Question I. Hashing (6 + 7 + 7 = 20 points)

Let $n=p \times q$ be a public **RSA** modulus such that $p = q = 3 \pmod{4}$. Consider the function

$$SQ(x) = min\{ x^2 \mod n, n-x^2 \mod n \}$$

where $0 < x < n/_{2}$.

a) Show that **SQ** is two-to-one over $\{1, \dots, \frac{(n-1)}{2}\}$. Why use $\mathbf{p} = \mathbf{q} = 3 \pmod{4}$?

b) Show that, as a hash function, **SQ** is collision resistant unless \mathbf{p} and \mathbf{q} can be found.

c) For a 1025-bit **n**, explain how we may create from **SQ** a collision resistant hash function **SQ'**: $\{0,1\}^* \rightarrow \{0,1\}^{1024}$ that is collision resistant unless **p** and **q** can be found.

Question 2. 3F-AES (10 + 10 = 20 points)

Consider the 256-bit block cipher **3F-AES** obtained by combining three (independent) instances of **AES** in a 3-round Feistel network. The total key-size of this new cipher is 384 bits.

I. Let **m** be a 256-bit message and **k** be a 384-bit key. Give an explicit formula for the encryption/decryption functions of **3F-AES** (you may invoke **AES** as a black-box).

II. Discuss the pseudo-random nature of the permutation defined by **3F-AES**.

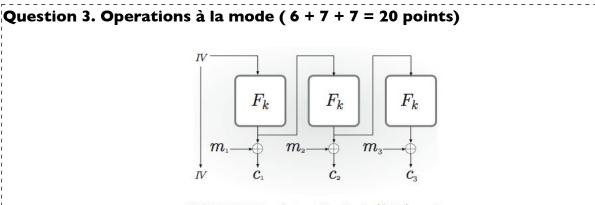


FIGURE 3.7: Output Feedback (OFB) mode.

Remember the **OFB** mode of operation for block ciphers.

(i) Draw a similar figure to explain decryption of **OFB** encrypted cipher-text (IV,c₁,c₂,c₃,...).

(ii) Why is **OFB** not suitable to use with a Public-key crypto-system ?

(iii) Suggest a modification of **OFB** mode that would make it suitable to use with a Public-key cryptosystem (assuming F_k is an invertible block cipher) ?

Question 4. Mac vs Signature (6 + 6 + 8 = 20 points)

- I. Explain why the term "Signature" is only used for the public-key setting.
- II. Explain why textbook **RSA** is NOT existentially unforgeable.
- III. We know it is possible to have MACs that are secure without computational assumptions. Why not signatures ?

Question 5. Pseudo-random Mac (10 + 10 = 20 points)

CONSTRUCTION 3.17

Let G be a pseudorandom generator with expansion factor ℓ . Define a private-key encryption scheme for messages of length ℓ as follows:

- Gen: on input 1^n , choose uniform $k \in \{0,1\}^n$ and output it as the key.
- Enc: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^{\ell(n)}$, output the ciphertext $c := G(k) \oplus m$.
- Dec: on input a key $k \in \{0, 1\}^n$ and a ciphertext $c \in \{0, 1\}^{\ell(n)}$, output the message $m := G(k) \oplus c$.

A private-key encryption scheme based on any pseudorandom generator.

Construction 3.17 above was used in class to obtain a private-key encryption scheme from any pseudo-random generator *G*.

i) Provide a similar construction to obtain a **MAC** scheme from any pseudo-random generator. Use the same level of details as the above construction.

ii) Argue that if the generator G is pseudo-random then your **MAC** scheme will be existentially unforgeable under an adaptive chosen-message attack.

Write the word for 5 bonus points...

