

DECEMBER 2008 Final Examination

FINAL EXAMINATION

Computer Science COMP-547A Cryptography and Data Security

16 DECEMBER 2008, 9h00

Examiner: Prof. Claude Crépeau	Assoc Examiner:	Prof. David Avis
--------------------------------	-----------------	------------------

INSTRUCTIONS:

- This examination is worth 50% of your final grade.
- The total of all questions is 100 points.

• Each question heading contains (in parenthesis) a list of values for each sub-questions.

- This is an open book exam. All documentation is permitted.
- Faculty standard calculator permitted only.
- The exam consists of 5 questions on 3 pages, title page included.

Suggestion:

read all the questions and their values before you start.

Question 1. Small private RSA exponent (5+5+5+5 points)

I mentioned in class that RSA public-keys (**N**,**e**) which correspond to small values of **d** ($||\mathbf{d}|| < ||\mathbf{N}||/4$) are easy to break using an algorithm developed by Wiener. This is unfortunate because it is useful to have small **d** for efficiency of decryption. On page 358 of your book, a small section is dedicated to a technique using the Chinese Remainder Theorem representation of **d** to speed up decryption. I summarize this idea here.

For a triplet of RSA keys (N,e,d), where N=pq is a product of two large primes, the secret exponent d may be replaced by two much smaller exponents $d_p := d \mod p-1$ and $d_q := d \mod q-1$. The decryption algorithm $m := c^d \mod N$ is then replaced by computing $m_p := c^{d_p} \mod p$ and $m_q := c^{d_q} \mod q$. The answer m is obtained by applying the Chinese Remainder Theorem to (m_p, p) and (m_q, q) .

(a) Assuming exponentiation of an **n**-bit number (**c**) modulo an **n**-bit modulus (**N**) with an **n**-bit exponent (**d**) takes time \mathbf{n}^3 , compare the running time of the direct way to calculate $\mathbf{m} := \mathbf{c}^d \mod \mathbf{N}$ together with the alternate way to calculate \mathbf{m} using the Chinese Remainder Theorem (assuming \mathbf{d}_p and \mathbf{d}_q were pre-calculated).

Assume (N,e,d) are carefully chosen so that the related pre-calculated d_p and d_q both have smaller size k < n/2 = ||N||/2.

(b) Express the size of exponent **d** related to d_p and d_q , both of size k < n/2 = ||N||/2.

(c) Assuming exponentiation of an n-bit number (c) modulo an n-bit modulus (N) with an L-bit exponent (d) takes time n^2L , compare the running time of the direct way to calculate $m := c^d \mod N$ together with the alternate way to calculate m using the Chinese Remainder Theorem (assuming d_p and d_q , both have smaller size k < n/2, and were pre-calculated).

(d) If we use very small d_p and d_q , say both of size k < n/4, does it seem to reduce the security of the scheme. Explain your answer.

Question 2. $CNE_k(x) := ENC_x(k)$ (5+10 points)

Given a deterministic encryption scheme $ENC_k(x)$, where the key-size and message-size are the same, define another function family $CNE_k(x)$:= $ENC_x(k)$.

(a) Explain why the new function family $CNE_k(x)$ might not even define a valid encryption scheme.

(b) Suppose that for a random half-size string r and arbitrary half-size message m, **ENC**_k(**r**:**m**) is believed to be secure in the presence of an eavesdropper. What can be said about the security of **CNE**_k(**r**:**m**) (assuming **CNE**_k(**x**) is a valid encryption scheme)? Explain your answer.

Question 3. CConlyA (8+5+6+6+5 points)

A cryptosystem is *secure against a Chosen Ciphertext-Only Attack* (**CConlyA**) if the adversary has access to a decryption oracle only (no encryption oracle).

• Define formally "*The CConlyA indistinguishability experiment*" and a security definition along the lines of **Definition 3.30**.

• For public-key cryptosystems argue that **CConlyA**-security is equivalent to **CCA**-security.

• For private-key cryptosystems argue that if **CCA**-security is achieved then **CPA**-security and **CConlyA**-security are both achieved.

• For private-key cryptosystems, if both **CPA**-security and **CConlyA**-security are achieved, can we conclude that **CCA**-security is necessarily achieved ? Explain.

• Why do you think **CConlyA**-security is not seriously considered as a useful notion ?

Question 4. Pretty-Strong Primes (10+10 points)

We have seen in class the notion of Strong primes that are such that (p-1)/2 = q is also a prime. We now define the notion of Pretty-Strong prime that are such that (p-1)/2 = q r is a product of two primes of the same size.

(A) If I give you a Pretty-Strong prime **p**, is it computationally easy to find a generator (primitive element) of the non-zero integers modulo **p** ? Explain.

(B) Give an efficient algorithm to generate (uniformly) any Pretty-Strong prime **p** of a certain (exact) size **k** and a random generator **g** of the non-zero integers modulo **p**. Explain how it works.

Question 5.

MACs (7+8 points)

In the class notes we have seen that if **F** is a strongly universal-two class of hash functions, the Wegman-Carter one-time authentication scheme $m \rightarrow (m, f_k(m))$ is perfectly secure, when f_k is chosen uniformly from **F** for each authentication.

• Explain the relation between the security of this authentication scheme and Definition 4.2 of "*existential unforgeability under an adaptive chosen-message attack*".

• Explain how to combine Vernam's one-time-pad with Wegman-Carter one-time authentication to guarantee both confidentiality and integrity in a perfect way. Reduce as much as you can the amount of key bits necessary to accomplish both properties.