McGill

FINAL EXAMINATION

Computer Science COMP-547B Cryptography and Data Security

15 APRIL 2014, 9 h00

Examiner: Prof. Claude Crépeau
 Assoc Examiner:
 Prof. David Avis

INSTRUCTIONS:

- This examination is worth 50% of your final grade.
- The total of all questions is 105 points.
- Each question heading contains (in parenthesis) a list of values for each sub-questions.
- This is an open book exam. All documentation is permitted.
- Faculty standard calculator permitted only.
- The exam consists of 6 questions on 3 pages, title page included.


```
Question I. Perfect Elgammal ? ( 10 +10 = 20 points )
```

Consider an Elgammal crypto-system with keys ($\mathbf{p}, \mathbf{g}, \mathbf{h}=\mathbf{g}^{\mathbf{x}} \bmod \mathbf{p}, \mathbf{x}$), where \mathbf{g} igenerates all the non-zero elements mod p, except that only p, g are publicly available (but not h,x).
'I) Explain how these public parameters may be generated efficiently.
Assume Alice and Bob use (\mathbf{h}, \mathbf{x}) as the secret encryption-decryption keys of an 'Elgammal crypto-system mod p for exactly one message $\mathbf{m}, \mathbf{0}<\mathbf{m}<\mathbf{p}$.
'II) Explain whether this one-time system is perfect or not.

Question 2. Hybrid Systems ($10+10=20$ points)

- Explain the purpose of a hybrid encryption scheme.
- Explain why we cannot combine a private-key MAC together with a digital signature scheme in a similar way to obtain hybrid authentication.

Question 3. Computational Assumptions ($10+10=20$ points)
'a) Explain why the RSA assumption is potentially stronger than the factoring assumption: 'and not the other way around.
'b) Explain why the Diffie-Hellman assumption is potentially stronger than the Discrete Logarithm assumption and not the other way around.

Question 4. Number Theory vs Crypto ($5+5+5=15$ points)

For each of the following Number Theoretical concepts, name a Cryptographic concept which is related and explain the relation.
I) Euler's theorem.
2) Square root extraction modulo a prime.
3) Kalai's algorithm.

Question 5. DSS identification (10 points)

Elaborate a public-key identification scheme based on the DSS and justify the necessity: 'of DSS being existentially unforgeable under chosen message attack to obtain a secure 'identification scheme.

Question 6. à la mode... ($6+6+8=20$ points)

What is the effect of a single-bit error in the ciphertext when using the CBC, OFB, and CTR modes of operation?

What is the effect of a dropped ciphertext block (i.e., if the ciphertext $c_{1}, c_{2}, c_{3}, \ldots$ is received as c_{1}, c_{3}, \ldots) when using the $\mathrm{CBC}, \mathrm{OFB}$, and CTR modes of operation?

Say CBC-mode encryption is used with a block cipher having a 256-bit key and 128-bit block length to encrypt a 1024-bit message. What is the length of the resulting ciphertext?

