-edge is a pair of vertex (i, j) such that (i, j) 6∈ E. Finally, M(0) is the zero matrix.1 Therefore

“unveils S(σ(G)) ” means that for all non-edges (i, j) of σ(G), the prover opens potential edge

(i, j) in S and the verifier accepts if and only if (i, j) is not an edge in S.

Could we do parallel repetition of the previous protocol? Let’s try the obvious thing.

G

P V

∀i, 1 6 i 6 k
Πi ∈R Sn
Si = Πi(S0)

-

(
S1, . . . , Sk

)
c1, . . . , ck ∈R {0, 1}

� (c1, . . . , ck)

-(A1, . . . , Ak)
accepts iff
∀i, 1 6 i 6 k
Si ↔ a cycle

or

Si(σi(G)) ↔M(0)

Protocol 5.5: A parallel Interactive Argument for Hamiltonian cycle

In protocol 5.5, Ai is the answer to challenge ci: that is, either Ai is “unveils Si ” if ci is zero or

Ai is the pair “σi,unveils Si(σi(G)) ” if ci = 1 and σi = Πi ◦ ρ. Protocol 5.5 is three messages

constitued each of a k-tuple whilst protocol 5.4 is three mesages each of only one singlet and it
has to be repeated k times in order to get negligeable soundness. Hence the parallel version of

1 See problem 5.4

5.2. ZERO-KNOWLEDGE INTERACTIVE ARGUMENTS 61

the interactive argument is much more efficient in the number of rounds, and thus, the number of
messages while keeping the computation requirement at the same complexity.

As for the zero-knowledge property of protocol 5.5 there is a catch. We can easily build a simulator
for protocol 5.5 using the standard trick of just hoping that the verifier chooses the question for which
the simulator prepared an answer. But for protocol 5.5 this cannot work as the probability that
the verifier asks the question vector for which the simulator prepared an answer is negligible. Even

worse, the verifier could use a cryptographic hash function h to hash the vector
(
S0 , . . . Sk

)
to a

vector of bits (c1, . . . , ck). This is no proof that we cannot simulate protocol 5.5 but it it certainly
good intuition to why it might be hard or impossible.

There are two easy solutions to this conundrum.

A first solution is to modify the bit commitment: use a perfectly concealing bit commitment with
a twist. Let us revisit the bootstrap phase of protocol 5.3.

Sb R

Bootstrap phase

Chooses p = 2p′ + 1, s ∈R Zp′
and a generator g of order p′

Sets α = gs mod p
�

p, g, α

�
PK(knows s such that g ≡ αs (mod p))

Commit phase

Chooses r ∈R Z∗p
Sets b = grαb mod p

-b

Unveil phase

-b, r
accepts b
⇐⇒
b = grαb mod p

Protocol 5.6: Bit commitment based on Discrete Logarithm with a twist

In this protocol, the fact that the Receiver proves that he knows s such that g ≡ αs (mod p) brings
nothing to the sender in the Interactive Argument aspects, as long as the proof of knowledge is
sufficiently discreet. As discussed earlier, zero-knowledge is not necessary for this proof of knowledge.
Indeed what matters is the fact that it does not reduce soudness of the main Interactive Argument.
To this effect, the notion of witness hiding is sufficient. But for the simulator who needs to simulate
a zero-knowledge argument, this little addition has a huge impact. The simulator can simply run
the extractor on R to retrieve s. Once the simulator knows s, he can cheat (break binding of) the
commitments at will.

Using this new protocol we can revisit protocol 5.5

62 CHAPTER 5. INTERACTIVE ARGUMENTS

G

P V

Chooses p = 2p′ + 1, s ∈R Zp′
and a generator g of order p′

Sets α ≡ gs mod p
�

p, g, α

�PK(knows s such that g ≡ αs (mod p))

∀i, 1 6 i 6 k
Πi ∈R Sn
Si = Πi(S0)

-

(
S1, . . . , Sk

)
c1, . . . , ck ∈R {0, 1}

� (c1, . . . , ck)

-(A1, . . . , Ak)
accepts iff
∀i, 1 6 i 6 k
Si ↔ a cycle

or

Siσ(G) ↔M(0)

Protocol 5.7: A parallel argument for Hamiltonian cycle

The simulator for this protocol is very straightforward. But the most remarkable thing is that
this proof has negligeable soundness using only 7 messages (the proof of knowledge can be run
in parrallel using three messages). However, in order to prove formally that the parallel proof of
knowledge does not weaken the soundness condition of the Interactive Argument, a formal definition
of Witness Hiding would be necessary2. We choose not to go that way.

As a second approach, we can change the protocol and force V to commit first to his challenges
before the Prover commits to the Si’s. This is very natural strategy that has been extensively used
to parallelize sequential protocols.

G

P V

c1, . . . , ck ∈R {0, 1}
�

(c1, . . . , ck)

∀i, 1 6 i 6 k
Πi ∈R Sn
Si = Πi(S0)

-
(S1, . . . , Sk)

�
unveils (c1, . . . , ck)

-(A1, . . . , Ak)
accepts iff
∀i, 1 6 i 6 k
Si ↔ a cycle

or

Si(σi(G)) ↔M(0)

Protocol 5.8: A parallel Zero-Knowledge protocol for Hamiltonian cycle

2Do not be mislead thinking that the situation is exactly the same as in Protocol 3.7 where a similar reasoning
was used. It is a lot more subtle here than back then.

5.3. BIT COMMITMENTS BASED ON ANY ONE-WAY HASH FUNCTION 63

This strategy, protocol 5.8, works for Interactive Arguments as well as for Interactive Proofs, see
Problem 5.6, and the simulator is fairly straight forward. However, the Bit Commitment used by
the Receiver should be of the opposite type as the one used by the Sender so to keep computational
assumptions all on the same side. For instance, If the Prover uses Protocol 5.3 for his commitments
then the Verifier uses Protocol 4.9 for his commitments. If we did not follow these guidelines, the
resulting protocol would neither be perfect Zero-Knowledge nor an Interactive Proof: it would be a
Computational Zero-Knowledge Interactive Argument, an unnecessary compromise. Note that the
same simulator will work for both Interactive Arguments and for Interactive Proofs but the proof
of expected polynomial running in each case is rather different...

Since we know in general that bit commitments that are computationally concealing can be built
from any one-way function, a similar result for bit commitments that are computationally binding
would be desirable. This will be the topic of the next Section.

5.2.1 Arguments vs Proofs

5.3 Bit commitments based on any one-way hash function

5.4 Bit commitments based on any one-way permutation

Can we build a general perfectly concealing bit-commitement using an arbitrary one-way permu-
tation ? Let us try a few things so to build intuition of the final solution. Let P and V be
probabilistic-polynomial time Turing machines and let Π be a one-way permutation over n-bit
strings.

Π
P V

Commit phase

x ∈R {0, 1}n
y0 = Π(x)

y1 ∈R {0, 1}n

b = (yb, yb̄)
-

b

Unveil phase

-
b, x

Parses b as

(y′0, y
′
1)

Accepts iff
y′b = Π(x)

Protocol 5.9: A first attemp at BC using One-Way permutations

It is not hard to see that this protocol is perfectly concealing but perfectly useless as it is very
easy for P to unveil either ways, as P can choose y1 maliciously as the image under Π of another
known x′. We need to force the value y1 on P somehow as a function of y0. Let’s add the condition
r = y0 ⊕ y1 for some randomly selected r.

64 CHAPTER 5. INTERACTIVE ARGUMENTS

Π
P V

Commit phase

r ∈R {0, 1}n
�

r

x ∈R {0, 1}n
y0 = Π(x)
y1 = r ⊕ y0

b = (yb, yb̄)
-

b

Unveil phase

-
b, x

Parses b as

(y′0, y
′
1)

Accepts iff
y′b = Π(x),

and y′0 ⊕ y′1 = r

Protocol 5.10: A second attempt at BC using One-way permutation

To cheat, the prover needs to find x and x′ such that Π(x′)⊕Π(x) = r. At first sight, that seems hard
to solve, but at the same time it does not seem equivalent to inverting the one-way permutation on
a given input. It would be a non-trivial supplemental assumption on the permutation Π. But hash
functions have properties that could do it. Let Hn : {0, 1}n −→ {0, 1}n−1 be a hashing function
familly. Let’s try to include that in our protocol.

