Computer Science COMP-547A Cryptography and Data Security

16 DECEMBER 2008, 9h00

Examiner:	Prof. Claude Crépeau	Assoc Examiner:	Prof. David Avis

INSTRUCTIONS:

- This examination is worth 50% of your final grade.
- The total of all questions is 100 points.
- Each question heading contains (in parenthesis) a list of values for each sub-questions.
- This is an open book exam. All documentation is permitted.
- Faculty standard calculator permitted only.
- The exam consists of 5 questions on 3 pages, title page included.

Suggestion:
 read all the questions and their values before you start.

Question 1. Small private RSA exponent (5+5+5+5 points)

I mentioned in class that RSA public-keys (\mathbf{N}, \mathbf{e}) which correspond to small values of $\mathbf{d}(\|\mathbf{d}\|<\|\mathbf{N}\| / 4)$ are easy to break using an algorithm developed by Wiener. This is unfortunate because it is useful to have small d for efficiency of decryption. On page 358 of your book, a small section is dedicated to a technique using the Chinese Remainder Theorem representation of \mathbf{d} to speed up decryption. I summarize this idea here.

For a triplet of RSA keys ($\mathbf{N}, \mathbf{e}, \mathbf{d}$), where $\mathbf{N}=\mathbf{p q}$ is a product of two large primes, the secret exponent \mathbf{d} may be replaced by two much smaller exponents $\mathbf{d}_{\mathrm{p}}:=\mathbf{d} \bmod \mathbf{p - 1}$ and $d_{q}:=d \bmod q-1$. The decryption algorithm $m:=c^{d} \bmod \mathbf{N}$ is then replaced by computing $m_{p}:=c^{d_{p}} \bmod p$ and $m_{q}:=c^{d_{q}} \bmod q$. The answer m is obtained by applying the Chinese Remainder Theorem to ($\mathbf{m}_{\mathbf{p}}, \mathbf{p}$) and ($\mathbf{m}_{\mathbf{q}}, \mathbf{q}$).
(a) Assuming exponentiation of an \mathbf{n}-bit number (c) modulo an \mathbf{n}-bit modulus (\mathbf{N}) with an \mathbf{n}-bit exponent (d) takes time \mathbf{n}^{3}, compare the running time of the direct way to calculate $\mathbf{m}:=\mathbf{c}^{\mathbf{d}} \bmod \mathbf{N}$ together with the alternate way to calculate \mathbf{m} using the Chinese Remainder Theorem (assuming $\mathbf{d}_{\mathbf{p}}$ and $\mathbf{d}_{\mathbf{q}}$ were pre-calculated).

Assume ($\mathbf{N}, \mathbf{e}, \mathbf{d}$) are carefully chosen so that the related pre-calculated \mathbf{d}_{p} and $\mathbf{d}_{\mathbf{q}}$ both have smaller size $\mathbf{k}<\mathbf{n} / \mathbf{2}=||\mathbf{N}|| \mathbf{2}$.
(b) Express the size of exponent \mathbf{d} related to $\mathbf{d}_{\mathbf{p}}$ and $\mathbf{d}_{\mathbf{q}}$, both of size $\mathbf{k}<\mathbf{n} / \mathbf{2}=\|\mathbf{N}\| / \mathbf{2}$.
(c) Assuming exponentiation of an \mathbf{n}-bit number (c) modulo an \mathbf{n}-bit modulus (\mathbf{N}) with an L-bit exponent (d) takes time $\mathbf{n}^{2} \mathbf{L}$, compare the running time of the direct way to calculate $\mathbf{m}:=\mathbf{c}^{\mathbf{d}} \bmod \mathbf{N}$ together with the alternate way to calculate \mathbf{m} using the Chinese Remainder Theorem (assuming \mathbf{d}_{p} and \mathbf{d}_{q}, both have smaller size $\mathbf{k}<\mathbf{n} / \mathbf{2}$, and were pre-calculated).
(d) If we use very small $\mathbf{d}_{\mathbf{p}}$ and $\mathbf{d}_{\mathbf{q}}$, say both of size $\mathbf{k}<\mathbf{n} / \mathbf{4}$, does it seem to reduce the security of the scheme. Explain your answer.

Question 2. $\operatorname{CNE}_{k}(x):=\operatorname{ENC}_{\mathrm{x}}(\mathrm{k})(5+10$ points)

Given a deterministic encryption scheme $\mathrm{ENC}_{\mathbf{k}}(\mathbf{x})$, where the key-size and message-size are the same, define another function family $\operatorname{CNE}_{\mathrm{k}}(\mathbf{x}):=\mathrm{ENC}_{\mathrm{x}}(\mathbf{k})$.
(a) Explain why the new function family $\mathbf{C N E}_{\mathbf{k}}(\mathbf{x})$ might not even define a valid encryption scheme.
(b) Suppose that for a random half-size string r and arbitrary half-size message \mathbf{m}, $\mathrm{ENC}_{\mathrm{k}}(\mathrm{r}: \mathrm{m})$ is believed to be secure in the presence of an eavesdropper. What can be said about the security of $\mathrm{CNE}_{\mathrm{k}}(\mathbf{r}: \mathrm{m})$ (assuming $\mathrm{CNE}_{\mathrm{k}}(\mathbf{x})$ is a valid encryption scheme) ? Explain your answer.

Question 3. CConlyA (8+5+6+6+5 points)

A cryptosystem is secure against a Chosen Ciphertext-Only Attack (CConlyA) if the adversary has access to a decryption oracle only (no encryption oracle).

- Define formally "The CConlyA indistinguishability experiment" and a security definition along the lines of Definition 3.30.
- For public-key cryptosystems argue that CConlyA-security is equivalent to CCAsecurity.
- For private-key cryptosystems argue that if CCA-security is achieved then CPAsecurity and CConlyA-security are both achieved.
- For private-key cryptosystems, if both CPA-security and CConlyA-security are achieved, can we conclude that CCA-security is necessarily achieved? Explain.
- Why do you think CConlyA-security is not seriously considered as a useful notion ?

Question 4. Pretty-Strong Primes (10+10 points)

We have seen in class the notion of Strong primes that are such that $(\mathbf{p}-\mathbf{1}) / \mathbf{2}=\mathbf{q}$ is also a prime. We now define the notion of Pretty-Strong prime that are such that $(\mathbf{p - 1}) / \mathbf{2}=\mathbf{q} \mathbf{r}$ is a product of two primes of the same size.
(A) If I give you a Pretty-Strong prime \mathbf{p}, is it computationally easy to find a generator (primitive element) of the non-zero integers modulo p? Explain.
(B) Give an efficient algorithm to generate (uniformly) any Pretty-Strong prime \mathbf{p} of a certain (exact) size \mathbf{k} and a random generator \mathbf{g} of the non-zero integers modulo p. Explain how it works.

Question 5.

MACs (7+8 points)

In the class notes we have seen that if \mathbf{F} is a strongly universal-two class of hash functions, the Wegman-Carter one-time authentication scheme $m \rightarrow\left(m, f_{k}(m)\right)$ is perfectly secure, when f_{k} is chosen uniformly from F for each authentication.

- Explain the relation between the security of this authentication scheme and Definition 4.2 of "existential unforgeability under an adaptive chosen-message attack".
- Explain how to combine Vernam's one-time-pad with Wegman-Carter one-time authentication to guarantee both confidentiality and integrity in a perfect way. Reduce as much as you can the amount of key bits necessary to accomplish both properties.

