

DECEMBER 2011 Final Examination

FINAL EXAMINATION

Computer Science COMP-547A Cryptography and Data Security

16 DECEMBER 2011, 14h00

Examiner:	Prof. Claude Crépeau	Assoc Examiner:	Prof. David Avis
-----------	----------------------	-----------------	------------------

INSTRUCTIONS:

- This examination is worth 50% of your final grade.
- The total of all questions is 105 points.

• Each question heading contains (in parenthesis) a list of values for each sub-questions.

- This is an open book exam. All documentation is permitted.
- Faculty standard calculator permitted only.
- The exam consists of 5 questions on 4 pages, title page included.

their values before you start.

V - · - · • · · · · · ·

Question I. Pseudo-random function? (5+5+5+5 = 20 points)

Let f_k for $k \in \{0,1\}^n$ be a candidate pseudo-random function family.

i) Suppose f_k and f_k are actually the same exact function, for all possible values of k. Does that contradict the pseudo-randomness of f_k ? Explain your answer.

ii) Suppose $f_k(000...0) = 000...0$ for all possible values of k. Does that contradict the pseudorandomness of f_k ? Explain your answer.

iii) Suppose $f_k(000...0) = k$ for all possible values of k. Does that contradict the pseudorandomness of f_k ? Explain your answer.

iv) Suppose $f_k(k) = k$ for all possible values of k. Does that contradict the pseudo-randomness of f_k ? Explain your answer.

Question 2. Number Theory (8+7 = 15 points)

Let *N***=143** be an RSA modulus.

- Find all the square roots $r (1 \le r \le N)$ of $1 \pmod{N}$.
- Give r_0 and r_1 that are two square roots of 1 such that $r_0 \neq \pm r_1 \pmod{N}$.
- What are gcd(r₀-r₁, N) and gcd(r₀+r₁, N) ?

7.10 Corollary 7.21 shows that if N = pq and $ed = 1 \mod \phi(N)$ then for all $x \in \mathbb{Z}_N^*$ we have $(x^e)^d = x \mod N$. Show that this holds for all $x \in \mathbb{Z}_N$.

Hint: Use the Chinese remainder theorem.

Question 3. Negligible (5+5+5 = 15 points)

Remember

DEFINITION 3.4 A function **f** is <u>negligible</u> if for every polynomial **\$\$(`)** there exists an **N** such that for all integers **n > N** it holds that

f(n) < 1/p(n)

A) Give an example of a negligible function and prove it is.

We can define non-negligible by simply changing as follows

DEFINITION 3.4* A function **f** is <u>non-negligible</u> if there exists a polynomial **\$(·)** such that for all integers **n** it holds that

f(n) > 1/p(n)

B) Give an example of a non-negligible function and prove it is.

C) Give an example of a function which is <u>neither negligible nor non-negligible</u> and prove it is.

.....

Question 4. Mac & Signature (7+7+7 = 21 points)

I) Explain why the term "Signature" is only used for the public-key setting.

2) Explain why textbook RSA is NOT existentially unforgeable.

3) It is possible to have MACs that are secure without computational assumptions. Why not signatures ?

Question 5. CPA security vs insecurity... (10+8+8+8 = 34 points)

i) Suppose pseudo-random permutations exist. Give two constructions of **CPA**-secure encryption schemes (for arbitrary-length messages) with identical key space.

You are given two **CPA**-secure encryption schemes $E_1=(Gen, Enc_1, Dec_1)$, and $E_2=(Gen, Enc_2, Dec_2)$ that share the same key-space and have the same key generation algorithm **Gen**.

ii) Consider the combined cryptosystem where encryption is the pair $(Enc_{1,k_1}(m), Enc_{2,k_2}(m))$ where encryptions are done using <u>INDEPENDENT KEYS</u> k_1 , k_2 . Explain why this resulting system is still **CPA**-secure.

iii) Consider the combined cryptosystem where encryption is the pair (**Enc**_{1,k}(*m*),**Enc**_{2,k}(*m*)) where both encryptions are done using <u>THE SAME KEY</u> *k*. Explain why this resulting system might <u>NOT</u> be **CPA**-secure.

Suppose I give you a **CPA**-secure encryption **E**₀=(**Gen**₀,**Enc**₀,**Dec**₀).

iv) Using E_0 , give an example of such systems E_1 , E_2 with properties as in **iii)**. (You should involve E_0 into the construction of E_1 and of E_2 so that they are as secure individually as E_0 but not together...)

HINT: Put an apparent useless part in encrypted messages that will reveal the key when you get both **Enc**_{1,k}(*m*) and **Enc**_{2,k}(*m*),.