Π
P V

Commit phase

h ∈R Hn
�

h

x ∈R {0, 1}n
y0 = Π(x)
Set y1 6= y0 s.t.
h(y1) = h(y0)

b = (yb, yb̄)
-

b

Unveil phase

-
b, x

Parses b as

(y′0, y
′
1)

Accepts iff
y′b = Π(x), and

h(y′0) = h(y′1)

Protocol 5.11: A second BC using One-way permutation

As is, this protocol is not very secure as we have the same problem as in protocol 5.10. That is given
h can the prover find x0 and x1 such that y0 = Π(x0), y1 = Π(x1) and h(y0) = h(y1). This is not

5.4. BIT COMMITMENTS BASED ON ANY ONE-WAY PERMUTATION 65

known to be equivalent to inverting Π on a random point. Indeed, Protocol 5.10 is a special case
of Protocol 5.11, see exercice ??. Fortunately, there is a solution to this problem called “interactive
hashing”.

Let the familly Hn be the set of maximum rank n − 1 × n binary matrices. Then for a random
matrix M in Hn, we have that h(x) , Mx, where x, and the hi’s below, are interpreted as n-bit
column vectors. Or if

M =


hT1
hT2
. . .
hTn−1


then

h(x) =

n−1∑
i=1

(hTi � x)ei (5.3)

where the symbol � means “binary dot product” and the ei’s are the canonical base vectors
(1, 0, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, 0, ..., 1). Interactive hashing is simply a protocol to evaluate
equation 5.3 bit by bit. The sender sends the matrix M row by row to the receiver, who reponds
with one bit of h(x). The net effect, is that the Sender cannot choose both x0 and x1 together that
would allow him to cheat as the Sender does not know yet the full function h. In the next protocol,
Protocol 5.12, the yi are the bits of vector y = h(x).

Hn
P (x) V

h ∈R Hn
For i = 1 to i < n, repeat

�
hi

yi = hi � x
-

yi

Computes (s0, s1)

s.t. h(s0) = h(s1) = y
and s0 < s1

Computes (s0, s1)

s.t. h(s0) = h(s1) = y
and s0 < s1

Protocol 5.12: Interactive Hashing

We can schematise the last protocol using this notation

P V

x // IH

oo //(s0, s1) (s0, s1)

Protocol 5.13: Interactive Hashing, notation

In protocol 5.13, both P and V know s0 and s1 but only the prover knows x, or only the prover
knows c such that x = sc. From V ’s perspective, that the prover uses s0 or s1 as input to the
protocol, every single step of protocol 5.12 would yield exactly the same messages. Hence, this

66 CHAPTER 5. INTERACTIVE ARGUMENTS

protocol is already concealing in some sense. Using this and a one-way permutation, we can build
a perfectly-concealing computationally binding bit-commitment.

Π
P V

Commit phase

z ∈R {0, 1}n
x = Π(z)

x // IH

oo //(s0, s1) (s0, s1)
Compute c s.t. x = sc

Set b = b⊕ c
-

b

Unveil phase

-
b, z, c

Verifies that

b = b⊕ c and

sc is equal to Π(z)

Protocol 5.14: BC using One-way permutation

As c is totally unknown to V , b is perfectly concealed in b ; this is just an instance of one-time pad.
What can be shown is that if there exists a P ′ that can open both 0 and 1 with good probability,
then we can build an inverter to the one-way permutation Π.

First thing first, by good probability of opening 0 or 1 we mean that after the commit phase is done
we have

Pr[unveils a zero & succeeds] + Pr[unveils a one & succeeds] > 1 +
1

poly(|z|)

Here is the proof idea using : construct an inverter I for Π on a given value ν using a cheating P ′

as a black-box. The following inverter nearly does that. In reality, to make this argument work,
one needs a very careful analysis as there are pitfalls.

1. Copy fresh random bits to P ′’s random tape.

2. For i = 1 to n− 1 do

(a) choose hi ∈R {0, 1}n−1 s.t. for all j < i hi⊥hj.
(b) Hand hi to P ′ and wait for yi.

(c) i. if yi = hi � ν then i+ +

ii. else rewind P ′ and try again for the same i

3. Wait for b .

4. Ask for unveiling and wait for b, z, c

5. if Π(z) = ν, then output z else output ⊥.

Inverter 5.15: Inverter for Π

5.4. BIT COMMITMENTS BASED ON ANY ONE-WAY PERMUTATION 67

As P ′ is a good cheater, the probability that P ′ outputs a value z which belongs to Π−1(ν) and
thus that I can invert ν is at least 1/poly(|z|) .

5.4.1 Extension to One-Way Functions

5.4.2 Interactive Hashing application

We shall now present another protocol for bit commitment using interactive hashing, but we shall use
a different property of interactive hashing to show that the bit-commitment scheme is statistically
binding but computationally concealing. We shall use the following theorem:

Theorem 6 (Savvides Theorem) Let E, a subset of {0, 1}n, be a set of good strings. If the
sender and the receiver enter an Interactive Hashing protocol where the receiver behaves honestly,
then the probability that the second string (the one not chosen at the onset of the protocol by the
sender) belongs to E is at most 16|E|/2n.

The notion of a good string is application dependant (Usually consists of a set of strings which help
the sender to cheat). In our case it will be a string which is in the co-domain of pseudo-random
generator. So if |E|/2n is negligible, then the probability the sender can force both strings, s0 and
s1, to be in the set E is negligible. Let G be a pseudo-random generator (we know those can be
build from any one-way function) mapping n bit strings to (1 + δ)n bit strings. The following is a
commitment scheme:

GSb R

Commit phase

Chooses x ∈R {0, 1}n
Sets y = G(x)

y // IH

oo //(s0, s1) (s0, s1)Computes d s.t.
y = sd

b = d⊕ b -
b

Unveil phase

-b, x

Sets z = G(x)
and c s.t. z=sc
Accepts ⇐⇒
b = b⊕ c

Protocol 5.16: A commitment scheme based on pseudo random generator and interactive hashing

In the commit phase, the sender first choses a string x and computes its image y under the pseudo-
random generator G. The Sender then enters the interactive hashing protocol with this y and gets
a y′ out of the interactive hashing. The receivers gets the pair of string (s0, s1) out of the interactive
hashing protocol and by the virtue of this protocol, there exists d such that y = sd. Then to commit,
the sender computes d which is simply a bit saying wether y′ is smaller than y or not and uses this
bit to encrypt the bit b. This encryption is the commitment to b.

68 CHAPTER 5. INTERACTIVE ARGUMENTS

To unveil, the senders sends b and x. From x, the receiver can compute y and verify that b was
indeed a valid commitment to b using s0 and s1.

Concealing

With high probability, if the receiver is honest, y will be in the range of G and y′ will not.By the
properties of G, the output of G cannot be distinguished from the uniform distribution by any PPT
distinguisher. Let λ(G(X)) be the distribution of the output of G(X) in the range. That is for
all strings not in the image but in the range, the probability is zero, and for all the others, the
probability is a function of λ(X), where X is the distribution of seed to G. To compute d, the
receiver has to be able to distinguish between (λ(G(X)),U(1+δ)n) and (U(1+δ)n, λ(G(X))). But we
know that (λ(G(X)),U(1+δ)n) is computationally indistinguishable form (U(1+δ)n,U(1+δ)n) and that
(U(1+δ)n,U(1+δ)n) is computationally indistinguishable from (U(1+δ)n, λ(G(X))). As computational
indistinguishability obeys the triangle inequality, we conclude that the receiver cannot compute b
and hence that the bit-commitment scheme is computationally concealing.

