McGill

FINAL EXAMINATION

Computer Science COMP-547A
 Cryptography and Data Security

6 DECEMBER 2010, 9 h 00

Examiner:	Prof. Claude Crépeau	Assoc Examiner:	Prof. David Avis

INSTRUCTIONS:

- This examination is worth 50% of your final grade.
- The total of all questions is 100 points.
- Each question heading contains (in parenthesis) a list of values for each sub-questions.
- This is an open book exam. All documentation is permitted.
- Faculty standard calculator permitted only.
- The exam consists of 4 questions on 3 pages, title page included.

Question I. Super Secure AES? (4+8+8+10 = $\mathbf{3 0}$ points)

Start with 256 -bit AES. Mr Paranoid, who wants a super secure block cipher, considers embedding this version of AES in a Fiestel structure as shown on the right. Assume he instantiates the pseudo-random functions f_{1} and f_{2} with AES as above, using two completely independent keys.
i) What would be the resulting block size and key size of this new cipher?
ii) Show that the resulting block cipher does not behave as a pseudo-random permutation.

iii) What can you say about the security of the resulting block cipher ??
iv) Consider randomized versions of this block cipher:
version A : to encrypt an $\boldsymbol{R}_{\mathbf{0}}$, choose a random \boldsymbol{L}_{0} and apply the new block cipher. version B : to encrypt an \boldsymbol{L}_{0}, choose a random $\boldsymbol{R}_{\mathbf{0}}$ and apply the new block cipher.

Compare these two versions in terms of CPA-security.

Question 2. - MAC ($10+6+8=\mathbf{2 4}$ points)

You are given a (CPA-secure) Public-key encryption scheme E=(Gen ${ }_{\mathbf{E}}$,Enc,Dec), a (securet) digital signature scheme $\mathbf{S}=(\mathrm{Gens}, \mathrm{Sig}, \mathrm{Vrfys}$) and a (securet) private-key authentication scheme $\mathbf{A}=\left(\operatorname{Gen}_{\mathrm{A}}, \mathrm{Auth}, \mathrm{Verfy} \mathbf{A}\right)$. The (private-key) latter is substantially more efficient than the (publickey) formers.

Bob has never met Alice before, but through a trusted CA, Bob knows Alice's (encryption) public-key $\boldsymbol{p} \boldsymbol{k}_{\mathrm{A}}$ and (signature) public-key $\boldsymbol{q} \boldsymbol{k}_{\mathrm{A}}$ and Alice knows Bob's (encryption) public-key $\boldsymbol{p} \boldsymbol{k}_{\mathrm{B}}$ and (signature) public-key $\boldsymbol{q} \boldsymbol{k}_{\mathrm{B}}$.
i) Explain how you may combine (only) these three ingredients (E,S and A) and allow Bob to authenticate an enormous amount of data to Alice, as efficiently as possible. Justify your choices.
ii) Give specific systems to instantiate each of \mathbf{E}, \mathbf{S} and \mathbf{A}.
iii) Explain why having either only \mathbf{E}, \mathbf{A} or only \mathbf{S}, \mathbf{A} is fairly useless for the same task as in i)...

[^0]
Question 3. Short and sweet ($8+8=16$ points)

7.5 Compute the final two (decimal) digits of 3^{1000} (by hand). Hint: The answer is [$\left.3^{1000} \bmod 100\right]$.
7.10 Corollary 7.21 shows that if $N=p q$ and $e d=1 \bmod \phi(N)$ then for all $x \in \mathbb{Z}_{N}^{*}$ we have $\left(x^{e}\right)^{d}=x \bmod N$. Show that this holds for all $x \in \mathbb{Z}_{N}$.

Hint: Use the Chinese remainder theorem.
(even if $\operatorname{gcd}(\boldsymbol{x}, \boldsymbol{N})>1$)

Question 4. El Gamal vs Al Gemel (5+7+6+7+5 = $\mathbf{3 0}$ points)

A) Let \boldsymbol{p} be a random 1024-bit prime. If \boldsymbol{g} is a generator of the entire group \mathbb{Z}_{p-1}^{*}, is it likely that the decisional Diffie-Hellman problem be hard $\bmod \boldsymbol{p} ?$ Justify your answer.
B) Consider a variation on El Gamal crypto-system called "Al Gemel" :
to encrypt a message \boldsymbol{m} in \mathbb{Z}_{q}^{*}, choose a random \boldsymbol{k} and send $« \boldsymbol{h}^{\boldsymbol{k}}, \boldsymbol{g}^{\boldsymbol{k}} \times \boldsymbol{m}^{2}$ »
where the private parameter is a and the public parameters are $« p:=2 q+1, g, h:=g^{a} »$ with a prime \boldsymbol{q} and a generator \boldsymbol{g} of the quadratic residue sub-group of $\boldsymbol{q}:=(\boldsymbol{p}-\mathbf{1}) / \mathbf{2}$ elements.
i) Given \boldsymbol{a}, show how we can efficiently compute an exponent \boldsymbol{b} such that $\boldsymbol{g}^{\boldsymbol{k}}=\left(\boldsymbol{h}^{\boldsymbol{k}}\right)^{\boldsymbol{b}}$.
ii) Explain all the details of the resulting decryption algorithm.
iii) Show that (when $\boldsymbol{q}=(\boldsymbol{p} \mathbf{- 1}) / \mathbf{2}$ is prime) the Al Gemel crypto-system is essentially the same as the El Gamal crypto-system !!!
iv) Why is this not the case when \boldsymbol{q} is not prime ??

[^0]: ${ }^{\dagger}$ existentially unforgeable under an adaptive chosen-message attack.

