FINAL EXAMINATION

Computer Science COMP-547A Cryptography and Data Security

16 DECEMBER 2011, 14h00

Examiner:	Prof. Claude Crépeau	Assoc Examiner:	Prof. David Avis

INSTRUCTIONS:

- This examination is worth 50% of your final grade.
- The total of all questions is 105 points.
- Each question heading contains (in parenthesis) a list of values for each sub-questions.
- This is an open book exam. All documentation is permitted.
- Faculty standard calculator permitted only.
- The exam consists of 5 questions on 4 pages, title page included.

Question I. Pseudo-random function ? (5+5+5+5 = $\mathbf{2 0}$ points)

Let f_{k} for $\boldsymbol{k} \in\{0,1\}^{\boldsymbol{n}}$ be a candidate pseudo-random function family.
i) Suppose f_{k} and f_{k} are actually the same exact function, for all possible values of k. Does that contradict the pseudo-randomness of f_{k} ? Explain your answer.
ii) Suppose $f_{k}(\mathbf{0 0 0} \ldots \mathbf{0})=\mathbf{0 0 0} \ldots \mathbf{0}$ for all possible values of \boldsymbol{k}. Does that contradict the pseudorandomness of f_{k} ? Explain your answer.
;iii) Suppose $f_{k}(\mathbf{0 0 0} \ldots \mathbf{0})=\boldsymbol{k}$ for all possible values of \boldsymbol{k}. Does that contradict the pseudo'randomness of f_{k} ? Explain your answer.
iv) Suppose $\boldsymbol{f}_{\boldsymbol{k}}(\boldsymbol{k})=\boldsymbol{k}$ for all possible values of \boldsymbol{k}. Does that contradict the pseudo-randomness of f_{k} ? Explain your answer.

Question 2. Number Theory (8+7 = I 5 points)

Let $N=\mathbf{1 4 3}$ be an RSA modulus.

- Find all the square roots $\boldsymbol{r}(\mathbf{1} \leq r \leq N)$ of $\mathbf{1}(\bmod N)$.
- Give \boldsymbol{r}_{0} and $\boldsymbol{r}_{\mathbf{1}}$ that are two square roots of 1 such that $\boldsymbol{r}_{\mathbf{0}} \not \equiv \pm \boldsymbol{r}_{\mathbf{1}}(\bmod \boldsymbol{N})$.
- What are $\operatorname{gcd}\left(r_{0}-r_{1}, N\right)$ and $\operatorname{gcd}\left(r_{0}+r_{1}, N\right)$?
7.10 Corollary 7.21 shows that if $N=p q$ and $e d=1 \bmod \phi(N)$ then for all $x \in \mathbb{Z}_{N}^{*}$ we have $\left(x^{e}\right)^{d}=x \bmod N$. Show that this holds for all $x \in \mathbb{Z}_{N}$.

Hint: Use the Chinese remainder theorem.

Question 3. Negligible (5+5+5 = I 5 points)
Remember
DEFINITION 3.4 A function \mathbf{f} is negligible if for every polynomial $\mathbf{p (\cdot)}$) there exists an \mathbf{N} such that for all integers $\boldsymbol{n}>\mathbf{N}$ it holds that

$$
f(n)<1 / p(n)
$$

A) Give an example of a negligible function and prove it is.

We can define non-negligible by simply changing as follows
DEFINITION 3.4* A function \mathbf{f} is non-negligible if there exists a polynomial $\boldsymbol{p}(\cdot)$ such that for all integers \boldsymbol{n} it holds that

$$
f(n)>1 / p(n)
$$

(B) Give an example of a non-negligible function and prove it is.
C) Give an example of a function which is neither negligible nor non-negligible and prove it is.

Question 4. Mac \& Signature (7+7+7 = 21 points)

I) Explain why the term "Signature" is only used for the public-key setting.
2) Explain why textbook RSA is NOT existentially unforgeable.
3) It is possible to have MACs that are secure without computational assumptions. Why not signatures ?

Question 5. CPA security vs insecurity... ($10+8+8+8$ = $\mathbf{3 4}$ points)

i) Suppose pseudo-random permutations exist. Give two constructions of CPA-secure encryption schemes (for arbitrary-length messages) with identical key space.

You are given two CPA-secure encryption schemes $\mathbf{E}_{\mathbf{1}}=\left(\mathbf{G e n}, \mathbf{E n c}_{\mathbf{1}}, \mathbf{D e c}_{\mathbf{1}}\right)$, and $\mathbf{E}_{\mathbf{2}}=\left(\mathbf{G e n}, \mathbf{E n c}_{\mathbf{2}}, \mathbf{D e c} \mathbf{C}_{\mathbf{2}}\right)$ that share the same key-space and have the same key generation algorithm Gen.
ii) Consider the combined cryptosystem where encryption is the pair $\left(\mathbf{E n c}_{\mathbf{1}, \mathbf{k}_{\mathbf{1}}}(\boldsymbol{m}), \mathbf{E n c}_{\mathbf{2}, \mathbf{k}_{\mathbf{2}}}(\boldsymbol{m})\right.$) where encryptions are done using INDEPENDENT KEYS $\boldsymbol{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}$. Explain why this resulting system is still CPA-secure.
iii) Consider the combined cryptosystem where encryption is the pair ($\mathbf{E n c}_{\mathbf{1}, \mathbf{k}}(\mathbf{m}), \mathbf{E n c}_{\mathbf{2}, \mathbf{k}}(\mathbf{m})$) where both encryptions are done using THE SAME KEY \boldsymbol{k}. Explain why this resulting system might NOT be CPA-secure.

Suppose I give you a CPA-secure encryption $\mathbf{E}_{\mathbf{0}}=\left(\mathbf{G e n}_{\mathbf{0}}, \mathbf{E n c}_{\mathbf{0}}, \mathbf{D e c}_{\mathbf{0}}\right)$.

iv) Using $\mathbf{E}_{\mathbf{0}}$, give an example of such systems $\mathbf{E}_{\mathbf{1}}, \mathbf{E}_{\mathbf{2}}$ with properties as in iii). (You should involve $\mathbf{E}_{\mathbf{0}}$ into the construction of $\mathbf{E}_{\mathbf{1}}$ and of $\mathbf{E}_{\mathbf{2}}$ so that they are as secure individually as $\mathbf{E}_{\mathbf{0}}$ but not together...)

HINT: Put an apparent useless part in encrypted messages that will reveal the key when you get both $\mathbf{E n c}_{\mathbf{1}, \mathbf{k}}(\boldsymbol{m})$ and $\mathbf{E n c}_{\mathbf{2}, \mathbf{k}}(\boldsymbol{m})$.,