Binding

Let us assume that if the second string generated by the interactive hashing, that is y′, is also in
the range of G, then S can always cheat (That might not be the case, but in the worst case it
would be possible). The range size is 2n(1+δ). The size of the domain of G (which is the size of
the good string set) is 2n. Therefore by Savvides’ theorem, we know that the probability that the
interactive hashing protocol outputs a string which has a pre-image under G is bounded above by
16 · 2n/2n(1+δ) which is equal to 16/2δn. Since δ is a constant, then this probability is negligible for
large enough n.

Note that this protocol is a hybrid between two protocols : The bit commitment based on pseudo-
random generator, Protocol 4.12, and the bit-commitment based on one-way permutation and
interactive hashing, Protocol 5.14 . The security for binding is based on a combinatoric (or infor-
mation theoretic) argument just as in the protocol based on pseudo-random generator — but it
uses a strong result for interactive hashing allowing it to use a much smaller expansion factor; the
security for concealing is akin to the proof for concealing for the protocol based pseudo-random
generator. Whilst the protocol itself is almost identical to the bit-commitment protocol based on
one-way permutation and interactive-hashing: the only difference is that the one-way permutation
was replaced by a pseudo-random generator (which can be build from any one-way function). This
protocol requires a smaller expansion factor to reach security than Protocol 4.12 at the cost of more
interaction.

5.4.3 Bounded round Interactive Hashing

5.5 MA in Perfect Zero-Knowledge

Problems

5.1 Why is concealing statistical in Protocol 5.1. Hint: Think of Protocol 3.7.

5.2 Prove that the equality and inequality procedures for Protocol 5.1 are secure in all aspects.

5.5. MA IN PERFECT ZERO-KNOWLEDGE 69

5.3 What would happen in Protocol 5.2 if only one zi was exchanged and yet S and R were still trying to
run a parallel version of the protocol?

5.4 Prove that protocol 5.4 is an interactive zero-knowledge argument. Provide proofs for soundness and
completeness and a simulator.

5.5 Provide a proof of knowledge and extractor for the bootstrap phase of protocol 5.6.

5.6 Right after Protocol 5.8 it is said that this solution works with both interactive proofs and interactive
arguments. There are differences on how to apply this technique in both cases. Can you find one?
Explain why interactive proofs are more challenging than interactive arguements.

5.7 Show that the proof of knowledge of protocol 5.7 can be run in parallel and thus needs only three
messages. Also prove that it does not bias the soundness of Protocol 5.7

5.8 Provide the full simulator for the argument of protocol 5.7.

5.9 Let X and Y be random variables over {0, 1}n, prove the following equation which is used implicitly
in the proof of binding of protocol 5.16 :

D(XU, Y U) = D(X,Y).

5.10 Let X, Y and Z be random variables over {0, 1}n, prove the triangle inequality for statistical distance
that is :

D(X,Z) 6 D(X,Y) +D(Y, Z)

and that the equation is saturated for independent variables.

70 CHAPTER 5. INTERACTIVE ARGUMENTS

Chapter 6

Oblivious Transfer

Up until now we have developed protocols that allow the sender S, which has input x and the
receiver R to compute a function f over x and both parties receive the answer, that is f(x). In this
chapter, we shall develop another primitive, called Oblivious Transfer which will allow S, who
possess x, and R, who possess y, to compute f(x, y) and R receives the answer while keeping the
information as low as possible on the other players input given the output of the function f .

Oblivious transfers comes in multiple flavors, two of which we shall explore here. We shall start
with the Oblivious Transfer of Rabin.

6.1 Rabin Oblivious Transfer

The Rabin Oblivious Transfer is akin to an erasure channel for which the receiver either receives a
bit and knows that the bit was valid (was not modified by the channel), or he receives an erasure
symbol and hence is clueless about the value input into the channel by the sender.

Schematicaly we shall denote such an Oblivious Transfer as follows :

S R
bs εI br

Protocol 6.1: Rabin Oblivious Transfer

And the channel has the following properties :

• Pr[br = bs] = ε, for both values of bs.

• Pr[br = ⊥] = 1− ε

And finally, the sender S has no idea whether R has received bs or ⊥. This assymmetric lack of
knowledge is exactly what is used to do cryptography. Normally, ε is one half.

Here is a quick generalization over strings, or over Zn, using factorization.

71

72 CHAPTER 6. OBLIVIOUS TRANSFER

S(p,q) R
ms εImr

Protocol 6.2: R-OT channel using factorization, abstract

Here ms is the pair of prime integers (p, q) and with probability one half mr is equal to (p, q) and
with probability one half mr is an erasure and R knows in which case he his. Here is how to
implement this :

S(p,q) R

n = pq -
n

�
y x ∈R Z∗n

y ≡ x2 mod n

Compute x′ s.t.

y ≡ x′2 mod n -
x′

if x′ ≡ ±x mod n
then output ⊥
else compute p and q
as gcd(x′ ± x, n)

Protocol 6.3: R-OT channel using factorization

By mixing this Protocol 6.3 with RSA, we can build a string R-OT.

Sm R

n = pq -
n

Choose e s.t.
e is invertible modφ(n)
Compute
m′ = me mod n -

e,m′

�
y x ∈R Z∗n

y ≡ x2 mod n

Compute x′ s.t.

y ≡ x′2 mod n -
x′

if x′ ≡ ±x mod n
then output ⊥
else
Compute d s.t.
ed ≡ 1 mod φ(n)

output m′d mod n

Protocol 6.4: R-OT channel for strings using factorization

Notice however that both of these protocols have the weakness that the Receiver may eventually
choose y in such a way that any square root of y may help him factor n. No efficient calculation of
such a y is currently known, but we certainly cannot exclude the possibility. Consider for instance,
the situation where the Receiver always chooses y = 1 and the Sender always computes x′ as a non-
trivial square root of y; then R receives the message 100% of the time !!! To avoid this loophole, a
Zero-Knowledge proof of knowledge of x such that y = x2 can be incorporated together with y, and

6.2. ONE-OUT-OF-TWO OBLIVIOUS TRANSFER 73

the Sender can randomize his reply by computing all the square roots of y modolu n and return
one of them at random.

6.2 One-out-of-two Oblivious Transfer

We now present the most used and practical oblivious transfer, that is the one out of two oblivious
transfer, or

(
2
1

)
-OT. This primitive is akin to using a third party T to which the sender gives two

bits b0 and b1 and to which the receiver gives one bit c. After receiving all three bits, the third
party gives the bit bc to the receiver. In such a protocol, the receiver obviously learns nothing more
about bc than he might have known before receiving bc and the senders learns nothing more about
the bit c. Hence at the end, the receiver knows perfectly one bit and not the other whilst the sender
knows only its input and is clueless about the receivers input. We shall denote

(
2
1

)
-OT with the

following figure:

S R
b0

c
~~•

00b1
>>

bc

Protocol 6.5: One out of two Oblivious Transfer

And oblivious transfer has the following requirements :

Completeness: if S and R are honest, R receives bc and only bc.
Obliviousness: S learns nothing on the choice c

Secrecy: Only one function of the inputs (b0, b1, c) is known to the receiver that is
f(b0, b1, c) = bc. For all other functions, the entropy on the answer is either
maximal or the output does not depend on bc

,

(6.1)

A very powerful theorem tells us that Secrecy only needs to be stated for the xor of bits b0 and b1.
That is if the entropy on b0 ⊕ b1 is as high as possible, then the entropy of all other functions of b0
and b1 is also as high as possible.

Let us see an example based on quadratic residuosity.

74 CHAPTER 6. OBLIVIOUS TRANSFER

S R

Choose n = pq and
y ∈ QNRn[+1]

-
n, y

-
ZK(y ∈ QNRn[+1])

Choose r0, r1 ∈R Z∗n
Compute

z0 ≡ r2
0y
b0 mod n

z1 ≡ r2
1y
b1 mod n

-
(z0, z1)

Choose r ∈R Z∗n
and b ∈R Z2

Compute

w ≡ zcr2yb mod n
�

w

Compute
e = [w ∈ QNRn[+1]]

-
e

Set bc = e⊕ b

Protocol 6.6:
(

2
1

)
-OT based on QNRn

But how can S be sure that w is well constructed, after all R could try w ≡ z0z1r
2yb mod n and

thus learning the xor of the bit b0 and b1. Hence, R has to do a proof of knowledge proving that w
is well constructed and that he knows r and b.

