FINAL EXAMINATION
Computer Science COMP-547A
Cryptography and Data Security

10 DECEMBER 2007, 14h00

Examiner:	Prof. Claude Crépeau	Assoc Examiner:	Prof. David Avis

INSTRUCTIONS:

- This examination is worth 50% of your final grade.
- The total of all questions is 100 points.
- Each question heading contains (in parenthesis) a list of values for each sub-questions.
- This is an open book exam. All documentation is permitted.
- Faculty standard calculator permitted only.
- The exam consists of 5 questions on 3 pages, title page included.

Suggestion:
 read all the questions and their values before you start.

Question 1. Entropy (5+5+5 points)

Consider a random variable X with 4 possible outcomes: " 0 " with probability $1 / 4$, " 1 " with probability $1 / 4$, " 2 " with probability $1 / 8$ and " 3 " with probability $3 / 8$.

- Compute $\mathrm{H}(\mathrm{X})$, the entropy of X . (you may express your answer in terms of $\tau=\log _{2} 3$)
- Give another distribution Y on $\{0,1,2,3\}$ such that $\mathrm{H}(\mathrm{Y})=\mathrm{H}(\mathrm{X})$.
- Compute $\mathrm{H}(\mathrm{X}$ mod 2$)$ and $\mathrm{H}(\mathrm{Y} \bmod 2)$.

Question 2. Short and Sweet (5+5+5+5+5 points)

(justify briefly your answers)
(a)

Explain the relevance of large prime numbers to public-key cryptography.
(b)

Given an RSA public-key (n, e), is the problem of finding d such that $e \times d \bmod \phi(n)=1$ equivalent to the problem of factoring n ?
(c)

Name a crypto-system in which the following operation is relevant:
(multiplicative) inversion of an element in the field of 256 elements.
(d)

Identify the 13 finite fields with a number of elements between 100 and 150.
(e)

What is the advantage of combining a cryptographic hash function (message digest) together with a digital signature scheme ?

Question 3. AES PRBG (8+5 points)

Explain two ways of constructing pseudo-random bit generators from AES:

- In a first construction favor efficiency making sure the AES function is used only t times to produce $t \times 128$ pseudo-random bits. Discuss the impact of the AES key size on efficiency and security.
- In a second construction, favor security by making sure your PRBG is as secure as the AES function. (Assuming AES is a one-way permutation)

Question 4. ElGammal (10+5+6+6 points)

(A) Double EIGammal signature

Let ($p, \alpha, \beta, \beta^{\prime}$) be a set of ElGammal public-keys. Let $\left(a, a^{\prime}\right)$ be a pair of ElGammal private keys such that $\beta=\alpha^{\alpha} \bmod p$ and $\beta^{\prime}=\alpha^{\alpha^{\prime}} \bmod p$. Consider the DEG (double-EIGammal) signature scheme of a message m to be $\operatorname{DEG}(m):=\left[(\gamma, \delta),\left(\gamma^{\prime}, \delta^{\prime}\right)\right]$ where everything is computed the standard way but for both sets of parameters.

- Analyze the impact of this improved way of signing messages on the (2) known existential-forgery attacks on ElGammal signatures.

(B) EIGammal PKC is multiplicative

Let (p, α, β, a) be a set of ElGammal public/private-keys. Let (y_{1}, y_{2}) be the EIGammal encryption of an unknown message x. Let ($y^{\prime}{ }_{l}, y^{\prime}{ }_{2}$) be the ElGammal encryption of another message z.

- Show how a valid encryption of the message $x z \bmod p$ can be obtained from the encryptions of x and z. Explain how this is similar to the multiplicative property of RSA and its significance.
- Argue that the $l s b(x)$ cannot be easy to compute from an ElGammal encryption of x when the Computational Diffie-Hellman problem is hard to solve.
- Consider a variation on this encryption scheme where the encryption of x is performed as $\gamma=x+\beta^{k} \bmod p$ instead of $\gamma=x \times \beta^{k} \bmod p$. Can this change the security of the system? Is it now possible that the $l s b(x)$ be easy to compute from such an encryption of x ?

Question 5.

MACs (8+6+6 points)

NOTE: all the questions below are NOT about the inner structure of SHA-1.

- Explain the design principles leading to HMAC. In particular, clarify why ipad and opad must be distinct constants.
- The search for collisions in SHA-1 is very active and it seems very likely that existential collisions on SHA-1 will be found in the near future (if not already!). Explain why such collisions have very little impact on the security of HMAC.
- Consider a notion of public-key MAC: for an arbitrary message m, and a public-key encryption system ($e_{p k}, d_{p k}$), let ($m, \operatorname{HMAC}_{k}(m), e_{p k}(k)$) be a public-key MAC of m using a random key k. Upon reception of (a, b, c) the validity of the message is checked by computing $k^{\prime}:=d_{p k}(c)$, and verifying $\operatorname{HMAC}_{k^{\prime}}(a)=b$. A public-key MAC should be tamper resistant. What is wrong with the proposed implementation?

