McGill

FINAL EXAMINATION

Computer Science COMP-547B Cryptography and Data Security

29 APRIL 2013, 9 h00

Examiner: Prof. Claude Crépeau Assoc Examiner: Prof. Patrick Hayden

INSTRUCTIONS:

- This examination is worth 50% of your final grade.
- The total of all questions is 105 points.
- Each question heading contains (in parenthesis) a list of values for each sub-questions.
- This is an open book exam. All documentation is permitted.
- Faculty standard calculator permitted only.
- The exam consists of 6 questions on 3 pages, title page included.

Question I. Perfect RSA? (10 + $10=20$ points)

'Consider an RSA crypto-system with keys ($\mathbf{N}, \mathbf{e}, \mathbf{d}$) as usual except that only \mathbf{N} is 'publicly available.
'I) By definition, we know that $\mathbf{m}^{\mathbf{e d}} \mathbf{m o d} \mathbf{N} \equiv \mathbf{m}$ for \mathbf{m} s.t. $\boldsymbol{g c d}(\mathbf{m}, \mathbf{N})=\mathbf{I}$. Using the Chinese remainder theorem show that $\mathbf{m}^{\text {ed }} \mathbf{m o d} \mathbf{N} \equiv \mathbf{m}$ for \mathbf{m} s.t. $\operatorname{gcd}(\mathbf{m}, \mathbf{N})>\mathbf{I}$ as well.
II) Assume Alice and Bob use (e,d) as the private encryption-decryption keys of an RSA crypto-system mod \mathbf{N} for exactly one message $\mathbf{m}, \mathbf{0}<\mathbf{m}<\mathbf{N}$. Explain whether this one-time system is perfect according to Shannon's definition.

Question 2. DDES ($8+7=15$ points)

Consider the 128 -bit block cipher DDES obtained by combining two instances of DES in a two-round Feistel network. The total key-size of this new cipher would be II2 bits.

- Let \mathbf{x} be a I28-bit input and \mathbf{k} be a II2-bit key. Give an explicit formula for the encryption and decryption functions of DDES.
- Discuss the pseudo-random nature of the permutation defined by DDES.

Question 3. Rivest ($10+10=20$ points)

'Remember the construction by Rivest of a private-key crypto-system based on the 'existence of an arbitrary private-key authentication scheme.
'a) Show that the definition of security of the MAC is not sufficient for the resulting; crypto-system to have undistinguishable encryptions in the presence of an eavesdropper.
b) Define a stronger security notion for MACs such that the construction of Rivest iyields a crypto-system with undistinguishable encryptions in the presence of an eavesdropper.

Question 4. Number Theory vs Crypto (5 + 5 + 5 = I 5 points)

For each of the following Number Theoretical concepts, name a Cryptographic concept which is related and explain the relation.
I) Chinese remainder theorem.
2) Quadratic Residuosity.
3) $\mathbb{F}_{\mathbf{2}} \mathbf{k}$, for $\mathbf{k} \geq \mathbf{I}$.

Question 5. Elgamal Details ($10+10=20$ points)

Instantiate all the parameters of an Elgamal encryption scheme from a prime $\mathbf{p = 4 7}$ and igive me an encryption of $\mathbf{m = 1 0}$. Give me all the details of the crypto-system, taking into account all the implementation details seen in class.
(All your calculations can be done by hand.)

Question 6. Merkle-Damgård... ($8+7=15$ points)

In Construction 4.13 the size \mathbf{L} of the input string \mathbf{x} is such that $\mathbf{L}<\mathbf{2}^{1(n)}$. It is very peculiar that if we hash a string \mathbf{x} of length $\mathbf{2}^{\mathbf{1}(\mathbf{n})}$ - I using $\mathbf{H}^{\mathbf{s}}$, the time needed to hash the string is greater than the time needed to find a collision of $\mathbf{h}^{\mathbf{s}}$ by a birthday attack. This seems to imply that hashing exponentially long strings is insecure.
i) Explain why this is not contradicting the security statement (Theorem 4.14) that if $\mathbf{h}^{\mathbf{s}}$ is collision-resistant then $\mathbf{H}^{\mathbf{s}}$ is also collision-resistant.
ii) Why do we still use an exponential bound $\left(\mathbf{L}<\mathbf{2}^{\mathbf{1 (n)}}\right)$ in Construction 4.13 and not a polynomial bound such as $\mathbf{L}<\mathbf{l}(\mathbf{n})^{\mathbf{k}}$?