6.2.1
(

2
1

)
-OT from any Random-Self-Reducible Public-key Encryption Scheme

6.2.2
(

2
1

)
-OT from any Trap-door one-way permutation

Protocol 6.6 is a valid protocol that uses very specific properties of quadratic residues in order to
implement

(
2
1

)
-OT. But as we did in Section 5.4 for bit-commitment, we can build

(
2
1

)
-OT from any

one-way permutation. Here is a first attempt.

Π, h
Sb0,b1 Rc

Choose x0, x1 ∈R {0, 1}n
Set zc = Π(x0) and zc = x1

� (z0, z1)

Compute

w0 = Π−1(z0), w1 = Π−1(z1)

a0 = h(w0)⊕ b0 , a1 = h(w1)⊕ b1
-(a0, a1)

Set bc to ac ⊕ h(x0)

Protocol 6.7:
(

2
1

)
-OT attempt based on One-Way Permutation

There are two problems with this protocol. If the receiver is honest, then everything is fine, but if
he is actively cheating, then there is no reason for the Receiver not to chose zc as Π(x1), and then to
retrieve both values. This we can fixed using Interactive Hashing or with some knowledge-proving
tricks.

6.2. ONE-OUT-OF-TWO OBLIVIOUS TRANSFER 75

Π, h
Sb0,b1 Rc

z ∈R {0, 1}n
x = Π(z)

IH

oo //

xoo

(s0, s1) (s0, s1)
Compute d s.t. x = sd
Set e = d⊕ c

�
e

Compute

w0 = Π−1(se), w1 = Π−1(se)

a0 = h(w0)⊕ b0 , a1 = h(w1)⊕ b1
-(a0, a1)

Set bc to ac ⊕ h(x)

Protocol 6.8: OT using One-way permutation

The second problem is that the Receiver has to be able to pick elements in the co-domain of Π (or
elements in the domain) without knowing their inverse. This sounds strange but think of quadratic
residues and the squaring. The squaring function is a permutation over quadratic residues. But
how does one choose a quadratic residue without knowing one of its square root? In fact no one
knows. Thus, for this protocol to work, one has to require that the permutation be an enhanced
one-way permutation. Let us first look at a secure version of the protocol and then give a formal
definition of an enhanced one-way permutation.

Π, h
Sb0,b1 Rc

Choose x0, x1 ∈R {0, 1}n�
x0 , x1

Choose m0,m1 ∈R {0, 1}n
-m0,m1

Set x′0 = x0 and x′1 = x1 ⊕m1

Set zc = Π(x′0) and zc = x′1
�

z0 , z1

�
PK(knows c s.t. zc = x1 ⊕m1)

�
U
(
z0 , z1

)
Compute

w0 = Π−1(z0), w1 = Π−1(z1)

a0 = h(w0)⊕ b0 , a1 = h(w1)⊕ b1
-(a0, a1)

Set bc to ac ⊕ h(x0)

Protocol 6.9: Secure
(

2
1

)
-OT based on enhanced One-Way Permutation

Definition 14 (Enhanced One-Way Permutations) A permutation f : X ⊆ {0, 1}n −→ X ⊆
{0, 1}n is said to be enhanced one-way if the three following conditions hold.

1. There exists an probabilistic-polynomial time algorithm A such that f(x) = A(x) for all x in
the Domain of the function f ,

2. For all probabilistic-polynomial time algorithm A′ we have

Prx[A′(f(x), 1n) ∈ f−1(f(x))] 6 µ(n), (6.2)

where x is chosen at random uniformly in the Domain of f and µ is a negligible function.

76 CHAPTER 6. OBLIVIOUS TRANSFER

3. There exists an efficient algorightm If that can return an element of the domain of f uniformly
distributed over the domain of f .

Example with Quadratic Residues : Let n = p ∗ q be a product of two large primes p and q such
that p ≡ q ≡ 3 mod 4. For such n’s, the function x2 mod n is a permutation of Quadratic Residues
into themselves. Unfortunately, this permutation is not “Enhanced” because we do not know an
efficient algorithm to select a Quadratic Residue modulo n without knowing its square root...

6.3 Reductions and Applications

6.3.1 Equivalence of Rabin OT and
(

2
1

)
-OT

First, we show that One-out-of-two oblivious transfer implies Rabin’s oblivious transfer. This is
very simple.

Sb R

Choose
a′, b′ ∈R {0, 1}
Set
ba′ = b, ba′ = b′ Choose c ∈R {0, 1}b0

c
~~•

00b1
>>

bc

-a′

if c == a′
then
Set br to bc

else
Set br to ⊥.

Protocol 6.10: Rabin’s-OT from a
(

2
1

)
-OT

Security is obvious and relies on the security of the
(

2
1

)
-OT used in the protocol and this as long as

at least one participant is honest.

Reducing
(

2
1

)
-OT to Rabins’s OT is more involved, especially in the security proof. Here is the

Protocol.

6.3. REDUCTIONS AND APPLICATIONS 77

Sb0,b1 Rc

~r ∈R {0, 1}n

Repeat for i = 1 to i = n

ri
1/2
I si

Construct sets
I0 and I1 s.t.
I0 ∩ I1 = ∅,
|I0| = |I1| = n/3,

∀j ∈ I0, sj ∈ {0, 1}
� (Ic, Ic)

Compute

b′0 = b0 ⊕
(⊕

j∈Ic rj

)
b′1 = b1 ⊕

(⊕
j∈Ic rj

)
-(b′0, b

′
1)

bc = b′c ⊕
(⊕

j∈I0 rj

)

Protocol 6.11: Reducing
(

2
1

)
-OT to Rabin’s-OT

Discussion of security.

6.3.2
(

2
1

)
-OT is symmetric

If we have two parties A and B and a
(

2
1

)
-OT from A to B, then there is a reversing protocol that

allows to do
(

2
1

)
-OT from B to A (Sometime in the literature, it is denoted TO-

(
2
1

)
).

Sb0,b1 Rc

r ∈R {0, 1}

b0 ⊕ b1 !!
r

~~•
nna r ⊕ c

``

m = b0 ⊕ a
-m

bc = r ⊕m

Protocol 6.12: Reducing
(

2
1

)
-OT to TO-

(
2
1

)
Let’s check that this is indeed a valid

(
2
1

)
-OT:

r ⊕m = r ⊕ b0 ⊕ a = b0 ⊕ r ⊕ (r, r ⊕ c)b0⊕b1 = b0 ⊕ (0, c)b0⊕b1 = b0 ⊕ ((b0 ⊕ b1) ∧ c) = bc

6.3.3
(

2
1

)
-OT of strings from

(
2
1

)
-OT of bits

Consider the simple example where S wants to send one-out-of-two two-bit string w0, w1 to R. Let
z0 = (r0, r0 ⊕ w1

0, w
1
0 ⊕ w2

0) and z1 = (r1, r1 ⊕ w1
1, w

1
1 ⊕ w2

1) for random bits r0, r1.

78 CHAPTER 6. OBLIVIOUS TRANSFER

S(w0, w1) R(c)

Choose
r0, r1 ∈R {0, 1} r0 c}}•

11r1

>>
z1 = rc

r0 ⊕ w1
0 !!

c
}}•

00r1 ⊕ w1
1

==
z2 = rc ⊕ w1

c

r0 ⊕ w2
0 !!

c
}}•

00r1 ⊕ w2
1

==
z3 = rc ⊕ w2

c

set w1
c = z1 ⊕ z2

and w2
c = z1 ⊕ z3.

Protocol 6.13: string
(

2
1

)
-OT from a bit

(
2
1

)
-OT

It is not hard to see that if both parties are honest, R receives wc and nothing else. It is also not
too hard to see (by inspection) that if a dishonest R uses also c but only once in one of the three(

2
1

)
-OT, he still gets no information about wc. Since R cannot use both c and c twice out of three

runs, he cannot get information on at least one of wc or wc.

