FINAL EXAMINATION

Computer Science COMP-547B Cryptography and Data Security

27 APRIL 2015, 14h00

Examiner: Prof. Claude Crépeau
 Assoc Examiner:
 Prof. David Avis

INSTRUCTIONS:

- This examination is worth 50% of your final grade.
- The total of all questions is 105 points.
- Each question heading contains (in parenthesis) a list of values for each sub-questions.
- This is an open book exam. All documentation is permitted.
- Faculty standard calculator permitted only.
- The exam consists of 5 questions on 3 pages, title page included.


```
Question I. Perfect RSA ? ( 5 + 10+10 = 25 points )
```

Consider an RSA crypto-system with keys ($\mathbf{n}, \mathbf{e}, \mathbf{d}$) except that only $\mathbf{n = p *} \mathbf{q}$ is publicly 'available (but neither e nor d).
I) How many key pairs (e,d) are possible for a fixed \mathbf{n} ? HINT: use function φ.

Assume Alice and Bob use (e,d) as the secret encryption-decryption keys of an RSA icrypto-system $\bmod \mathbf{n}$ for exactly one message \mathbf{m} in $\mathbb{Z}_{\mathbf{n}}{ }^{*}$.
II) Explain whether this one-time system is perfectly secure or not.
'Assume Alice and Bob use (e,d) as the secret encryption-decryption keys of an RSA 'crypto-system mod \mathbf{n} for exactly one message \mathbf{b} in $\{0, \mathrm{l}\}$ encoded as a random even' number from $\mathbb{Z}_{\mathrm{n}}{ }^{*}$ if $\mathbf{b}=\mathbf{0}$ and encoded as a random odd number from $\mathbb{Z}_{\mathrm{n}}{ }^{*}$ if $\mathrm{b}=\mathrm{l}$.
III) Explain whether this one-time system is perfectly secure or not.

Question 2. Pseudo-random permutation ($10+10=20$ points)

Let Π be a pseudo-random permutation family.

- Explain why it must be difficult to compute \mathbf{k} using oracle access to Π_{k}.
- Explain why it must be difficult to compute $\Pi_{k}{ }^{-1}(\mathbf{k})$ using oracle access to Π_{k}.

Question 3. Computational Assumption (15 points)

Consider the Discrete Logarithm Assumption modulo n, where n=p*q. Suppose we have 'an efficient algorithm \mathbf{D} to completely break this assumption, that is
given a modulus n, a base b, and a target $t, D(n, b, t)=x$ such that $t \equiv b^{x}(\bmod n)$.
Show an efficient algorithm for factoring \mathbf{n} using algorithm \mathbf{D}.
HINT:Think of RSA and once again use algorithm RSA-factor.

Question 4. CBC-MAC (15 points)

4.15 Show that appending the message length to the end of the message before applying basic CBC-MAC does not result in a secure MAC for arbitrary-length messages.

HINT: show how you can extend such a message by adding a new length at the end.

Question 5. Hashing (5+5+5+5+10=30 points)
'Let $h:\{0,1, \ldots, 9\}^{8} \rightarrow\{0,1, \ldots, 9\}^{4}$ be the following hash function
$h\left(d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7} d_{8}\right)=d_{1}+d_{2} \bmod 10\left|d_{3}+d_{4} \bmod 10\right| d_{5}+d_{6} \bmod 10 \mid d_{7}+d_{8} \bmod I 0$
a) Show that $\mathbf{h (5 5 5 5 5 5 5 5)} \mathbf{= 0 0 0 0 0}$.
,b) Show that $h(a 0 b 0 c 0 d 0)=h(0 a 0 b 0 c 0 d)=a b c d$.
c) What is $\mathbf{h}(035 \mathrm{I} 2493)$?
'd) Find a collision of h.
(e) Compute the value of $\mathrm{H}(423879623045)$ where H is the Merkle-Damgård transform of \mathbf{h}.
*** Show all your calculations so I can follow them even if you make errors ***