Indeed, this protocol will work regardless of the size of the values r0, w
1
0, w

2
0, r1, w

1
1, w

2
1. So to

transmit one-out-of-two strings of length 4, we can use protocol 6.13 with string of length 2. This
will require 3 executions of one-out-of-two-OT on strings of length 2, each of which will require 3
executions of one-out-of-two-OT of bits. Therefore, using this technique recursively will require 9
one-out-of-two-OT of bits to send strings of length 4. For strings of length 8, 27 one-out-of-two-OT
of bits will be used and so on. To send 2k-bit strings, 3k

(
2
1

)
-OT of bits are sufficient.

6.3.4 A String equality protocol

Using a trusted third party, it is very easy to compare two string X and Y belonging to two parties
A and B so that they each learn whether X is equal to Y and nothing else.

A
X

((

B
Y

vv
Ta

^^

a

@@

Protocol 6.14: String equality using a trusted third party

In this protocol, the answer a is one if both strings, X and Y , are equal and zero if they are different.
Since trusted third party are a rare commodity, we would be better off having a protocol involving
the newly developed primitives. In fact there is a very simple protocol that uses only

(
2
1

)
-OT.

In the Following protocol, let the n-bit strings Rj be parsed as rj1r
j
2 . . . r

j
i . . . r

j
n. Parse similarly the

strings S0, S1, X and Y .

6.4. TWO-PARTY COMPUTATIONS 79

A(X) B(Y)

r0
1, r

1
1, ..., r

0
n, r

1
n ∈R {0, 1}n s0

1, s
1
1, ..., s

0
n, s

1
n ∈R {0, 1}n

Repeat for i = 1 to i = n

r0
i

yi
~~•

00r1
i

>>
ryii

xi

s0
i~~•

nnsxii s1
i

``

Compute
a =

⊕
i[r

xi
i ⊕ s

xi
i]

Compute

b =
⊕

i[r
yi
i ⊕ s

yi
i]

-a

� b

-Unveil a

if a == b
then
accept

else
reject

if a == b
then
accept

else
reject

Protocol 6.15: A string equality protocol

In Protocol 6.15 the variables a and b are always equal if X is equal to Y and if A and B are both
honest since for every i we have that rxii is equal to ryii and sxii is equal to syii . Let one party be
honest, then by simple inspection one can convince himself that if X and Y differ by only one bit,
then with probability one half a is not equal to b. Let that bit be bit k, that is xk is not equal
to yk, but for all other i 6= k we have that xi = yi. Since, if A is honest, then both R0 and R1

are random and for bit k, r0
k is not equal to r1

k, and this with probability one half. What ever B
does, the value used to compute a will be different with probability one half from the value used to
compute B. Actually for full case analysis using s0

i and s1
i is necessary, but the idea is the same.

Hence, if X and Y are not equal, a and b are different with probability at least one half. One only
needs to repeat this protocol to amplify the soundness.

6.4 Two-party computations

6.4.1 Definition of security

We use the following notation: x ∈ X denotes the input of the first party, y ∈ Y the input of the
second party and z ∈ {0, 1}∗ represents an additional auxiliary input available to both parties but
assumed to be ignored by all honest parties. A g-hybrid protocol is a pair of (randomized) algorithms
Π = (A1, A2) which can interact by exchanging messages and which additionally have access to the
functionality g1. More precisely, for a (randomized) function g : X × Y → U × V the two parties
can send x and y to a trusted party and receive u and v, respectively, where (u, v) = g(x, y). Note
that a default value is used if a player refuses to send a value. A pair of algorithms A = (A1, A2) is
called admissible for protocol Π if either A1 = A1 or A2 = A2, i.e., if at least one of the parties is
honest and uses the algorithm defined by the protocol Π.

1Note that g is in general different from f . It should generally be thought of as some trusted cryptographic
primitive which the protocol uses as a black box.

80 CHAPTER 6. OBLIVIOUS TRANSFER

Definition 1 (Real Model) Let Π = (A1, A2) be a g-hybrid protocol and let A = (A1, A2) be an
admissible pair of algorithms for the protocol Π. The joint execution of Π under A on input pair
(x, y) ∈ X × Y and auxiliary input z ∈ {0, 1}∗ in the real model, denoted by

realg
Π,A(z)

(x, y) ,

is defined as the output pair resulting from the interaction between A1(x, z) and A2(y, z) using the
functionality g.

The ideal model defines the optimal scenario where the players have access to an ideal functionality
f corresponding to the function they wish to compute. A malicious player may therefore only
change (1) his input to the functionality and (2) the output he obtains from the functionality.

Definition 2 (Ideal Model) The trivial f -hybrid protocol B = (B1, B2) is defined as the protocol
where both parties send their inputs x and y unchanged to the functionality f and output the values
u and v received from f unchanged. Let B = (B1, B2) be an admissible pair of algorithms for B.
The joint execution of f under B in the ideal model on input pair (x, y) ∈ X × Y and auxiliary
input z ∈ {0, 1}∗, denoted by

idealf,B(z)(x, y) ,

is defined as the output pair resulting from the interaction between B1(x, z) and B2(y, z) using the
functionality f .

Any admissible pair of algorithms B in the ideal model can be expressed in the following way: the
first party receives input (x, z) and the second party receives input (y, z). The two parties produce

(x′, z1) = Bin
1 (x, z) and (y′, z2) = Bin

2 (y, z), from which x′ and y′ are inputs to a trusted third party,
and z1 and z2 are some auxiliary output. The trusted party computes (u′, v′) = f(x′, y′) and sends
u′ to the first party and v′ to the second party. The two parties are now given the outputs v′

and u′ and the auxiliary inputs z1 and z2, respectively. The first party outputs u = Bout
1 (u′, z1)

while the second party outputs v = Bout
2 (v′, z2). Note that if the first party is honest, we have

Bin
1 (x, z) = (x,⊥) and Bout

1 (u′, z1) = u′ and similarly for the second party.

Now, to show that a g-hybrid protocol Π securely computes a functionality f , we have to show that
anything an adversary can do in the real model can be simulated in the ideal model.

Definition 3 (Perfect Security) A g-hybrid protocol Π securely computes f perfectly if for every
pair of algorithms A = (A1, A2) that is admissible in the real model for the protocol Π, there exists
a pair of algorithms B = (B1, B2) that is admissible in the ideal model for protocol B (and where
the same players are honest), such that for all x ∈ X , y ∈ Y, and z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡ realg
Π,A(z)

(x, y) .

It is sometimes not possible to achieve perfect security. The following definition captures the
situation where the simulation has a (small) error ε, defined as the maximal statistical distance
between the output distributions in the real and ideal model.

6.4. TWO-PARTY COMPUTATIONS 81

Definition 4 (Statistical Security) A g-hybrid protocol Π securely computes f with an error of
at most ε if for every pair of algorithms A = (A1, A2) that is admissible in the real model for the
protocol Π, there exists a pair of algorithms B = (B1, B2) that is admissible in the ideal model for
protocol B (and where the same players are honest), such that for all x ∈ X , y ∈ Y, and z ∈ {0, 1}∗,
we have

idealf,B(z)(x, y) ≡ε realgΠ,A(z)
(x, y) .

The statistical distance is used because it has nice properties and intuitively measures the error of
a computation: a protocol Π which securely computes f with an error of at most ε, computes f
perfectly with probability at least 1− ε.
It is sometimes not possible to achieve statistical security. In those cases we define a computational
version of the defition.

Definition 5 (Computational Security) A g-hybrid protocol Π securely computes f with a com-
putational error of at most ε if for every pair of poly-time algorithms A = (A1, A2) that is admissible
in the real model for the protocol Π, there exists a pair of poly-time algorithms B = (B1, B2) that
is admissible in the ideal model for protocol B (and where the same players are honest), such that
for all x ∈ X , y ∈ Y, and z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡c realgΠ,A(z)
(x, y) .

Proof example

Consider protocol 6.6 for one-out-of-two OT based on the hardness of Quadratic Residuosity. Let
A be an adversary to the receiver and consequently let R = A2 be a dishonest receiver. We describe
the program of a B2, the corresponding (trivial) adversary in the IDEAL scenario. As every such

trivial adversary, it is broken down in two parts Bin
2 and Bout

2 .

1. Copy fresh random bits to the receiver’s random tape and fill up his

Auxiliary-Input tape.

2. Pick a modulus n = pq at random and a quadratic non-residue y ∈R QNRn.

3. Run a ZK proof that y ∈ QNRn[+1] with R.

4. Choose two random quadratic residues z0, z1 and send them to R. Wait until R

issues a ciphertext w.

5. Run a proof of knowledge with R to prove that he knows r and b such that

w = zcry
b mod n; Using the knowledge extractor obtain r and b from R.

6. Compute c such that w = zcry
b mod n.

7. Output c and add p, q, n, y, b, w to the environment, as well as the state σ of R.

Simulator 6.16: Bin
2 ’s simulaton of A2

This first simulation corresponds to simulating an execution of the actual protocol upto the point
where the ciphertext w is produced by the receiver. Using the knowledge extractor of the proof of
knowledge, the simulator determines the bit c indicating which bit the receiver is trying to obtain
from the sender.

82 CHAPTER 6. OBLIVIOUS TRANSFER

1. Let u = bc be the output of the functionality f with the sender S.

2. Regardless of the actual decryption of w, decrypt w as bit e = u⊕ b.

3. Set the state of R to the stored value σ and send e to R.

4. Simulate a ZK proof that there exists s such that w = s2ye mod n with R.

5. Output whatever R outputs.

Simulator 6.17: Bout
2 ’s simulaton of A2

The second part of the simulation (above) will complete the simulation of a REAL execution to
the very last part where the (cheating) receiver outputs whatever he wants (including the entire
simulation from his perspective, if he likes).

The resulting execution in the IDEAL scenario will be (only) computationally indistinguishable
from a REAL one. This is because the trivial adversary does not know the actual bit bc which
means that the value used in the simulated protocol will be wrong half the time. Nevertheless,
since this bit is never learned by the receiver, it remains computationally indistinguishable from the
correct bit.

General Composition Theorem

A very important property of the above definitions is that they imply sequential composition. The
following theorem has been proven in [?].

Theorem 1 If an h-hybrid protocol Γ securely computes g with an error of at most γ and a g-hybrid
protocol Π securely computes f with an error of at most π, then the composed protocol ΠΓ, namely
the protocol Π where every call to g is replaced by Γ, is an h-hybrid protocol that securely computes
f with an error of at most π + tγ, where t is the number of calls of Π to g.

6.4.2 General Protocol

We shall now see how to let two parties compute any function f on two strings X and Y where
string X is held by party A and string Y is held by party B and this in a secure way. Protocol
6.14 which uses a trusted third party is a good illustration of our goal. That is the answer a of the
trusted third party T is the output of the function f on inputs X and Y , or a = f(X,Y). We shall
accomplish this using a new primitive which we have not seen yet, committed oblivious transfer.

S R
b0

d

~~•
00b1

>>

bd

Protocol 6.18: Committed One out of two Oblivious Transfer

The commited oblivious transfer behaves like a normal oblivious transfer but acts on commited
input on both sides and ensures that the receiver is committed to the output bd. Having this device

6.4. TWO-PARTY COMPUTATIONS 83

computing any gate on bits x1 and y1 is not too complicated. We shall explore in the next section
REFREFREF how to build a committed oblivious transfer.

The first thing we shall do is share all informations in the computation between both parties. That
is if party S at the onset of the protocol has string X and party R had string Y , we want to share
those info in the following way. Party S shall have strings XS and YS and party R strings XR and
YR such that X = XR⊕XS amd Y = YR⊕ YS . This initialisation is not hard to do: S can commit
to two strings that are all zeros. Prove that they are equal and then open one of them proving that
it is uniformly zero. The remaining committed string can be renamed YS . And then party R does
the same thing to create XS .

Or, or in a more graphical way:

SX RY

YS = Y ′S = ~0

-
YS , Y

′
S

-
YS � Y ′S

-
Y ′S ↔ 0

�
YR

XR = X ′R = ~0

�
XR , X ′R

�
XR � X ′R

�
X ′R ↔ 0

-
X ′S ↔ 0

Protocol 6.19: Generalize two party initialization

From then on, things go a little bit as two party computation in chapter 5 section §?? based on the
technique of Section §4.6. The two parties have to agree on a circuit that computes the function f
they wish to compute gate by gate. They then use the following technique to compute a given gate
z on bits x and y, where x and y are one-bit strings and x is S’s bits and y is R’s bit. Assume that
gate z applied to x and y is denothed z(x, y) and assume that x being devided in two part x = a⊕ b
where a belongs to S and b belongs to R and y = c ⊕ d where c is S’s half and d is R’s half. And
we are looking for e ⊕ f = z((a ⊕ b), (c ⊕ d)) where e will be S’s half of the answer and f will be
R’s half of the answer (This is illustrated in Figure). So what we need to compute is the following:

a 22 boo

z

c ,, doo

e

==

f//

Protocol 6.20: The gate z to be computed

84 CHAPTER 6. OBLIVIOUS TRANSFER

Without loss of generality, let S control the output of the z, by that we mean that S is the party that
controls the computation of the gate. We can rewrite the output of the z gate from R’s perspective
as

f = e⊕ z((a⊕ b), (c⊕ d)) (6.3)

For S, the only unkown are b and d as a and c are known, and e can just be chosen at random.
Hence, for all values of c and d, (there are four possibilities), S can pre-compute the associated
value fabcde and let R chose the one it wants. This is were the COT comes in. First, S will generate
two random bits u1 and u2 and computes the values u3 = f00⊕ u1, u4 = f01⊕ u1,u5 = f10⊕ u2 and
u6 = f11 ⊕ u2 where fij is fij = e⊕ z((a⊕ i), (c⊕ j)). Then, S and R engage in three COT where
the first one transfer one bit of key, and the two next COT transfer the choice of S acording to the
values b and d and the key uk.

S R

u1
!!

k
~~•

00u2

>>

u(k+1)

u3
!!

v
}}•

00u4

>>

u(v+3)

u5
!!

w
}}•

00u6

>>

u(w+4)

Protocol 6.21: Committed One out of two Oblivious Transfer

Here the values of v and w depends on the value of b and d. if b is zero, the receiver sets v to the
value of d in order to pickup the good function output. If b is one, then, w is set to the value of
d. Or, in other words, the first COT lets the receiver picks a key that lets him recover one value
on only one of the two final COT. If b is zero, then the receiver sets k to zero and retrieves a key
that will let him retrieve the value f00 or f01 depending on the value of d. Obviously, if k is equal
to b = 0, then the receiver cannot extract anything out of the third COT, as both input bits are
encrypted using u2. Samething goes for b = 1.

The last thing to add is that the sender has to prove that the commitments u3, u4, u5 and u6 are all
well formed. This can be accomplished with the same function computing technique done before.
The sender simply commit to fix vales of b and d and then runs a circuit computing the value of f
on abcde . So if b and d are zero, then at the end, the receiver is convinced that the value u2 is the
correct one (of course for that the commitment to b and d have to be opened by the sender).

6.5 COT

Now that we know how to use COT, the time has come to learn how to implement such a primi-
tive. We shall assume that we have access to good implementation of the bit-commitment scheme
equipped with equality (Perfect equality to simplify things). Let us assume that the sender and the
receiver wish to realize the following COT

6.5. COT 85

S R
x0

z

~~•
00x1

>>

xz

Protocol 6.22: Goal transaction

S R
Chooses
b0, b1 ∈R {0, 1}

Chooses
c ∈R {0, 1}

-
b0 , b1

�
c

b′0
c′

~~•
00b′1

>>
d′

�
d

Protocol 6.23: Base OT

If S is honest then we can garantee that b0 = b′0 and b1 = b′1. If R is honest then we can garantee
that c = c′ and d = d′. We will have to analyze the impact of a dishonest S that uses b0 6= b′0
or b1 6= b′1 and the impact of a dishonest R that uses c 6= c′ or d 6= d′. Suppose that S and R

participate to a Base OT with random b0 , b1 , c and result d . Consider the situation if

the committed values are unveiled after the protocol.

We first analyze the result of a dishonest behavior of S. Suppose b0 6= b′0 or b1 6= b′1 or both. Honest
R uses c = c′, d = d′ and therefore d = b′c. As a consequence, d 6= bc exactly when bc 6= b′c which
occurres with probability at least one half (over random choices of c). If both b0, b1 are wrong, then
with probability one d 6= bc. Therefore, if S cheats, with probability at least one half, at unveiling

of b0 , b1 , c and result d , R will notice a discrepency and abort interaction with S.

We now analyze the result of a dishonest behavior of R. Suppose c 6= c′. Honest S uses b0 = b′0
and b1 = b′1. We can garantee that d′ = bc′ , which means that R has no idea what bc is. When
R commits to d he does it in full ignorance of bc. After this point, whether he sets d = d′ or not
makes no difference: whatever d R commits, it has probability one half (over the random choices
of bc) of not being bc. The case where c′ = c and d 6= d′ is even more obvious since in that case
d 6= d′ = bc will be wrong with certainty at unveiling ! Therefore, if R cheats, with probability at

least one half, at unveiling of b0 , b1 , c and result d , S will notice a discrepency and abort

interaction with R.

We conclude that if a Base OT is executed with random inputs, and if one partie is dishonest,
unveiling of the commitments will reveal a discrepency and the honest party will abort with proba-
bility at least one half. On the contrary, if a Base OT is executed with random inputs, and if both
parties are honest, unveiling of the commitments will reveal no discrepency and no party will abort.

We shall denote Protocol 6.23 by •�. To resolve the possibility that the committed values are not
those used in the internal OT, the parties will execute a large number of Base OT on random

86 CHAPTER 6. OBLIVIOUS TRANSFER

committed inputs, parse and process this mass of OT such that at the end, roughly n of them can
be used to actually compute a final COT.

Let •�i be an OT over values bi0 bi1 and choice bit ci which results in the output di , were

di is supposed to be equal to bi
ci

.

S
b0 , b1

R
c

Challenge phase

-•�0, •�1, . . .,•�16n−1

-coin toss k0, ..., k16n−1

Let I0 = {i|ki = 0} Let I0 = {i|ki = 0}
-

∀i ∈ I0 unveil bi0 , bi1

�
∀i ∈ I0 unveil ci , di

If ∃i ∈ I0 s.t. di 6= bi
ci

then abort. If ∃i ∈ I0 s.t. di 6= bi
ci

then abort.

Let J0 = {j 6∈ I0|cj = c}
� J0

If |J0| < (4− ε)n then abort.

�
∀j ∈ J0 c � cj

Let L0 = {j ∈ J0|bj0 = b0, b
j
1 = b1}

-L0

If |L0| < (1− ε)n then abort.

-
∀j ∈ L0 b0b1 � bj0b

j
1

d = Maj
(
dj |j ∈ L0

)
�

d

�
d � Majj∈L0

(
dj
)

Protocol 6.24: Reducing weak-COT to BC and
(

2
1

)
-OT

The first Reduction 6.24 we define, called weak-COT, builds on BC and
(

2
1

)
-OT to nearly acheive

COT but with a weakness in the Sender’s security: a cheating Receiver may be able to obtain
both bits from the Sender at the cost a constant positive probability of causing detection in the
Challenge phase.

We now describe Protocol 6.24 in details. In a first step, for 0 6 i < 16n, the sender and receiver
shall do 16n copies of protocol 6.23. They then choose at random permutation of over the domain
of j and permute rename the protocol invocation to •�0π(j). They then open every bit commitment

for the first half (that is for π(j) 6 n). The senders opens b
0π(j)
0 and b

0π(j)
1 and the receivers

open c0π(j) and b
0π(j)
c . And they verify that their data is consistent. That is if, for example,

b0i0 6= b0i1 = 1, and c0i = 1 then b0ic should be equal to 1.

So now they have n instances of protocol ?? in which they have some confidence. That was step
one. To instill better confidence, they will now regroup these n instances into equivalence classes.
As the bit-commitments used are equipped with equality, they can regroup those instances.

6.5. COT 87

S
b0 , b1

R
c

b10, b
1
1, ..., b

n
0 , b

n
1 ∈R {0, 1} Let c0 = c1 = ... = cn = c

�
c � c0 � ...� cn

Let b00 = b0 ⊕ b10 ⊕ ...⊕ bn0 .

-

b0 � b00 ⊕ ...⊕ bn0

Let b01 = b1 ⊕ b11 ⊕ ...⊕ bn1 .

-

b1 � b01 ⊕ ...⊕ bn1

-

∀j wCOT

(
bj0 , bj1

)(
cj , dj

)
Let d = d0 ⊕ ...⊕ dn.

�
d

�
d � d0 ⊕ ...⊕ dn

Protocol 6.25: Reducing COT to wCOT

Problems

6.1 As we have taken the bad habit of providing incomplete protocol, Protocol 6.6 is insecure. Show how
the protocol is insecure (give an explicit example of what can be done) and fix it.

6.2 Provide the proof of knowledge needed for Protocol 6.9

6.3 Provide a proof of knowledge for Protocol 6.6 with wich the receiver can convinced the sender that w
is well constructed and that the receivers knows c, r and b such that w ≡ zcr

2yb mod n. Provide the
extractor and prove that Protocol 6.6 still obeys the obliviousness property.

6.4 Provide the missing proof of knowledge or Protocol 6.9.

6.5 Prove that Protocol 6.15 is secure. We have done it for one bit of difference between X and Y .

6.6 Prove that if the Rabin’s-OT primitive used in Protocol 6.11 is perfect, then Protocol 6.11 is secure.

6.7 Prove that Protocol 6.12 is a valid reduction (you will need to use the ∧ operator).

88 CHAPTER 6. OBLIVIOUS TRANSFER

Chapter 7

Multi-Provers Interactive Proofs

The notion of Multi-Prover Interactive Proofs was introduced by BenOr, Goldwasser, Kilian and
Wigderson [?]. In the Two-Prover scenario, we have two provers, Peggy and Patty, that are al-
lowed to share arbitrary information before the proof, but they become physically separated from
each other during the execution of the proof, in order to prevent them from communicating. It
was demonstrated by Babai, Fortnow, and Lund [?] that Two-Prover Interactive Proofs (with a
polynomial-time verifier) exist for all languages in NEXP-time. A fully parallel amalog was achieved
by Lapidot and Shamir [?].

A quantum mechanical version of this scenario was considered by Kobayashi, Matsumoto, Yamakami
and Yao [?, ?, ?]. To this day, it is still an open problem to establish the exact power of Multi-Prover
Quantum Interactive Proofs. A rather vast litterature now exists on this topic (see [?], [?], [?], [?],
[?], [?], [?]). However, it is still not even clear whether two provers are as powerful as more-than-two
provers.

The Two-Prover Zero-Knowledge Interactive Proofs of [?] rely on the construction of a Bit Com-
mitment scheme, information theoretically secure under the assumption that the provers cannot
communicate. We refer the reader to their paper to understand the application of this Bit Com-
mitment scheme to the construction of Two-Prover Zero-Knowledge Proofs. We solely focus on
their Bit Commitment scheme for the rest of our work. In this paper, we consider several impor-
tant questions regarding Two-Prover Bit Commitment schemes. We do not limit our interest of
Two-Prover Bit Commitment to the context of Zero-Knowledge proofs; as already discussed in [?]
similar techniques lead them to a secure Oblivious Transfer under the same assumption. Given that
any two-party computation may be achieved from Oblivious Transfer [?], we consider the security
of such Bit Commitment scheme in a very general context. We discuss at length the security in a
very general composability situation.

In order to argue the security of their Bit Commitment scheme, the authors of [?] asserted the
following assumption:

"there is no communication between the two provers while interacting with the verifier".

The current paper is concerned with the sufficiency of this assertion. We show is Section ?? that,
although this assumption must be made, it is however considerably too weak, because we exhibit
variations of the scheme that are equally binding classically but that are not at all binding if the
provers were allowed to share entanglement. It is however a very well known fact that entanglement

89

90 CHAPTER 7. MULTI-PROVERS INTERACTIVE PROOFS

does not allow communication. Although it is true that they can cheat if they can communicate, it
is also true that they can cheat without communicating. Therefore the assumption that the provers
cannot communicate is too weak.

This observation can be turned into a purely classical argument by exhibiting a black-box two-party
computation, that does not allow them to communicate, but that allows them to cheat the binding
condition of the Bit Commitment scheme. This peculiar source of randomness may replace the
entanglement used by the attack. Furthermore, the above assertion of can be interpreted as a
prescription to the verifier that he should make sure not to help the provers to communicate while
interacting with him. Again, this prescription would not prevent him from acting like the black-box
we exhibit. Thus, a stronger prescription is mandatory in order to assert security.

We carefully define a notion of isolation by which the two provers may not communicate nor perform
any non-local sampling beyond what is possible via quantum mechanics. We finally formalize a set
of conditions that any third party involved in a Two-Prover Bit Commitment scheme may satisfy
to make sure he does not break the assumption that the provers are in isolation. In particular, we
make sure that if such a Bit Commitment scheme is used in another larger cryptographic protocol,
its security properties will carry over to the larger context.

7.0.1 Related work

The starting point of this research is clearly the Bit Commitment scheme introduced by BenOr,
Goldwasser, Kilian and Wigderson [?]. The security of a Two-Prover Bit Commitment scheme
against quantum adversaries has been considered in the past in the work of Brassard, Crépeau,
Mayers and Salvail [?]. They showed that if such a Bit Commitment scheme is used in combination
to the Quantum Oblivious Transfer protocol of [?] it is not sufficient to guarantee the security of the
resulting QOT if the two provers can get back together at the end of the protocol. In the current
work, we consider only the situation while the provers are isolated.

The research by Cleve, Høyer, Toner and Watrous [?] is the main inspiration of the current paper.
They have established some relations between Two-Prover Interactive Proofs and so called “non-
locality games”. More precisely, they showed that certain languages have a classical Two-Prover
Interactive Proof that looses soundness if the provers are allowed to share entanglement. Some of
our results are very similar to this. However, our new contributions are numerous. While [?] focuses
on languages, we focus on the tool known as Bit Commitment. This tool is used in many contexts
other than proofs of membership to a language: proofs of knowledge, Oblivious Transfer, Zero-
Knowledge proofs, general two-party computations. Moreover inspired by the observations of [?],
we analyze the security of such Two-Prover tools in a completely classical situation. We conclude
that proving security of such protocols is very subtle when used in combination with other such
tools. We also argue that the claim of security of the protocols of [?] requires a lot more assumptions
than the mere “no communication” assumption (even in the purely classical situation).

Despite the impossibility theorems of Mayers [?] and Lo & Chau [?], the possibility of information
theoretically secure Bit Commitment schemes in the Two-Prover model is not excluded in the
classical and quantum models. Indeed, the computations sufficient to cheat the binding condition
of a Quantum Bit Commitment scheme in the above “no-go” theorems cannot, in general, be
performed by the two provers when they are isolated from each other. This is the reason why these
theorems do not apply.

In a closely related piece of work, Kent [?] showed how impossibility of communication, implemented
through relativistic assumptions, may be used to obtain a Bit Commitment scheme similar to

7.1. PRELIMINARIES 91

BGKW that can be constantly updated to avoid cheating. Kent proves the classical security of
his scheme while remaining elusive about its quantum security. However, he claims security of one
round (see [?], Lemma 3, p. 329) of his protocol which is more or less the same as our Lemma ??.
Unfortunately, his proof is incomplete as pointed out in our proof of the Lemma. But we clearly
recongnized that he was first to address this question.

A very different set of results [?] relates non-locality boxes and two-party protocols such as Bit
Commitment and Oblivious Transfer. These are only marginally connected to the current research.
They showed how these cryptographic protocols may be securily implemented from those non-
locality boxes. On the cotrary, we show how to break such protocols using non-locality boxes...

7.1 Preliminaries

7.1.1 Isolation

First let us define the condition imposed on the two provers: we use the word isolation to describe
the relation between Peggy and Patty during the protocol. The intuitive meaning of this term
is that Peggy and Patty cannot communicate with each other, since this condition is explicitly
imposed by the Two-Prover model. However, we introduce this new terminology instead of the
traditional “cannot communicate with one another” because we noticed that the meaning of “no-
communication” is too weak and must be very clearly defined to produce valid security proofs. This
isolation will be formally defined in Section ??. For now, the reader may follow his intuition and
picture Peggy and Patty as restricted to compute their messages using only local variables.

7.1.2 Bit Commitment

The primitive known as “Bit Commitment” is a protocol in which a player Alice first sends some
information to another player Bob, such that this information binds her to a particular bit value b.
However, the information sent by Alice is not enough for Bob to learn b (b is concealed). At a later
time, Alice sends the rest of the information to unveil the bit b, and she cannot change her mind to
reveal b̄ and convince Bob that this was the value to which she was committed in the first step. The
following definitions will be used to characterize the security of a Bit Commitment scheme. Note
that the function µ(n) always refers to a negligible function in n.

Definition 6 A Bit Commitment scheme is statistically concealing if only a negligible amount of
information on the committed bit can leak to the verifier before the unveiling stage.

Definition 7 A Bit Commitment scheme is statistically binding if, for b ∈ {0, 1}, the probability
pb that Alice successfully unveils for b satisfies

p0 + p1 ≤ 1 + µ(n). (7.1)

This binding condition was first proposed by Dumais, Mayers, and Salvail [?], as a weaker substitute
to the traditional definition pb ≤ µ(n) for either b = 0 or 1. This definition has been henceforward
used to show security of many Bit Commitment schemes against quantum adversaries in various
models, e.g. [?, ?, ?].

More recent definitions have been introduced since then ([?]) that appear to be better characteriza-
tion of Bit Commitment security in a quantum setting. However, we have not been able, so far, to
find protocols that satisfy these definitions. This, we hope, will be part of future work in this area.

	Notation
	Useful Formulae
	Introduction
	Proofs of knowledge vs proofs of membership
	Interactive Proofs vs Arthur-Merlin Games
	Zero-knowledge
	Arguments
	Bit Commitments
	Rudich
	Oblivious Transfer
	Two-party Computations
	Multi-prover Interactive Proofs

	Interactive Proofs
	Proof of Knowledge
	2.2 Problems

	Zero-Knowledge
	Graph Non-Isomorphism
	Flavours of Zero-Knowledge
	3.3 Problems

	Bit-Commitment
	Computationally Concealing (CC)BC and Computational ZK
	Computationally Binding BC
	CCBC from standard Cryptographic Assumptions
	Hard-core predicate
	Pseudorandom Generators
	Bit-commitment equality
	Rudich's Trick
	Example

	MA, AM and IP in ZK
	4.8 Problems
	4.9 Problems

	Interactive Arguments
	Perfectly Concealing Bit-Commitments
	Zero-Knowledge Interactive Arguments
	Arguments vs Proofs

	Bit commitments based on any one-way hash function
	Bit commitments based on any one-way permutation
	Extension to One-Way Functions
	Interactive Hashing application
	Bounded round Interactive Hashing

	MA in Perfect Zero-Knowledge
	5.6 Problems

	Oblivious Transfer
	Rabin Oblivious Transfer
	One-out-of-two Oblivious Transfer
	21-OT from any Random-Self-Reducible Public-key Encryption Scheme
	21-OT from any Trap-door one-way permutation

	Reductions and Applications
	Equivalence of Rabin OT and pi-OT
	pi-OT is symmetric
	pi-OT of strings from pi-OT of bits
	A String equality protocol

	Two-party computations
	Definition of security
	General Protocol

	COT
	6.6 Problems

	Multi-Provers Interactive Proofs
	Related work
	Preliminaries
	Isolation
	Bit Commitment

